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Affine singular control systems on Lie groups
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Abstract
The purpose of this paper is to show that an affine singular control
system S on a connected Lie group G leads to two subsystems: An
affine control system on a homogeneous space G/H and an algebraic-
differential control system on H of G, where H is some closed subgroup
of G.
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1. INTRODUCTION
Let G denote a connected Lie group with Lie algebra L (G) (the set of right invariant

vector fields on G). Let us denote by Af(G) the affine group on G. An affine singular
control system S on G is a family of differential equations

(1.1) Eg(t)

( .

g (t)
)

= F (g (t)) +

d∑
j=1

uj (t)F j (g (t)) , g (t) ∈ G,

where u ∈ U is the class of unrestricted piecewise constant admissible controls with values
on Rd, i.e., the set

U =
{
u : [0, Tu]→ Rd | u is a piecewise constant function

}
.

Here, the vector fields F, F 1, ..., F d belong to the affine algebra af(G) and E is a non-
invertible derivation on L(G). The operator Eg : TgG → TgG is defined by Eg =
(lg)∗ ◦ E ◦

(
lg−1

)
∗, where(

lg−1

)
∗ : TgG→ TeG, E : TeG→ TeG, (lg)∗ : TeG→ TgG.
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The singular control system on Euclidean spaces was introduced by Dai [5]. The
system has been well developed on Lie groups, see [3, 4] . Thus, there exist the basic
ingredients to start with the study of affine singular control systems on Lie groups.

Throughout this paper H, which is the subgroup of G will be assumed to be closed,
because in this case the quotient set G/H is a homogeneous space. We also assume that
the vector fields F, F 1, . . . , F d are projectable on the homogeneous space G/H leads to a
decomposition of (1.1) in two systems, one onG/H and the one other onH. The algebraic-
differential subsystem plays a crucial role in the understanding of the trajectories for affine
singular control systems on Lie groups. Actually, the solvability of (1.1) depends just on
when we are able to solve (3.1). Furthermore, we establish a special solution of (3.1) and
hence the solution of (1.1).

This paper is organized as follows. In the next section we introduce the notion of
an affine control system on a connected Lie group G. In Section 3, vector fields of the
affine singular control system on homogeneous space are introduced, and we obtain the
decomposition for the affine singular control system S on G, as well as the solution of
the decomposition (3.1).

2. Affine Control Systems

In this section, the definition of affine vector fields are recalled. More details can found
in [2, 8, 7] .

Let G denote a connected Lie group of dimension n with Lie algebra L(G). The affine
group Af(G) of G is the semidirect product of Aut(G) and G, i.e., Af(G) = Aut(G)×sG.
The semidirect product consists of all pairs (φ, g) ∈ Af(G), with the group structure given
by

(φ, g1) · (ψ, g2) = (φ ◦ ψ, g1φ (g2)) ,

that (Id, e) is the group identity and that
(
φ−1, φ−1

(
g−1

))
is the inverse of (φ, g) . Then,

the mapping g → (Id, g) embeds G into Af(G) and φ → (φ, e) embeds Aut(G) into
Af(G). Therefore, G and Aut(G) are subgroups of Af(G). There is a natural action

Af(G)×G→ G

defined by

(φ, g1) · g2 → g1φ (g2) ,

where (φ, g1) ∈ Af(G) and g2 ∈ G. This action is transitive. Indeed, if it is taken g2 = e,
then (φ, g1) · e = g1 since φ (g2) = e.

Denote by AutL(G) the automorphism group of L(G) and whose Lie algebra is
DerL(G), the Lie algebra of derivations of L(G). If G is simply connected, then Aut(G)
and AutL(G) are isomorphic. In fact, there is an isomorphism Φ which assigns to each
automorphism φ of G its differential dφ |Id at the identity. Any automorphism φ of
L(G) extends to an automorphism of G, therefore, Φ is indeed an isomorphism between
Aut(G) and AutL(G). Thus, in this case, the Lie algebra of Aut(G) is DerL(G).

The Lie bracket in af(G) is given by[(
D

1, Y 1) , (D2, Y 2)] =
([
D

1,D2] ,D1Y 2 −D
2Y 1 +

[
Y 1, Y 2]) ,

where the first coordinate in the bracket is that of DerL(G), while the second is that of
L(G) and DX denotes the derived action of DerL(G) on L(G). The Lie algebra af(G)
of Af(G) is the semidirect product DerL(G)×s L(G). An affine vector field F on G can
be exclusively separated decomposed into a sum

F = D + Y,



1073

where D ∈ DerL(G) and Y ∈ L(G). Thus, an affine control system on G is determined
by the dynamic parametrized by u ∈ U,

·
g (t) = (D + Y )(g (t)) +

d∑
j=1

uj (t)
(
D

j + Y j
)

(g (t)) , g (t) ∈ G,

where right invariant vector fields Y, Y 1, ..., Y d ∈ L(G) and D,D1, ...,Dd ∈ DerL(G).
As usual, for any g ∈ G, denote by rg the right translation on G by g; that is,

rg(x) = xg for all x in G. lg will denote the left translation by g; that is, lg(x) = gx. We
recall that L(G) is isomorphic to the tangent space TeG of G at the identity element e.
Thus, a right invariant vector field Y on G is determined by its value at e. In particular,
Y (g) = (rg)∗Y (e) and its flow is given by Y (g (t)) = rg(Y (e(t))), where (rg)∗ is derivative
of rg.

Let X be an infinitesimal automorphism of the Lie group G, that is, the flow (Xt)t∈R
induced by the vector field X is a one-parameter subgroup of Aut(G). Then, X induces a
derivation D = −adX on L(G) for D ∈DerL(G). This condition on ad means

DY = − [X, Y ]

for ∀Y ∈ L(G) and verifies X (e) = 0.

3. Affine Singular Control Systems
Throughout this section, we can always assume that G is simply connected and Π∗Y

is one-to-one.
Let G denote a Lie group and let H denote a closed Lie subgroup of G with Lie algebra

L(H). For closed subgroupH of G, G/H = {gH : g ∈ G} denotes the homogeneous space
of left cosets of H, and we denote by Π the natural projection of G onto G/H. In order
to any right invariant vector field Y ∈ L(G), Y projects to Π∗Y on G/H, will be induced
to as a well-defined invariant vector field on G/H. Furthermore, Π∗L(G) = {Π∗Y ; Y ∈
L(G)} is a Lie algebra and Π∗ is a Lie algebra morphism from L(G) onto Π∗L(G). Also
the projection Π∗Y of Y ∈ L(G) vanishes at the point H iff Y ∈ L(H).

We consider an affine singular control system S with derivation E ∈ Der(L(G)) and
vector field X induced by a derivation D ∈ Der(L(G)). Now, we wish to show the
existence of a vector field Π-related to X on G/H. There exists a vector field π-related
to X on G/H such that

Π(X(g(t)x(t))) = Π(X(g(t)))

for ∀g ∈ G,∀x ∈ H and ∀t ∈ R. On the other hand, the corresponding flows on G/H are
related by

Π (X(g(t)x(t))) = Π (X(g(t))X(x(t))) = Π (X(g(t)))X(x(t))H,

where X(x(t)) is the one-parameter subgroup in H. Because of the existence of the pro-
jection, the subgroup H is invariant under the flow of X; thus, X is tangent to H.

Now, let H be connected. Because of the elements of H, which are products of
exponentials, the invariance of H under X writes

∀Y ∈ L(H), ∀t ∈ R Xt(expY ) = exp(etDY ) ∈ H,

or equivalently as

∀Y ∈ L(H), ∀t ∈ R etDY ∈ L(H).

Finally, its Lie algebra L(H) is invariant under D.
Under the above assumptions, the projection of X onto G/H will be denoted by Π∗X.
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Now, we take an affine vector field F = X + Y on G. This decomposition is chosen in
order to ensure that the projection Π∗Y of Y onto G/H is well defined. If Π∗X exists,
then F is Π-related to a vector field on G/H. It follows that Π∗F = Π∗X + Π∗Y will
stand for the projection of F onto G/H. Then, there exists an affine control system on
G

·
g (t) = Π (F (g (t))) +

d∑
j=1

uj (t) Π
(
F j (g (t))

)
, g (t) ∈ G,

which projects down onto G/H.
Now, it follows that (Π∗E)−1D ∈ Der(L(G)/L(H)) since E,D ∈ Der(L(G)) and

L(H)-invariant. Let us denote by Π∗
(
(Π∗E)−1D

)
∈ Der(L(G)) such that its restriction

to L(G)/L(H) coincide with (Π∗E)−1D. Thus, Π∗ (Π∗E)−1
X = Π∗X on G/H. On the

other hand, we define Π∗
(
(Π∗E)−1 Y

)
as the only invariant vector fields determined by

(Π∗E)−1 Y (e) ∈ L(G)/L(H). Thus, the mapping Eg : TgG → TgG is invertible on the
homogeneous space G/H for any g ∈ G. In particular, we can consider the affine control
system Π (S) on G/H in the following way:
·

y (t) =
(
Ey(t)

)−1 ◦Π (X (y (t))) +
(
Ey(t)

)−1 ◦Π (Y (y (t))) +(
Ey(t)

)−1 ◦
d∑

j=1

uj (t) Π
(
X

j (y (t))
)

+
(
Ey(t)

)−1 ◦
d∑

j=1

uj (t) Π
(
Y j (y (t))

)
,

where y (t) ∈ G/H is an integral curve of the projected affine control system on the ho-
mogeneous space G/H. Also

.

y (t) has a well-defined solution for each piecewise admissible
control u and any initial condition in G.

3.1. Theorem. Let G be a connected Lie group with Lie algebra L(G) and assume that
the connected Lie subgroup H of G with Lie algebra L(H) is closed. The curve g (t) is
solution of the affine singular control system S for the initial condition y(0) = y ∈ G/H
associated to the control u ∈ U. Then, there exists a one parameter group x(t) of the
closed subgroup H which together satisfies the algebraic-differential equation

Eg(t)

(
y (t)

.

x (t)
)

=
(
ly(t)

)
∗

(
XL(H) (x (t)) +

d∑
j=1

uj (t)Xj
L(H) (x (t))

)

+

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
,(3.1)

where XL(H),X
1
L(H), . . . ,X

d
L(H) are infinitesimal automorphisms of the Lie subgroup H

and YL(H),Y 1
L(H), ..., Y

d
L(H) ∈ L(H).

Proof. Assume there exists a solution g (t) of the affine singular control system S with
control u and initial condition y (0) = y. Then, for almost every t, there exists a curve
x (t) ∈ H, with x (0) = e, where e is the identity on G, such that

g (t) = y (t)x (t)
.

y (t)x (t) =
(
ly(t)

)
∗

.

x (t) +
(
rx(t)

)
∗

.

y (t)

Applying Eg(t) on both sides, equation takes form,

Eg(t)

( .

g (t)
)

= Eg(t)

(
y (t)

.

x (t)
)

+ Eg(t)

( .

y (t)x (t)
)
.
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Hence, we get

X (g (t)) + Y (g (t))

d

+
∑
j=1

uj (t)Xj (g (t)) +

d∑
j=1

uj (t)Y j (g (t))

= Eg(t)

(
y (t)

.

x (t)
)

+

(
rx(t)

)
∗

(
Π (X) (y (t)) + Π (Y ) (y (t))

d

+
∑
j=1

uj (t) Π
(
X

j
)

(y (t)) +

d∑
j=1

uj (t) Π
(
Y j
)

(y (t))

)
.

Since Y ,Y 1, ..., Y d are elements of the Lie algebra L(G), we can project this dynamic on
any homogeneous space of G. In particular,(

rx(t)
)
∗

(
Π (Y ) (y (t)) +

d∑
j=1

uj (t) Π
(
Y j
)

(y (t))

)
= Π (Y ) (g (t))+

d∑
j=1

uj (t) Π
(
Y j
)

(g (t)) .

Thus, it follows that

Eg(t)

(
y (t)

.

x (t)
)

= X (g (t))−
(
rx(t)

)
∗Π (X) (y (t)) +

d∑
j=1

uj (t)Xj (g (t))−
(
rx(t)

)
∗

d∑
j=1

uj (t) Π
(
X

j
)

(y (t))

+Y (g (t))−Π (Y ) (g (t)) +

d∑
j=1

uj (t)Y j (g (t))−
d∑

j=1

uj (t) Π
(
Y j
)

(g (t))

On the other hand, Xt ∈ Aut (G) for any real number t, and therefore,

X (g (t)) = X (y (t)x (t)) = X (y (t))X (x (t)) .

By taking a derivative of the product X (g (t)) at time t, we obtain

X (y (t)x (t)) =
(
rx(t)

)
∗ X (y (t)) +

(
ly(t)

)
∗ X (x (t)) .

By construction for each t ∈ R : X (y (t)) = Π (X (y (t))) and X (x (t)) = Π (X (x (t)))x (t) =
x(t). Thus, we conclude that

Eg(t)

(
y (t)

.

x (t)
)

=
(
ly(t)

)
∗

(
XL(H) (x (t)) +

d∑
j=1

uj (t)Xj
L(H) (x (t))

)

+

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
,

which completes the proof. �

3.2. Theorem. Under the conditions of theorem3.1, if the derivation E is nilpotent,
then the solution of (3.1) is given by

.

x (t) = −
k−1∑
i=0

Ei
x(t) ◦

(
ly(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)

−
k−1∑
i=0

d∑
j=1

uj (t)Ei
x(t) ◦ Xj

L(H) (x (t)) .

Proof. Suppose E is nilpotent whose nilpotent index is denoted by k. Let x (t) ∈ H be
such that x (0) = e. Taking the left hand side term of (3.1):

Eg(t)

(
y (t)

.

x (t)
)

=
(
lg(t)

)
∗◦E◦

(
lg(t)−1

)
∗
◦
(
ly(t)

)
∗

.

x (t) =
(
lg(t)

)
∗◦E◦

(
lx(t)−1

)
∗

.

x (t)
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because
(
lg(t)

)
∗ =

(
ly(t)

)
∗ ◦
(
lx(t)

)
∗ . Otherwise, we have

.

x (t) = XL(H) (x (t)) where the

vector field XL(H) is induced by a derivation D ∈ Der(L(H)) and applying
(
lg(t)−1

)
∗
on

both sides of (3.1),

E ◦
(
lx(t)−1

)
∗

.

x (t) =
(
lx(t)−1

)
∗

.

x (t) +
(
lx(t)−1

)
∗
◦

(
d∑

j=1

uj (t)Xj
L(H) (x (t))

)

+
(
lg(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
.

If k = 1, the algebraic-differential equation (3.1) becomes

.

x (t) = −
d∑

j=1

uj (t)Xj
L(H) (x (t))−

(
ly(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
.

Now, let k > 1. Then, left multiplying both sides by E, we obtain the following equations:

E2 ◦
(
lx(t)−1

)
∗

.

x (t) = E ◦
(
lx(t)−1

)
∗

.

x (t) + E ◦
(
lx(t)−1

)
∗
◦

(
d∑

j=1

uj (t)Xj
L(H) (x (t))

)

+E ◦
(
lg(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
· · ·

Ek ◦
(
lx(t)−1

)
∗

.

x (t) = Ek−1 ◦
(
lx(t)−1

)
∗

.

x (t) + Ek−1 ◦
(
lx(t)−1

)
∗
◦

(
d∑

j=1

uj (t)Xj
L(H) (x (t))

)

+Ek−1 ◦
(
lg(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
.

From the addition of these equations and the fact Ek = 0, Ek−1 6= 0, we have

.

x (t) = −
k−1∑
i=0

(
lx(t)

)
∗ ◦ E

i ◦
(
lg(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)

−
k−1∑
i=0

d∑
j=1

(
lx(t)

)
∗ ◦ E

i ◦
(
lx(t)−1

)
∗
◦
(
uj (t)Xj

L(H) (x (t))
)
,

which proves our claim. �
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