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Existence and nonexistence results for a
fourth-order discrete Dirichlet boundary value

problem
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Abstract

In this paper, a fourth-order nonlinear difference equation is considered.
By making use of the critical point theory, we establish various sets of
sufficient conditions for the existence and nonexistence of solutions for
Dirichlet boundary value problem and give some new results. Our
results generalize and complement the results in the literature.
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1. Introduction

Difference equations have attracted the interest of many researchers in the past twenty
years since they provided a natural description of several discrete models. Such dis-
crete models are often investigated in various fields of science and technology such as
computer science, economics, neural networks, ecology, cybernetics, biological systems,
optimal control, and population dynamics. These studies cover many of the branches of
difference equations, such as stability, attractivity, periodicity, oscillation, and boundary
value problems, see [6,12-14,16,18,19,21,26,27] and the references therein.
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Below N, Z and R denote the sets of all natural numbers, integers and real numbers re-
spectively. k is a positive integer. For any a, b € Z, define Z(a) = {a,a+1,---}, Z(a,b) =
{a,a+1,---,b} when a < b. Besides, * denotes the transpose of a vector.

The present paper considers the fourth-order nonlinear difference equation

(1.1) A? (pn,1A2un,2) — A (gnAun—1) = f(NyUnt1,Un,Un—1), n € Z(1,k),
with boundary value conditions
(1.2) U_1 = U = 07 Uk+1 = Uk+2 = 0,

where A is the forward difference operator Aun = Unt1 — Un, A%u, = A(Auy), pn is
nonzero and real valued for each n € Z(0,k+1), ¢, is real valued for each n € Z(1,k+1),
f € C(RY,R).

In recent years the study of boundary value problems for differential equations de-
velops at relatively rapid rate. By using various methods and techniques, such as fixed
point theory, topological degree theory, coincidence degree theory, a series of existence
results of nontrivial solutions for differential equations have been obtained in literatures,
we refer to [1-3,5,15,30]. And critical point theory is also an important tool to deal with
problems on differential equations [9,11,20,25,35]. Only since 2003, critical point theory
has been employed to establish sufficient conditions on the existence of periodic solutions
of difference equations. By using the critical point theory, Guo and Yu [12-14] and Shi
et al. [28] have successfully proved the existence of periodic solutions of second-order
nonlinear difference equations. We also refer to [32,33] for the discrete boundary value
problems. Compared to first-order or second-order difference equations, the study of
higher-order equations, and in particular, fourth-order equations, has received consider-
ably less attention (see, for example, [7,8,10,23,24,26,29,31] and the references contained
therein). Yan, Liu [31] in 1997 and Thandapani, Arockiasamy [29] in 2001 studied the
following fourth-order difference equation of form,

(1.3) A? (pnA2un) + f(n,un) =0, n € Z,

and obtained criteria for the oscillation and nonoscillation of solutions for equation (1.3).
In 2005, Cai, Yu and Guo [4] have obtained some criteria for the existence of periodic
solutions of the fourth-order difference equation

(1.4) A? (pn_QAQ’LLn_Q) + f(n,u,) =0, n € Z.

In 1995, Peterson and Ridenhour considered the disconjugacy of equation (1.7) when
pn =1 and f(n,un) = gnun (see [23]).

The boundary value problem (BVP) for determining the existence of solutions of
difference equations has been a very active area of research in the last twenty years, and
for surveys of recent results, we refer the reader to the monographs by Agarwal et al.
[17,21,27]. As far as we know results obtained in the literature for the BVP (1.1) with
(1.2) are very scarce. Since f in (1.1) depends on un4+1 and un,—1, the traditional ways
of establishing the functional in [12-14,32-34] are inapplicable to our case. As a result,
the goal of this paper is to fill the gap in this area.

Motivated by the above results, we use the critical point theory to give some sufficient
conditions for the existence and nonexistence of solutions for the BVP (1.1) with (1.2).
We shall study the superlinear and sublinear cases. The main idea in this paper is
to transfer the existence of the BVP (1.1) with (1.2) into the existence of the critical
points of some functional. The proof is based on the notable Mountain Pass Lemma in
combination with variational technique. The purpose of this paper is two-folded. On one
hand, we shall further demonstrate the powerfulness of critical point theory in the study
of solutions for boundary value problems of difference equations. On the other hand, we
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shall complement existing results. The motivation for the present work stems from the
recent paper in [7].
Let

p=max{p, :n € Z(0,k+ 1)}, p=min{p, :n € Z(0,k+ 1)},

g =max{gn : n € Z(1,k + 1)}, ¢ =min{gn : n € Z(1,k + 1)}.
Our main results are as follows.

Theorem 1.1. Assume that the following hypotheses are satisfied:

(p) for anyn € Z(0,k + 1), pn < 0;

(q) for anyn € Z(1,k+ 1), g, <0;

(F1) there exists a functional F(n,-) € C*(Z x R* R) with F(0,-) = 0 such that

OF(n —1,v2,v3) | OF(n,v1,v2) )
avz + 6'1.)2 - f(n7 U17U27U3)7 Vn € Z(la k)v

(F») there exists a constant My > 0 such that for all (n,v1,v2) € Z(1,k) x R?

OF (n,v1,v2)
V2

‘aF(n, V1, v2) < M,

81)1

§M07'

Then the BVP (1.1) with (1.2) possesses at least one solution.

Remark 1.1. Assumption (F>) implies that there exists a constant M; > 0 such that
(FQI) ‘F(’I’L, v17v2)| <M + MO(lvl| + |U2D7 V(?’L, ’U1,’U2) € Z(lvk) x R?.

Theorem 1.2. Suppose that (F1) and the following hypotheses are satisfied:
(p') for any n € Z(0,k + 1), p, > 0;

(¢") for anyn € Z(1,k+1), g, > 0;

(F3) there exists a functional F(n,-) € C*(Z x R*, R) such that

. F(n,vi,v2)
}%TZO’ r=4/v?+v3, Vne Z(1,k);

(F4) there exists a constant B > 2 such that for any n € Z(1,k),

OF (n, U1,U2)U1 n OF (n,v1,v2)
81}1 6112

Then the BVP (1.1) with (1.2) possesses at least two nontrivial solutions.

0< vy < BF(n,v1,v2), V(vi,v2) # 0.

Remark 1.2. Assumption (F4) implies that there exist constants a; > 0 and a2 > 0
such that

B
(Fy) F(n,v1,v2) > a1 (\/’U% —H}S) — a2, Vn € Z(1,k).
Theorem 1.3. Suppose that (p'), (¢'), (F1) and the following assumption are satisfied:

(F5) there exist constants R > 0 and 1 < a < 2 such that forn € Z(1,k) and /v + v3 >
R,

OF (n,v1,v2) OF (n,v1,v2)
v1 +
ovy Ova

Then the BVP (1.1) with (1.2) possesses at least one solution.

0< va < aF(n,v1,v2).

Remark 1.3. Assumption (F5) implies that for each n € Z(1,k) there exist constants
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as > 0 and a4 > 0 such that

(F3) F(n,v1,v2) < as (\/m)a +aq, Y(n,v1,v2) € Z(1,k) x R?.

Theorem 1.4. Suppose that (p), (q), (F1) and the following assumption are satisfied:
(Fs) v2f(n,v1,v2,v3) >0, for va # 0, Vn € Z(1,k).

Then the BVP (1.1) with (1.2) has no nontrivial solutions.

Remark 1.4. In the existing literature, results on the nonexistence of solutions of

discrete boundary value problems are scarce. Hence, Theorem 1.4 complements existing
ones.

The remainder of this paper is organized as follows. First, in Section 2, we shall
establish the variational framework for the BVP (1.1) with (1.2) and transfer the problem
of the existence of the BVP (1.1) with (1.2) into that of the existence of critical points
of the corresponding functional. Some related fundamental results will also be recalled.
Then, in Section 3, we shall complete the proof of the results by using the critical point
method. Finally, in Section 4, we shall give three examples to illustrate the main results.

For the basic knowledge of variational methods, the reader is referred to [20,22,25,35].

2. Variational structure and some lemmas

In order to apply the critical point theory, we shall establish the corresponding vari-
ational framework for the BVP (1.1) with (1.2) and give some lemmas which will be
of fundamental importance in proving our main results. Firstly, we state some basic
notations.

Let R* be the real Euclidean space with dimension k. Define the inner product on
RF as follows:

k
(2.1) (u,v) = Zujvj, Yu,v € R,

Jj=1

by which the norm || - || can be induced by

1
k 2
2.2)  |ull = <Zu§> | Yu € R*.
j=1

On the other hand, we define the norm || - ||» on R* as follows:

(2:3) IUIIT—<ZIWIT> :

Jj=1

for all u € R® and r > 1.
Since ||u||- and ||u||2 are equivalent, there exist constants c1, ¢z such that ca > ¢; > 0,
and

24)  allul < lull- < calull2, Vu € R”.

Clearly, |lu|| = ||lu||2. For any u = (u1,us,--- ,ux)* € RF, for the BVP (1.1) with
(1.2), consider the functional J defined on R* as follows:

k k k
1 1
(25)  Ju) =3 > pota (A%u,)’ + 5 > ni1 (Aun)? =D F(n,tng1, un),

n=-—1 n=0 n=1
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where

OF(n — 1,v2,v3) n OF (n,v1,v2)

81}2 81}2 = f(n,’U1,’U2,’U3),

U—1 = U9 = 0, Uk4+1 = Uk4+2 = 0.

Clearly, J € C*(R*,R) and for any v = {un}F_y = (u1,us,...,ux)*, by using u_; =
uo = 0, Ur+1 = urt+2 = 0, we can compute the partial derivative as

oJ
o = A? (pn,lAQun,g) — A(gnAun—1) — f(n,Unig1, Un, Un—1), Yn € Z(1,k).

Thus, u is a critical point of J on R¥ if and only if
A (pn—1A%un—2) = A(gnAun—1) = f(1, Unt1, Un, Un—1), Y1 € Z(1, k).

We reduce the existence of the BVP (1.1) with (1.2) to the existence of critical points of
J on R*. That is, the functional J is just the variational framework of the BVP (1.1)
with (1.2).

Let P and @ be the k x k matrices defined by

6 -4 1 0 0
-4 6 -4 1 0
1 -4 6 -4 1
0 1 -4 6 —4

o O OO
o O OO
o O O O

P = .. )
0 0 0 0 0 6 -4 1
0 0 0 0 0 -4 6 —4
0 0 0 0 0 1 -4 6
2 -1 0 0 0
-1 2 -1 0 0
0o -1 2 0 0
0 0 o - 2 -1
0 0 o - -1 2
_ Clearly, P and @ are positive definite. Let A1,A2,---,Ax be the eigenvalues of P,
A1, Az, -+, Ak be the eigenvalues of ). Applying matrix theory, we know A; > 0, A; >
0, j=1,2,--- , k. Without loss of generality, we may assume that

(26) O0<X <A< <y,

(27)  0<A <A< - < A

Let E be a real Banach space, J € C'(E,R), i.e., J is a continuously Fréchet-
differentiable functional defined on E. J is said to satisfy the Palais-Smale condition
(P.S. condition for short) if any sequence {u(l)} C FE for which {J (u<l))} is bounded

and J’ (u(l>) — 0(l — o0) possesses a convergent subsequence in E.
Let B, denote the open ball in E about 0 of radius p and let 9B, denote its boundary.

Lemma 2.1 (Mountain Pass Lemma [25]). Let E be a real Banach space and J €
C'(E, R) satisfy the P.S. condition. If J(0) =0 and

(J1) there exist constants p, a > 0 such that J]sp, > a, and

(J2) there exists e € E\ B, such that J(e) < 0.

Then J possesses a critical value ¢ > a given by

(28)  c=inf max, J(g(s)),
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where
(2.9) I'={g€C([0,1],E)[g(0) =0, g(1) = e}.

Lemma 2.2. Suppose that (p'), (¢'), (F1), (F3) and (Fi) are satisfied. Then the
functional J satisfies the P.S. condition.

Proof. Let u") € R*, I € Z(1) be such that {J (u(l))} is bounded. Then there exists
a positive constant Mz such that

My < J (u(”) < My, VI € N.
By (F}), we have

k

k k
1 2 1 2
—M2> < J (u(l)) = 5 E Pn+1 (Azu'g)) + 5 § qn+1 (AU'ELD) - E F (nvugilvu%))

n=-—1 n=0 n=1

IN
N —

o [l ()]

n=1

k 2 1 & 2
_ 1 1 _ 1
D E (uilar2 — 2“5»3-1 + ugf)) + X E (u%_)H — uﬁf))
n=-—1

3
Il
=}

* * B
< %;5 (u(l)) Pu 4+ %(j (ua)) Qu<l) — alcf Hu(l)H + a2k
1 2 1 _+ 2 B
< g [+ g [u - e [ - aak
where vV = (ugl),uél), e ,ug)) , u¥ € R*. That is,
B 1 - 2
el 50 =4 (o 8 o <
Since 8 > 2, there exists a constant Ms > 0 such that
Hu“)H < Ms, VIEN.
Therefore, {u(l>} is bounded on R*. As a consequence, {u(”} possesses a convergence

subsequence in R*. Thus the P.S. condition is verified. O

3. Proof of the main results

In this Section, we shall prove our main results by using the critical point theory.

3.1. Proof of Theorem 1.1

Proof. By (F}), for any u = (u1,uz, - ,ux)* € R¥, we have

k k k
1 1
J(u) = 5 E Pn+1 (AQUn)2 + 9 E n+1 (Aun)2 - E F(n, un+1, un)
n=1

n=-—1 n=0
1 ~ k ) 1 B k ) k
< 517”;1 (Un+2 — 2Unt1 + Un) +5qnz:‘; (Un+1 — un)"+Mo nz:; (Jtnt1| + [un|)+Mik
1 1 k
< i;ﬁu*Pu + §q"u*Qu + 2M Z |un| + M1k

n=1
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1 1_~
< 515)\1Hu||2 + 5(})\1Hu||2 + 2MoVE|u| + M1k

— —o0 as ||u|| = 4o0.
The above inequality means that —J(u) is coercive. By the continuity of J(u), J attains
its maximum at some point, and we denote it %, that is,

J(u) = max{](u)|u € Rk}.

Clearly, @ is a critical point of the functional J. This completes the proof of Theorem
1.1. ]

3.2. Proof of Theorem 1.2

Proof. By (F), for any e = 1 (E)‘l + gjq) (A1 and A; can be referred to (2.6) and (2.7)),
there exists p > 0, such that

1 -
|F'(n,v1,v2)| < 3 (B)‘l —&—g)\l) (Uf +U§) ,Vn € Z(1,k),
r /02 + 02 <V/2p.

For any v = (u1,us,--- ,ux)* € R¥ and |jul| < p, we have |u,| < p, n € Z(1,k).

For any n € Z(1,k),
1< 2 1 g &

J(u) = 2 Z oyt (A%un)” + 5 anﬂ (Aun)® - Z F(n, unt1,un)
n=-—1 n=0 n=1

1oy L1 u 1 S\
53 ; Unt2 — 2Un+1 +Un 5 §=: Unt1 — Un) —g (E/\l —|—g/\1) nzzzl Upi1 + Uy )

\%

%Qu*Pu + %gu*Qu b (13)\1 +g5\1) [Jul®

1 1 < 1 B
oAl + Sahllul® = 5 (pAs+ @) flull®
1 ~

1 (pA+aA) lul?,

where u = (u1,uz,--- ,ux)”, u € R
Take a = i (Q)\l —|—g5\1) p2 > 0. Therefore,

Y

J(u)>a>0, Vu € 0B,.

At the same time, we have also proved that there exist constants a > 0 and p > 0 such
that J|op, > a. That is to say, J satisfies the condition (J1) of the Mountain Pass
Lemma.

For our setting, clearly J(0) = 0. In order to exploit the Mountain Pass Lemma in
critical point theory, we need to verify all other conditions of the Mountain Pass Lemma.
By Lemma 2.2, J satisfies the P.S. condition. So it suffices to verify the condition (Jz).

From the proof of the P.S. condition in Lemma 2.2, we know

1 ~
J() < 5 (Phe+ 3\ ) lul® = aref ul® + azk.

Since 8 > 2, we can choose @ large enough to ensure that J(@) < 0.
By the Mountain Pass Lemma, J possesses a critical value ¢ > a > 0, where

c=inf sup J(h
inf. sup J(A())

and
I ={h e C([0,1],R") | h(0) = 0, h(1) = a}.
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Let @ € R* be a critical point associated to the critical value ¢ of J, i.e., J(@) = c.
Similar to the proof of the P.S. condition, we know that there exists & € R* such that

J(@) = cmax = J(h(s)).
() = cunne = max J(h(s)

Clearly, @ # 0. If @ # 4, then the conclusion of Theorem 1.2 holds. Otherwise, 4 = .
Then ¢ = J() = Cmax = m[z(ﬁ] J(h(s)). That is,
se|0,

sup J(u) = inf sup J(h(s
s J(w) = jnt. s J(h(s))

Therefore,

Cmax = max_J(h(s)), Vh €T
s€[0,1]

By the continuity of J(h(s)) with respect to s, J(0) = 0 and J(@) < 0 imply that
there exists so € (0,1) such that

J (h(50)) = Cmax-

Choose hi, ha € I' such that {hi(s) | s € (0,1)} N {ha(s) | s € (0,1)} is empty, then
there exists s1, s2 € (0,1) such that

J(hl (81)) = J(h2 (82)) = Cmax-
Thus, we get two different critical points of J on R* denoted by
ul = h1 (81), u2 = hg (52) .

The above argument implies that the BVP (1.1) with (1.2) possesses at least two non-
trivial solutions. The proof of Theorem 1.2 is finished. |

3.3. Proof of Theorem 1.3

Proof. We only need to find at least one critical point of the functional J defined as in
(2.5).

By (FY), for any u = (u1,uz,--- ,ux)* € RF, we have
1 @ 2 1 k
= 5 Z Pn41 (AQUn) + by an-H (Aun)2 - Z F(n, unt1,un)
n=-—1 n=0 n=1
k 1 k k a
59 Z Unt2 — 2Uni1 + un)’ 5 Z Uni1 — Un)’—az Z (, Ju | + u%) —ask
n=—1 n=0 n=1
14 @
1 1 : o1
= 5Eu*Pqu §QU*QU —as [Z (1/U$L+1 + u%) ] — ask
n=1
1 «

2

|_l

k
5 A |ul? + q)\1\|u|| —azcy |:Z up 4y +un — ask

1 Y [e3 (o7 [e3
> 5 (P + )l = 2%ase ] - ask

— 400 as |Ju|| = +o0.
By the continuity of J, we know from the above inequality that there exist lower bounds
of values of the functional. And this means that J attains its minimal value at some
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point which is just the critical point of J with the finite norm. O
3.4. Proof of Theorem 1.4

Proof. Assume, for the sake of contradiction, that the BVP (1.1) with (1.2) has a
nontrivial solution. Then J has a nonzero critical point v*. Since

oJ

5 = A (pr-1A%un—2) — A(gnDun—1) — f(1, Unt1, Uny Un—1),

we get

k k
Z flrungn un, upn1)uy = Z [A2 (Pn—lAQU:sz) -A (%Au;fl)] U,
n=1

n=1

k k
(3.1) =Y pan (A%uh) + > ui (Auy)? <0.
n=0

n=—1
On the other hand, it follows from (Fg) that
k

(3.2) Zf(n, Up g1y Unyy Up_1) Uy > 0.

n=1

This contradicts (3.1) and hence the proof is complete. O

4. Examples

As an application of Theorems 1.2, 1.3 and 1.4, we give three examples to illustrate our
main results.

Example 4.1. For n € Z(1, k), assume that
(4.1)

B _ B _
Ay _a—A (9" Aup—1) = Bun {(p(n) (uiH + ui) 271 +p(n—1) (ui + ui,l) 2 1} ,

with boundary value conditions (1.2), where 8 > 2, ¢ is continuously differentiable and
p(n) >0, n € Z(1,k) with ¢(0) = 0.
We have

B_ B_
Pn = 17 qn = 9”7 f(’n,’l)l,’l)z,’l)?,) = /BU2 |:SD(7’L) ('U% +U§) 2 ' + gD('I’L - 1) ('Ug +U?2>) 2 1:|

and 5

F(n,vi,v2) = p(n) (v% + Ug)a .
It is easy to verify all the assumptions of Theorem 1.2 are satisfied and then the BVP
(4.1) with (1.2) possesses at least two nontrivial solutions.

Example 4.2. For n € Z(1, k), assume that
(4.2)
A2 (8" A% -2) ~A (6" A1) = aun [$(0) (wher +02) T+ (n = 1) (ud +ud ) T

with boundary value conditions (1.2), where 1 < @ < 2, ¢ is continuously differentiable
and ¥(n) > 0, n € Z(1, k) with ¢(0) = 0.
We have

Pr=8", g = 6", f(n,v1,v2,v3) = awz [¥(n) (0] +03) 2"+ w(n—1) (o] +43) 7 |
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and

F(n,v1,00) = () (v +03) .

It is easy to verify all the assumptions of Theorem 1.3 are satisfied and then the BVP
(4.2) with (1.2) possesses at least one solution.

Example 4.3. For n € Z(1, k), assume that

(4.3)

" 8
“A*u, s+ A (T"Aup—1) = —un {(uiﬂ + ui)

1 _1
= * o+ (up 4+ ul ) ]

with boundary value conditions (1.2).
We have

and

n 8
Pn = _17 gn = -7 ) f(n,’l)l,’UQ,’US) = gUQ |:(’U% +’U§)

=
=

+ (@3 0d)

|

F(n,v1,v2) = (vf +v§)% .

It is easy to verify all the assumptions of Theorem 1.4 are satisfied and then the BVP
(4.3) with (1.2) has no nontrivial solutions.
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