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On second-order linear recurrent functions with
period k and proofs to two conjectures of Sroysang

Julius Fergy Tiongson Rabago∗

Abstract

Let w be a real-valued function on R and k be a positive integer. If
for every real number x,w(x+ 2k) = rw(x+ k) + sw(x) for some non-
negative real numbers r and s, then we call such function a second-order
linear recurrent function with period k. Similarly, we call a function
w : R→ R satisfying w(x+ 2k) = −rw(x+ k) + sw(x) an odd second-
order linear recurrent function with period k. In this work, we present
some elementary properties of these type of functions and develop the
concept using the notion of f -even and f -odd functions discussed in [9].
We also investigate the products and quotients of these functions and
provide in this work a proof of the conjecture of B. Sroysang which he
posed in [19]. In fact, we offer here a proof of a more general case of the
problem. Consequently, we present findings that confirm recent results
in the theory of Fibonacci functions [9] and contribute new results in
the development of this topic.
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1. Introduction
The Fibonacci numbers Fn are defined by F0 = 0, F1 = 1, and for n ≥ 2, Fn+1 =

Fn + Fn−1. Since the introduction of these numbers, different generalizations have been
formulated and were extensively studied. In fact, several books were written solely to
study the properties of Fibonacci numbers (see for instance [5] and [21]). In a book by
T. Koshy [11], any sequences Gn, where G1 = a,G2 = b, and Gn = Gn−1 +Gn−2, n ≥ 3
is called the generalized Fibonacci sequence (GFS). In [10], A. F. Horadam defined a
second-order linear recurrence sequence {Wn} by the recurrence relation

W0 = a, W1 = b, Wn+1 = rWn + sWn−1, (n ≥ 2).

The sequence {Wn} can be viewed easily as a certain generalization of {Fn}. It is now
known in literature as Horadam’s sequence. For a good survey paper regarding Horadam
numbers, we refer the readers to [12] (see also [13] for a survey update and extensions).
The nth Horadam number Wn with initial conditions W0 = 0 and W1 = 1 can be
represented by the following Binet’s formula:

Wn(0, 1; r, s) =
αn − βn

α− β , (n ≥ 2)

where α and β are the roots of the quadratic equation x2 − rx − s = 0, i.e. α =
(r +

√
r2 + 4s)/2 and β = (r −

√
r2 + 4s).

In [15], the author presented a formula for solving the missing terms of {Wn} given
its first term and last term. Another generalization of Fibonacci numbers is the so-called
Fibonacci polynomials (see [1] and [4] and the references therein). Recently, Fibonacci
numbers were involved in the study of difference and differential equations. Particularly,
in [20], D. T. Tollu, Y. Yazlik, and N. Taskara investigated the solutions of two special
types of the Riccati difference equation

xn+1 =
1

1 + xn
and yn+1 =

1

−1 + yn
such that their solutions are associated with Fibonacci numbers. Another interesting
investigation, which involves the Fibonnaci numbers, is presented in [6] where A. Hakami
found an application of Fibonacci numbers in the study of continued fractions. This
work of Hakami has been recently generalized, to some extent, by the author in [17].
Meanwhile, the author and J. B. Bacani consider in [2] the system

xn+1 =
q

p+ xνn
and yn+1 =

q

−p+ yνn
(p, q ∈ R+ and ν ∈ N)

as a generalization of Tollu et al.’s work [20]. One particular result established in [2] is
the solution form of the above system. In fact, it was shown that every solution of the
system, for any arbitrary given set of initial values, is expressible in terms of Horadam
numbers. In an earlier paper, the author [16], studied homogeneous differential equations
of the form

w(2k)(x) = rw(k)(x) + sw(x),

where r, s ∈ R+ and w(k) is the kth derivative of w with respect to x. Intriguingly, it was
found that the differential equation has some sort of connection with Horadam numbers.

Other papers dealing with problems involving Fibonacci numbers are what follows. In
[7], J. S. Han, H. S. Kim and J. Neggers studied the Fibonacci norm of positive integers,
and in [8], they studied Fibonacci sequences in groupoids. Han, Kim, and Neggers also
introduced the concept of Fibonacci functions with Fibonacci numbers in [9] which were
later on extended by B. Sroysang [19] to Fibonacci functions with period k. In [19], the
following generalization of Fibonacci functions was presented.
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1.1. Definition ([19]). Let k ∈ N. A function f : R → R is called a Fibonacci function
with period k if it satisfies the equation

(1.1) f(x+ 2k) = f(x+ k) + f(x), ∀x ∈ R.

Properties of Fibonacci functions with period k were also presented in [19]. As further
generalization of these functions, we define a second-order linear recurrent function with
period k as follows:

1.2. Definition. Let k be a positive integer, and r and s be non-negative real numbers.
A function w : R → R is said to be a second-order linear recurrent function with period
k if it satisfies the equation

(1.2) w(x+ 2k) = rw(x+ k) + sw(x), ∀x ∈ R.
We say that w is a complete second-order linear recurrent function if for any arbitrary r
and s, w satisfies (1.2), otherwise it is called conditional.

Now, throughout the rest of this paper, we shall refer to a real-valued function w
satisfying equation (1.2) as a recurrent function of order k instead of using the term
second-order linear recurrent function with period k for convenience.

Definition (1.2) provides a further generalization of Fibonacci functions with Fibonacci
numbers [9] and Fibonacci functions with period k [19]. Our main contribution includes
a proof of the following open problems posed by Sroysang [19] (which is in fact a proof
of a more general case of the problem):

1.3. Conjecture. If f is a Fibonacci function with period k, then f(x + k)/f(x) → φ
as x→∞.

1.4. Conjecture. If f is a Fibonacci function with period k, then f(x+ k)/f(x)→ −φ
as x→∞.

Here φ denotes the well-known golden ratio, i.e. φ = (1 +
√
5)/2 = 1.6180339 . . ..

Now the rest of the paper is organized as follows: in Section 2 and Section 3, we give
examples and basic properties of recurrent functions with period k and odd recurrent
functions with period k, respectively. In Section 4, we develop the notion of these types
of recurrent functions using the concept of f -even and f -odd functions discussed in [9].
In Section 5, we study the products of these functions and finally, in Section 6, we
investigate the quotients of these functions. The proofs of conjectures (1.3) and (1.4) are
also presented in the last section.

2. Recurrent functions with period k

In this section we present some properties of recurrent functions with period k. We
begin by defining what we call Pell and Jacobsthal functions. If in equation (1.2), r = 2
and s = 1 (resp. r = 1 and s = 2), then we call such function a Pell (resp. Jacobsthal)
function. That is, for a given natural number k, a Pell function p with period k satisfies

(2.1) p(x+ 2k) = 2p(x+ k) + p(x), ∀x ∈ R,
and a Jacobsthal function j with period k satisfies

(2.2) j(x+ 2k) = j(x+ k) + 2j(x), ∀x ∈ R.

2.1. Example. Let α > 0, k ∈ N, and w(x) = αx/k be a recurrent function with period
k. Substituting w in (1.2), we have

α(x/k)+2 = rα(x/k)+1 + sαx/k, ∀x ∈ R.

So α2 − rα− s = 0 whose roots are α1,2 = (r ±
√
r2 + 4s)/2. Thus, w(x) = αx/k.
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The following are special cases of the previous example.

(1) If (r, s) = (1, 1), then the function f(x) := φx/k is an example of a Fibonacci
function with period k.

(2) If (r, s) = (2, 1), then p(x) := σx/k, where σ = 1 +
√
2 is the well known silver

ratio, is an example of a Pell function with period k.
(3) If (r, s) = (1, 2), then the function j(x) := 2x/k is an example of a Jacobsthal

function with period k.

2.2. Remark. Clearly, the functions f, p, and j are conditional. Also, any non-zero
constant function is conditional but only for positive real numbers r and s such that
r + s = 1. On the other hand, the function w(x) ≡ 0 is an example of a complete type.
It can be verified directly that any scalar multiple of a recurrent function with period k
is again a recurrent function with period k. Furthermore, if a differentiable function w
is a recurrent function with period k then so is its derivative w′.

2.3. Proposition. Let k ∈ N and w : R → R be a recurrent function with period k.
Define gt(x) = w(x+ t) for all x ∈ R, where t ∈ R. Then gt is also a recurrent function
with period k.

2.4. Corollary ([19]). Let k ∈ N and f : R → R be a Fibonacci function with period k.
Define gt(x) = f(x+ t) for all x ∈ R, where t ∈ R. Then, gt is also a Fibonacci function
with period k.

2.5. Example. Let k ∈ N and t ∈ R. Define gt : R→ R by

(2.3) gt(x) = α(x+t)/k, ∀x ∈ R,

then gt is a recurrent function with period k.

As special cases of the previous example, we have the following:

(1) if (r, s) = (1, 1), then we have gt(x) := f(x+ t) = φ(x+t)/k, a Fibonacci function
with period k,

(2) if (r, s) = (2, 1), then we have gt(x) := p(x+ t) = σ(x+t)/k, a Pell function with
period k,

(3) if (r, s) = (1, 2), then we have gt(x) := j(x+ t) = 2(x+t)/k, a Jacobsthal function
with period k.

2.6. Theorem. Let w be a recurrent function with period k and {Wn(0, 1; r, s)}, or
simply {Wn}, be a Horadam sequence with initial conditions W0 = 0 and W1 = 1. Then,

(2.4) w(x+ nk) =Wnw(x+ k) + sWn−1w(x), ∀x ∈ R, n ∈ N.

Proof. The proof is by induction on n. First, we note that α+ β = r, α− β =
√
r2 + 4s,

and αβ = −s. We see that the formula obviously holds for n = 1, 2. So we assume (2.4)
holds for n and n+ 1 for some natural number n ≥ 2. Then,

w(x+ (n+ 2)k) = rw(x+ (n+ 1)k) + sw(x+ nk)

= r (Wn+1w(x+ k) + sWnw(x))

+ s (Wnw(x+ k) + sWn−1w(x))

= (rWn+1 + sWn)w(x+ k) + s (rWn + sWn−1)w(x)

=Wn+2w(x+ k) + sWn+1w(x), ∀x ∈ R, n ∈ N.

By induction principle, conclusion follows. �
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2.7. Corollary. Let w be a recurrent function with period k and let {Wn} be the sequence
of Horadam numbers. Then, αn = αWn+sWn−1 for any x ∈ R and n ∈ N. In particular,
for r = s = 1, we have φn = φFn+Fn−1, where Fn is the nth Fibonacci number, for any
x ∈ R and n ∈ N.

Proof. From Example (2.1) we saw that w(x) = αx/k is a recurrent function with period
k, so it satisfies equation (2.4), i.e.

α(x+nk)/k = w(x+ nk) =Wnw(x+ k) + sWn−1w(x)

= α(x+k)/kWn + sWn−1α
x/k, ∀x ∈ R, n ∈ N.

Upon simplifying, we get

αn = αWn + sWn−1, ∀n ∈ N,

as desired. Letting r = s = 1 in α = (r +
√
r2 + 4s)/2 we get φn = φFn + Fn−1. �

2.8. Corollary ([19]). Let f be a Fibonacci function with period k and let {Fn} be the
sequence of Fibonacci numbers. Then, f(x+nk) = Fnf(x+k)+Fn−1f(x) for any x ∈ R
and n ∈ N.

Similar results can be obtained easily for Pell and Jacobsthal functions.

3. Odd recurrent functions with period k

Here we discuss the notion of odd recurrent functions with period k formally defined
as follows:

3.1. Definition. Let k ∈ N. A function w : R → R is said to be an odd recurrent
functions with period k if

(3.1) w(x+ 2k) = −rw(x+ k) + sw(x), ∀x ∈ R.

In particular, a function is an odd Fibonacci, odd Pell, and odd Jacobsthal function
if it satisfies equation (3.1) with (r, s) = (1, 1), (2, 1), and (1, 2), respectively.

3.2. Example. Let k ∈ N, α̃ > 0, and w(x) = α̃x/k be an odd recurrent function with
period k. Then, α̃ = (−p +

√
p2 + 4q)/2 = qα−1. So the function w(x) =

(
qα−1

)x/k is
an odd recurrent function.

Similar to what we remarked for recurrent functions with period k, if a differen-
tiable function w is an odd recurrent function with period k then so is its derivative
w′. Furthermore, any function defined by gt = w(x + t), where w satisfies (3.1) and
t ∈ R, is an odd recurrent function with period k. For example, the function defined by
gt(x) = α̃(x+t)/k is an odd recurrent function with period k. Of course, the functions
gt(x) := f(x+t) = φ−(x+t)/k and gt(x) := p(x+t) = σ−(x+t)/k are also an odd Fibonacci
and odd Pell function, respectively.

3.3. Theorem. Let w : R → R be an odd recurrent function with period k, and let
{W−n} = {(−1)n+1Wn(0, 1; r, s)}, i.e.

(3.2) W−(n+1) = −rW−n + sW−n+1, ∀n ∈ N.

Then, for all n ∈ N and x ∈ R, we have

(3.3) w(x+ nk) =W−nw(x+ k) + sW−n+1w(x).

The above theorem can be proven similarly as in Theorem 4.9 and we leave this to
the reader.
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3.4. Corollary. Let w be an odd recurrent function with period k and let {W−n} =
{(−1)n+1Wn}, where Wn is the nth Horadam number. Then, α̃n = α̃W−n+ sW−n+1 for
any x ∈ R and n ∈ N. In particular, for r = 2 and s = 1, we have σ−n = σ−1Pn+Pn−1,
where Pn is the nth Pell number, for any x ∈ R and n ∈ N.

3.5. Corollary ([19]). Let f : R→ R be an odd Fibonacci function with period k, and let
{F−n} = {(−1)n+1Fn} be a sequence of numbers where Fn is the nth Fibonacci number,
i.e.

(3.4) F−(n+1) = −F−n + F−n+1, ∀n ∈ N.

Then, for all n ∈ N and x ∈ R, we have

(3.5) f(x+ nk) = F−nf(x+ k) + F−n+1f(x).

Similar results can be formulated easily for Pell and Jacobsthal functions. Now we
develop the concept of recurrent functions with period k using f -even and f -odd functions
with period k.

4. f-even and f-odd functions with period k

We start-off this section with the following definition.

4.1. Definition (cf. [19]). Let k ∈ N and ϕ : R → R be such that if ϕh ≡ 0, where
h : R → R is continuous, then h ≡ 0. The map ϕ is said to be an f -even function with
period k (resp. f -odd) function with period k if ϕ(x+k) = ϕ(x) (resp. ϕ(x+k) = −ϕ(x))
for any x ∈ R.

By the above definition, we can see immediately that there is no f -even and f -odd
Fibonacci function except possibly when the function is the zero function. In fact, in
general, a function w : R → R satisfying equation (1.2) is an f -even recurrent function
with period k if and only if r+ s = 1 or w(x) ≡ 0 for all x ∈ R. Similarly, w is an f -odd
recurrent function with period k if and only if B −A = 1 or w ≡ 0 for all x ∈ R.

We first discuss f -even functions.

4.2. Example. Let ϕ(x) = cos (πx) for all x ∈ R and let h : R → R be a continuous
function such that (ϕh)(x) = 0. For any x /∈ π

2
Z, we have ϕ(x) 6= 0, so h(x) = 0. Since

R\π
2
Z is dense in R and h is a continuous function, h(x) = 0. Now, let k be an even

natural number and x ∈ R. Then,

ϕ(x+ k) = cos(π(x+ k)) = cos(πx) cos(kπ)− sin(πx) sin(kπ) = cos(πx) = ϕ(x).

Hence, ϕ(x) = cos (πx) is an f -even function.

In [19], we have seen that ϕ(x) = x− bxc is also an example of f -even functions.

4.3. Theorem. Let k ∈ N and ϕ : R → R be an f-even function with period k and let
w : R→ R be a continuous function. Then, w is a recurrent function with period k if and
only if ϕw is a recurrent function with period k.

Proof. For the necessity part, we assume that w is a recurrent function with period k
satisfying equation (1.2) with r, s ∈ R+. Then, for any x ∈ R we have

ϕ(x+ 2k)w(x+ 2k) = ϕ(x+ k)[rw(x+ k) + sw(x)]

= rϕ(x+ k)w(x+ k) + sϕ(x+ k)w(x)

= rϕ(x+ k)w(x+ k) + s(ϕw)(x).

Hence, the product ϕw is a recurrent function with period k.
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Now, for the sufficiency part, we assume that ϕw is a recurrent function with period
k satisfying equation (1.2) with r, s ∈ R+. Let x ∈ R. Then,

ϕ(x+ k)w(x+ 2k) = ϕ(x+ 2k)w(x+ 2k) = (ϕw)(x+ 2k)

= p(ϕw)(x+ k) + q(ϕw)(x)

= rϕ(x+ k)w(x+ k) + s(ϕw)(x)

= rϕ(x+ k)w(x+ k) + sϕ(x+ k)w(x)

= ϕ(x+ k)[rw(x+ k) + sw(x)].

Thus, w(x+2k) = rw(x+k)+ sw(x), and this shows that w is a recurrent function with
period k. This completes the proof of the theorem. �

4.4. Corollary. Let k ∈ N and ϕ : R → R be an f-even function with period k and let
g : R → R be a continuous function. Then, g is a Fibonacci (resp. Pell and Jacobsthal)
function with period k if and only if ϕg is a Fibonacci (resp. Pell and Jacobsthal) function
with period k.

4.5. Example. Let k ∈ N and define ϕ(x) = cos(πx) and γ(x) = x−bxc. Note that ϕ and
γ are examples of f -even functions. Furthermore, recall that the function w(x) = αx/k

is a recurrent function with period k. Then, for all x ∈ R, the products

(4.1) (ϕw)(x) = cos(πx)αx/k

and

(4.2) (γw)(x) = (x− bxc)αx/k

are both examples of recurrent functions with period k. Specifically, if (r, s) = (2, 1),
then (ϕp)(x) = cos(πx)σx/k and (γp)(x) = (x − bxc)σx/k are both Pell functions with
period k.

4.6. Example. Let k ∈ N and define

ϕ(x) =


1, for x ∈ Q;

−1, otherwise.

Hence, ϕ(x + k) = ϕ(x) for any x ∈ R. Also, if ϕh ≡ 0, then h ≡ 0 whether or not
h is continuous. Thus, ϕ is an f -even function with period k. We know that w(x) =

(x− bxc)αx/k is a recurrent function with period k. So, by Theorem 4.3, the mapping
defined by

(ϕw)(x) =


(x− bxc)αx/k, for x ∈ Q;

(bxc − x)αx/k, otherwise,

is also a recurrent function. Specifically, if (r, s) = (1, 2), then w(x) = 2x/k (x− bxc). So
we have,

(ϕw)(x) =


2x/k (x− bxc) , for x ∈ Q;

2x/k (bxc − x) , otherwise,

a Jacobsthal function with period k.

4.7. Theorem. Let k ∈ N, ϕ : R → R be an f-even function with period k, and let
w : R→ R be a continuous function. Then, w is an odd recurrent function with period k
if and only if ϕw is an odd recurrent function with period k.
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We omit the proof since it is similar on how we prove Theorem 4.3.

4.8. Example. Let k be an even natural number and consider the f -even functions ϕ and
γ. In Example (3.2), we saw that w(x) = α̃x/k is an odd recurrent function with period k.
Then, for all x ∈ R, the functions (ϕw)(x) = cos(πx)α̃x/k and (γw)(x) = (x− bxc)α̃x/k
are both odd recurrent functions with period k.

We now discuss f -odd functions. Recall that if ϕ : R→ R such that for ϕh ≡ 0 and h
is continuous, we have h ≡ 0. The map ϕ is said to be an f -odd function with period k if
ϕ(x+ k) = −ϕ(x) for all x ∈ R. We have seen in [19] that ϕ(x) = sin(πx) is an example
of f -odd function.

4.9. Theorem. Let k ∈ N, ϕ : R → R be an f-odd function with period k, and let
w : R→ R be a continuous function. Then, w is a recurrent function with period k if and
only if ϕw is an odd recurrent function with period k.

Again, we leave the proof to the reader.

4.10. Example. Let k be any odd natural number. Define ϕ(x) = sin(πx) and w(x) =
α̃x/k for all x ∈ R. Hence, (ϕw)(x) = α̃x/k sin(πx). We have seen in our discussion that
ϕ is an f -odd function with period k and w is an odd recurrent function with period k.
Hence, by Theorem 4.9, the product ϕw is a recurrent function with period k. We have
the following examples for specific values of r and s.

(1) If (r, s) = (1, 1), then (ϕf)(x) = sin(πx) (φ− 1)x/k is a Fibonacci function with
period k.

(2) If (r, s) = (2, 1), then (ϕp)(x) = sin(πx) (σ − 2)x/k is a Pell function with period
k.

(3) If (r, s) = (1, 2), then (ϕj)(x) = sin(πx) is a Jacobsthal function with period k.

5. Products of recurrent functions with period k

In this section, we give conditions so that whenever g and h are any two recurrent
functions with period k in R, their product forms another recurrent function with period
k.

5.1. Theorem. Let k ∈ N and g and h be two recurrent functions with period k satisfying

g(x+ 2k) = Ag(x+ k) +Bg(x), ∀x ∈ R,(5.1)

h(x+ 2k) = Uh(x+ k) + V h(x), ∀x ∈ R,(5.2)

respectively, where A,B,U , and V are non-negative real numbers. Suppose the following
conditions are satisfied:

(C1) A = AU, B = BV, AV = BU ,
(C2) g is an f-even function and h is an f-odd function.

Then, w(x) := (gh)(x) forms another recurrent function with period k satisfying the
equation

(5.3) w(x+ 2k) = Aw(x+ k) + Bw(x), ∀x ∈ R.

Proof. The proof is straightforward. Suppose g and h are two recurrent functions with
period k (k ∈ N) satisfying equations (5.1) and (5.2), respectively. Furthermore, we
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suppose that conditions (C1) and (C2) are satisfied. Then,

w(x+ 2k) = (gh)(x+ 2k) = [Ag(x+ k) +Bg(x)][Uh(x+ k) + V h(x)]

= Aw(x+ k) + Bw(x) + [AV g(x+ k)h(x) +BUg(x)h(x+ k)]

= Aw(x+ k) + Bw(x) +AV g(x)[h(x) + h(x+ k)]

= Aw(x+ k) + Bw(x), ∀x ∈ R,

proving the theorem. �

5.2. Example. Let k be an odd natural number and t ∈ R+. Define g(x) = x − bxc
and let A = t/(2t + 1) and B = (t + 1)/(2t + 1). Furthermore, define h(x) = sin(πx)
and U = V − 1 = t. We claim that w(x) := (gh)(x) is a recurrent function with period
k satisfying the following equation:

(5.4) w(x+ 2k) = Aw(x+ 1) +Bw(x), ∀x ∈ R,

where A = AU and B = BV . We know that g(x) = x − bxc and h(x) = sin(πx) are
examples of f -even and f -odd functions with period k, respectively. We first show that
g satisfies the equation

(5.5) g(x+ 2k) =
t

2t+ 1
g(x+ k) +

t+ 1

2t+ 1
g(x) ∀x ∈ R,

and then show that h satisfies

(5.6) h(x+ 2k) = th(x+ k) + (t+ 1)h(x), ∀x ∈ R.

We have,

g(x+ 2k) = x+ 2k − bx+ 2kc = x− bxc =
(

t

2t+ 1
+

t+ 1

2t+ 1

)
(x− bxc)

=
t

2t+ 1
(x+ 1− bx+ 1c) + t+ 1

2t+ 1
(x+ 1− bx+ 1c)

=
t

2t+ 1
g(x+ 1) +

t+ 1

2t+ 1
g(x), ∀x ∈ R.

and

h(x+ 2k) = sin(π(x+ 2k)) = sin(πx) cos(2kπ)

= −t sin(πx) + (t+ 1) sin(πx)

= t sin(πx) cos(kπ) + (t+ 1) sin(πx)

= t sin(π(x+ k)) + (t+ 1) sin(πx)

= th(x+ k) + (t+ 1)h(x), ∀x ∈ R.

Obviously, AV = BU . By Theorem 5.1, it follows that w(x) = (gh)(x) is a recurrent
function with period k satisfying equation (5.4).

5.3. Corollary. Let g and h be two recurrent functions with period k satisfying equations
(5.1) and (5.2), respectively. Suppose conditions (C1) and (C2) are satisfied, then w(x) :=
(gh)(x) is never a Fibonacci function with period k except possibly when g ≡ 0 or h ≡ 0
for all x ∈ R.

Proof. Let g and h be two functions satisfying equations (5.1) and (5.2), respectively and
suppose that conditions (C1) and (C2) are satisfied. Hence,

g(x+ k) = g(x+ 2k) = Ag(x+ k) +Bg(x)

= (A+B)g(x+ k), ∀x ∈ R,
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and

h(x+ k) = h(x+ 2k) = Uh(x+ k) + V h(x)

= (U − V )h(x+ k), ∀x ∈ R.

It follows that A+B = 1 and U − V = 1. Since AV = BU , we have AV = (1−B)V =
(1 + V )B = BU which implies that B = V/(2V + 1). Letting V = t ∈ R+ we get the
following equations:

g(x+ 2k) = (t+ 1)(2t+ 1)−1g(x+ k) + t(2t+ 1)−1g(x),(5.7)

h(x+ 2k) = (t+ 1)h(x+ k) + th(x).(5.8)

Hence,

w(x+ 2k) = g(x+ 2k)h(x+ 2k)

=

(
t+ 1

2t+ 1
g(x+ k) +

t

2t+ 1
g(x)

)
((t+ 1)h(x+ k) + th(x))

=
(t+ 1)2

2t+ 1
w(x+ k) +

t2

2t+ 1
w(x) +

t(t+ 1)

2t+ 1
g(x) (h(x+ k) + h(x))

=
(t+ 1)2

2t+ 1
w(x+ k) +

t2

2t+ 1
w(x)

= Aw(x+ k) + Bw(x), ∀x ∈ R.

Suppose w is a Fibonacci function. Then, A = B = 1. This is impossible since

(t+ 1)2

2t+ 1
=

t2

2t+ 1
+ 1 = 2 > 1 =

t2

2t+ 1
.

This proves the theorem. �

5.4. Corollary. Let g and h be two recurrent functions satisfying equation (5.1) and
(5.2), respectively. Suppose that AU = 2, BV = 1, AV = BU and condition (C2) is
satisfied. Then, w(x) := (gh)(x) is a Pell function.

Proof. The proof follows a similar argument used in the proof of Corollary 5.3 so we omit
it. �

5.5. Example. In the proof of Corollary 5.3 we have seen that the product of equations
(5.7) and (5.8) forms a recurrent function provided they satisfy conditions (C1) and
(C2). If we set A = 2 and B = 1, then we obtain a Pell function provided we could find
a positive real number t such that t2 − 2t− 1 = 0. The solution to this equation is given
by t = 1±

√
2, so we choose t = 1 +

√
2 ∈ R+. Hence, equations (5.7) and (5.8) become

(5.9) g(x+ 2k) =

(
σ + 1

2σ + 1

)
g(x+ k) +

(
σ

2σ + 1

)
g(x)

and

(5.10) h(x+ 2k) = (σ + 1)h(x+ k) + σh(x),

respectively. Now, our goal is to find functions g and h satisfying condition (C2). We
can choose g(x) = x − bxc and h(x) = sin(πx), and one can check that these equations
satisfy equations (5.9) and (5.10). Thus, by Corollary 5.8, w(x) = (x− bxc) sin(πx) is a
Pell function.

5.6. Corollary. Let g and h be any two recurrent functions with period k satisfying equa-
tion (5.1) and (5.2), respectively, such that AU = 1, BV = 2, AV = BU and condition
(C2) is satisfied. Then, w(x) := (gh)(x) is a Jacobsthal function.
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5.7. Example. In Example (5.2), we have seen that the function defined by w(x) :=
(gh)(x) = (x−bxc) sin(πx) is a recurrent function with period k satisfying equation (5.4).
If we set A and B to be in the set of natural numbers such that B = A+1, then we have
the following

g(x+ 2k) = θ(2θ + 1)−1g(x+ k) + (θ + 1)(2θ + 1)−1g(x), ∀x ∈ R,
h(x+ 2k) = θh(x+ k) + (θ + 1)h(x), ∀x ∈ R,
w(x+ 2k) = Aw(x+ k) + (A+ 1)w(x), ∀x ∈ R,

where θ = A+
√

A(A+ 1). If we let A = 1, then we obtain the following equations,

g(x+ 2k) = σ(2σ + 1)−1g(x+ k) + (σ + 1)(2σ + 1)−1g(x), ∀x ∈ R,(5.11)

h(x+ 2k) = σh(x+ k) + (σ + 1)h(x), ∀x ∈ R,(5.12)

w(x+ 2k) = w(x+ k) + 2w(x), ∀x ∈ R,(5.13)

where σ = 1 +
√
2 is the well known silver ratio. Suprisingly, equation (5.13)appears to

be a Jacobsthal function. Since g and h are f -even and f -odd functions, respectively,
we see that the function defined by w(x) := (gh)(x) = (x − bxc) sin(πx) with g and h
satisfying equation (5.11)and (5.12) is indeed a Jacobsthal function by Corollary 5.6.

5.8. Theorem. Let g be a recurrent function with period k (k ∈ N) and h be an odd
recurrent function, also, with period k satisfying

g(x+ 2k) = Ag(x+ k) +Bg(x), ∀x ∈ R,(5.14)

h(x+ 2k) = −Uh(x+ k) + V h(x), ∀x ∈ R,(5.15)

respectively, where A,B,U , and V are non-negative real numbers. Suppose condition
(C1) is satisfied and

(C3) g and h are both f-even functions, or
(C4) g and h are both f-odd functions.

Then, w(x) := (gh)(x) is an odd recurrent function with period k satisfying the equation

(5.16) w(x+ 2k) = −Aw(x+ k) + Bw(x).

Proof. The proof is similar to the proof of Theorem 5.1 so we omit it. �

5.9. Example. Let k be an even natural number and t ∈ R+. Consider the functions
g(x) = x− bxc satisfying equation (5.7) and h(x) = cos(πx). We show that h is an odd
recurrent function with period k satisfying the equation

(5.17) h(x+ 2k) = −th(x+ k) + (t+ 1)h(x).

We have,

h(x+ 2k) = cos(π(x+ 2k)) = cos(πx) cos(2kπ)

= −t cos(πx) + (t+ 1) cos(πx)

= −t cos(πx) cos(kπ) + (t+ 1) cos(πx)

= −t cos(π(x+ k)) + (t+ 1) cos(πx)

= −th(x+ k) + (t+ 1)h(x), ∀x ∈ R.

Clearly, AV = BU . Since g and h are both f -even functions, then by Theorem 5.8,
w(x) := (x − bxc) cos(πx) is an odd recurrent function with period k satisfying the
equation given by

(5.18) w(x+ 2k) = −
(

t2

2t+ 1

)
w(x+ k) +

(
(t+ 1)2

2t+ 1

)
w(x), ∀x ∈ R.
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5.10. Example. Let k ∈ N and A,B,U, V ∈ R+. Consider f -odd functions g and h
satisfying equations (5.14) and (5.15), respectively. Then we have

g(x+ 2k) = Ag(x+ k) +Bg(x) = (A−B)g(x+ k)

= (B −A)g(x+ 2k)

and

h(x+ 2k) = −Uh(x+ k) + V h(x) = −(U + V )h(x+ k)

= (U + V )h(x+ 2k).

These imply that B − A = 1 and U + V = 1. If AV = BU , then AV = (B − 1)V =
(1− V )B = BU , which implies that B = V/(2V − 1). Hence, we have the following:

g(x+ 2k) = (1− V )(2V − 1)−1g(x+ k) + V (2V − 1)−1g(x),(5.19)

h(x+ 2k) = −(1− V )h(x+ k) + V h(x).(5.20)

Since A ∈ R+, we get w(x) := (gh)(x) satisfying the equation

(5.21) w(x+ 2k) = −
(
(1− V )2

2V − 1

)
w(x+ k) +

(
V 2

2V − 1

)
w(x), ∀x ∈ R,

is an odd recurrent function with period k if and only if V ∈
(
1
2
, 1
]
.

5.11. Corollary. Let g be a recurrent function with period k and h be an odd recurrent
function, also, with period k satisfying equations (5.14) and (5.15). Suppose conditions
(C1), and (C3) or (C4) are satisfied. Then, w(x) := (gh)(x) is never an odd Fibonacci
nor an odd Pell function with period k except possibly when g ≡ 0 or h ≡ 0 for all x ∈ R.

F

5.12. Corollary. Let g(x) be a recurrent function with period k and h be an odd recurrent
function, also, with period k satisfying equations (5.14) and (5.15). Suppose AU =
1, BV = 2, AV = BU , and the functions g and h satisfies condition (C3) or (C4), then
w(x) := (gh)(x) is an odd Jacobsthal function with period k.

We leave the verification of Corollary 5.11 and Corollary 5.12 to the reader.

5.13. Example. Let k be an even natural number, t ∈ R+. Consider the functions
g(x) = x − bxc and h(x) = cos(πx). We note that g and h are both f -even functions.
We claim that if these two functions satisfy the following equations

(5.22) g(x+ 2k) =

(
σ

2σ + 1

)
g(x+ k) +

(
σ + 1

2σ + 1

)
g(x), ∀x ∈ R,

and

(5.23) h(x+ 2k) = −σh(x+ k) + (σ + 1)h(x), ∀x ∈ R,

respectively, where σ is the silver ratio, then the product w(x) := (gh)(x) = (x −
bxc) cos(πx) forms an odd Jacobsthal function with period k which satisfies the equation

w(x+ 2k) = −
(

σ2

2σ + 1

)
w(x+ k) +

(
(σ + 1)2

2σ + 1

)
w(x)

= −w(x+ k) + 2w(x), ∀x ∈ R.

We know that g satisfies equation (5.22) from Example (5.2). Hence, we only need to
show that h(x) = cos(πx) satisfies equation (5.23). In fact, we have shown this already
in Example (5.9). Thus, by Corollary 5.12, w(x) = (x − bxc) cos(πx) is indeed an odd
Jacobsthal function with period k.
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5.14. Example. In Example (5.10), we have seen that for any arbitrary f -odd functions
g and h satisfying equations (5.19) and (5.20) with U ∈

[
0, 1

2
, 0
)
, the product w(x) :=

(gh)(x) is an odd recurrent function with period k. If we let V = 3 − σ ∈
(
1
2
, 1
]
, where

σ is the silver ratio, then the functions g and h satisfying the following equations

g(x+ 2k) =

(
σ − 2

5− 2σ

)
g(x+ k) +

(
3− σ
5− 2σ

)
g(x), ∀x ∈ R,

h(x+ 2k) = −(σ − 2)h(x+ k) + (3− σ)h(x), ∀x ∈ R.

whose product is given by w(x) := (gh)(x) satisfying the equation

(5.24) w(x+ 2k) = −
(
(σ − 2)2

5− 2σ

)
w(x+ k) +

(
(3− σ)2

5− 2σ

)
w(x), ∀x ∈ R,

is an odd Jacobsthal function with period k by Corollary 5.12.

5.15. Theorem. Let g and h be two functions satisfying equation (5.1) and (5.2), respec-
tively. Suppose A = AU,B = BV,AV = −BU , and condition (C3) or (C4) is satisfied,
then w(x) := (gh)(x) is a recurrent function with period k satisfying equation (5.16).

Proof. The proof is similar to the proof of Theorem 5.1 so we omit it. �

5.16. Corollary. Let g and h be two functions satisfying equation (5.1) and (5.2), re-
spectively. Suppose A = AU,B = BV,AV = −BU , and condition (C3) or (C4) is
satisfied, then, w(x) := (gh)(x) si never a (or an odd) Fibonacci nor a (or an odd) Pell
function with period k except possibly when g ≡ 0 or h ≡ 0 for all x ∈ R. Moreover, if
A = 1,B = 2, and g and h are both f-odd functions, then w is a Jacobsthal function with
period k.

Proof. Let g and h be two functions satisfying equation (5.1) and (5.2), respectively.
Suppose A = AU,B = BV,AV = −BU , and g and h are both f -even functions, then we
have the following:

g(x+ 2k) = Ag(x+ k) +Bg(x) = (A+B)g(x+ k)

= (A+B)g(x+ 2k), ∀x ∈ R,

and

h(x+ 2k) = Uh(x+ k) + V h(x) = (U + V )h(x+ k)

= (U + V )h(x+ 2k), ∀x ∈ R.

These imply that A + B = U + V = 1. Since AV = −BU , we get B = V/(2V − 1).
Hence,

g(x+ 2k) = (V − 1)(2V − 1)−1g(x+ k) + V (2V − 1)−1g(x), ∀x ∈ R,
h(x+ 2k) = (1− V )h(x+ k) + V h(x), ∀x ∈ R.

By assumption, A ∈ R+, then w(x) := (gh)(x) satisfying the equation

w(x+ 2k) = −
(
(1− V )2

2V − 1

)
w(x+ k) +

(
V 2

2V − 1

)
w(x), ∀x ∈ R,

is a recurrent function with period k if and only if V ∈
[
0, 1

2

)
. Now, suppose that w is a

Fibonacci function with period k, then

(5.25)
V 2

2V − 1
= 1 > 0 >

−V 2 + 2V − 1

2V − 1
= − (1− V )2

2V − 1
.

So, it is impossible that w is a (or an odd) Fibonacci function with period k. Furthermore,
it can also be seen in (5.25) that w cannot be a (nor an odd) Pell function with period
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k. Similarly, suppose w is a Jacobsthal function with period k, then V 2/(2V − 1) = 2,
which implies that

− (1− V )2

2V − 1
=
−V 2 + 2V − 1

2V − 1
= −1, or equivalently V = 2±

√
2.

But V ∈
[
0, 1

2

)
, thus w cannot be a (nor an odd) Jacobsthal function with period k. On

the other hand, if g and h are both f -odd functions, then we have

g(x+ 2k) = Ag(x+ k) +Bg(x) = (A−B)g(x+ k)

= (B −A)g(x+ 2k), ∀x ∈ R,

and

h(x+ 2k) = Uh(x+ k) + V h(x) = (U − V )h(x+ k)

= (V − U)h(x+ 2k), ∀x ∈ R.

These imply that B − A = V − U = 1. Since AV = −BU , we obtain B = V/(2V − 1).
Hence,

g(x+ 2k) =

(
1− V
2V − 1

)
g(x+ k) +

(
V

2V − 1

)
g(x),

h(x+ 2k) = (V − 1)h(x+ k) + V h(x).

Because A ∈ R+, then w(x) := (gh)(x) satisfying the equation

(5.26) w(x+ 2k) = −
(
(1− V )2

2V − 1

)
w(x+ k) +

(
V 2

2V − 1

)
w(x), ∀x ∈ R,

is a recurrent function with period k if and only if V ∈
(
1
2
, 1
]
. It can easily be verified

that there is no value for V ∈
(
1
2
, 1
]
such that equation (5.26) is a Fibonacci or a Pell

function with period k. However, we can find a value for V ∈
(
1
2
, 1
]
such that (5.26) is

a Jacobsthal function. In particular, we can choose V = 3− σ ∈
(
1
2
, 1
]
so that we have

g(x+ 2k) =

(
σ − 2

5− 2σ

)
g(x+ k) +

(
3− σ
5− 2σ

)
g(x),(5.27)

h(x+ 2k) = (2− σ)h(x+ k) + (3− σ)h(x).(5.28)

Equations (5.27) and (5.28) imply that

w(x+ 2k) = −
(
(σ − 2)2

5− 2σ

)
w(x+ k) +

(
(3− σ)2

5− 2σ

)
w(x)

= −w(x+ k) + 2w(x), ∀x ∈ R,

is a Jacobsthal function with period k. This verifies the corollary. �

5.17. Theorem. Let g and h be any two functions satisfying

g(x+ 2k) = −Ag(x+ k) +Bg(x),

h(x+ 2k) = −Uh(x+ k) + V h(x),

respectively, where A,B,U , and V are non-negative real numbers. Suppose that condi-
tion (C1) is satisfied, and g is an f-even function whereas h is an f-odd function, then
w(x) := (gh)(x) forms another recurrent function with period k satisfying equation (5.3).
Furthermore, if A = AU,B = BV,AV = −BU , and condition (C3) or (C4) is satisfied
then, w(x) := (gh)(x) is also a recurrent function with period k satisfying equation (5.3).
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6. Quotients of recurrent functions
Here we discuss the limit of the quotients of recurrent functions with period k and

provide proofs to two conjecture of Sroysang [19].

6.1. Theorem. Let k ∈ N and w : R → R be a recurrent function with period k. Then,
the limit of the quotient w(x+ k)/w(x) exists.

Proof. Let k, n ∈ N, r, s ∈ R+, and consider the quotient Q(x) := w(x+ k)/w(x), where
w is a recurrent function with period k. Then, we have two possibilities: (i) Q(x) < 0,
and (ii) Q(x) > 0. First, suppose that Q(x) < 0 then (WLOG), u := w(x) > 0 and
v := w(x+ k) < 0. Hence,

w(x+ 2k) = −rw(x+ k) + sw(x)

= −rv + su,

w(x+ 3k) = rw(x+ 2k)− sw(x+ k) = r(−rv + su)− sv

= −(r2 + s)v + rsu,

w(x+ 4k) = rw(x+ 3k) + sw(x+ 2k) = r(−(r2 + s)v + rsu) + s(−rv + su)

= −(r3 + 2rs)v + s(r2 + s)u

...

w(x+ nk) = −Wnv + sWn−1u, ∀n ∈ N,

where Wn is the nth Horadam number with initial conditions W0 = 0 and W1 = 1. Let
x′ ∈ R. Then, we could find x ∈ R and n ∈ Z such that x′ = x+ nk. So we have

(6.1)
w(x′ + k)

w(x′)
=
w(x+ (n+ 1)k)

w(x+ nk)
=
−Wn+1v + sWnu

−Wnv + sWn−1u
=
−vWn+1

Wn
+ su

−v + su
Wn−1

Wn

.

Since x→∞ as n→∞, then letting n→∞ equation (6.1) we get

lim
x→∞

w(x′ + k)

w(x′)
= lim
n→∞

−vWn+1

Wn
+ qu

−v + qu
Wn−1

Wn

=
−v
(
limn→∞

Wn+1

Wn

)
+ qu

−v + qu
(
limn→∞

Wn−1

Wn

) .
Note that β =

r−
√
r2+4s

2
∈ (−1, 0). So limn→∞ β

n = 0. Thus,

lim
x→∞

w(x′ + k)

w(x′)
=
−αv + su

−v + α−1su
= α,

since limn→∞
Wn+1

Wn
= limn→∞

αn+1−βn+1

αn−βn = α. On the other hand, suppose (WLOG),
w(x) and w(x + k) are both positive and x � k. We can express w(x + k)/w(x) as
w(2n+δ+k)/w(2n+δ) since any non-negative real number x can be written as x = δ+2n
for some δ ∈ R and n ∈ N. Now, we claim that

lim
n→∞

w(2n+ δ + k)

w(2n+ δ)
= α.
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We show this by expressing both sides in terms of continued fractions. For the LHS, we
have

w(2n+ k + δ)

w(2n+ δ)
=
pw(2n+ δ) + qw(2n+ δ − k)

w(2n+ δ)
= r + s

w(2n+ δ − k)
w(2n+ δ)

= r + s
1

r + s
w(2n+ δ − 2k)

w(2n+ δ − k)

= r + s
1

r + s
1

r + s
w(2n+ δ − 3k)

w(2n+ δ − 2k)

...

= r + s
1

r + s
1

r + s
1

r + s
1

. . . + sw(2n+δ−(2n−1)k)
w(2n+δ−2(n−1)k)

.

Hence,

(6.2)
w(2n+ δ + k)

w(2n+ δ)
= r + s

1

r + s
1

r + s
1

. . . + sw(2n+δ−(2n−1)k)
w(2n+δ−2(n−1)k)

.

For the RHS, we have α = r + (−r +
√
r2 + 4s)/2 = r + s/α. Thus, we have

α = r + s
1

r + s
1

r + s
1

r + s
1

. . .

.

Now, taking the limit of equation (6.2) as n→∞, we get

lim
x→∞

Q(x) = lim
n→∞

w(2n+ δ + k)

w(2n+ δ)
= r + s

1

r + s
1

r + s
1

. . .

= α.

This proves the theorem. �

6.2. Corollary. Let k ∈ N. If f , (resp. p and j) is a Fibonacci (resp. Pell function and
Jacobsthal) function with period k, then the limit of the quotient f(x + 1)/f(x), (resp.
p(x+ 1)/p(x) and j(x+ 1)/j(x)) exists.

6.3. Corollary. Let k ∈ N and let w be a recurrent function with period k, then
limx→∞ w(x + k)/w(x) = α. In particular, if f (resp. p and j) is a Fibonacci (resp.
Pell, and Jacobsthal) function with period k, then limx→∞ f(x + k)/f(x) = φ (resp.
limx→∞ p(x+ k)/p(x) = σ and limx→∞ j(x+ k)/j(x) = 2).
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Proof. Let n, k ∈ N and suppose that the quotient w(x + k)/w(x) is positive. Further-
more, assume (WLOG) that w(x) and w(x+ k) are both positive, then

(6.3)
w(x+ (n+ 1)k)

w(x+ nk)
=
Wn+1w(x+ k) + sWnw(x)

Wnw(x+ k) + sWn−1w(x)
=

Wn+1

Wn
w(x+ k) + sw(x)

w(x+ k) +
Wn−1

Wn
sw(x)

.

Letting n→∞ in equation (6.3), we get

lim
n→∞

w(x+ (n+ 1)k)

w(x+ nk)
= α.

If, on the other hand, w(x + k)/w(x) is negative and suppose that (WLOG) w(x) > 0
and w(x + k) < 0 then, by the proof of Theorem 6.1, we see that limx→∞ w(x + (n +
1)k)/w(x+ nk) = α. This proves the corollary. �

6.4. Remark. In [19, Conjecture 25], Sroysang conjectured that if f is a fibonacci
function with period k, then limx→∞ f(x+k)/f(x) = φ. Indeed, this is true by Corollary
6.3.

Sroysang’s second conjecture found in [19, Conjecture 26] is also true as stated in the
following results.

6.5. Theorem. Let k ∈ N and w := R→ R be an odd recurrent function with period k.
Then, the limit of the quotient w(x+ k)/w(x) exists.

6.6. Corollary. Let k ∈ N. If f , (resp. p and j) is an odd Fibonacci (resp. odd
Pell function and odd Jacobsthal) function with period k, then the limit of the quotient
f(x+ 1)/f(x), (resp. p(x+ 1)/p(x) and j(x+ 1)/j(x)) exists.

6.7. Corollary. Let k ∈ N and let w be an odd recurrent function with period k, then
limx→∞ w(x+k)/w(x) = −α. In particular, if f (resp. p and j) is an odd Fibonacci (resp.
odd Pell, and odd Jacobsthal) function with period k, then limx→∞ f(x + k)/f(x) = −φ
(resp. limx→∞ p(x+ k)/p(x) = −σ and limx→∞ j(x+ k)/j(x) = −2).

We omit the proof of these results since they can be proven in a similar fashion as in
Theorem 6.1 and Corollary 6.3.

7. Summary
We were able to extend successfully the notion of Fibonacci functions [9] and Fibonacci

functions with period k [19] by characterizing the concept of second-order linear recurrent
functions with period k. We were also able to confirm the conjectures of Sroysang in [19]
by proving a more general result about the asymptotic growth rate of Fibonacci functions
with period k. In our next investigation [18], we will revisit Sroysang’s conjecture and
provide another proof using the results presented in [20] by Tollu et al. together with
the concept of Cauchy sequences.
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