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Abstract
In this work we give sufficient conditions for a ring R to be quasi-Frobenius, such as R being
left artinian and the class of injective cogenerators of R-Mod being closed under projective
covers. We prove that R is a division ring if and only if R is a domain and the class of
left free R-modules is closed under injective hulls. We obtain some characterizations of
artinian principal ideal rings. We characterize the rings for which left cyclic modules
coincide with left cocyclic R-modules. Finally, we obtain characterizations of left artinian
and left coartinian rings.
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1. Introduction
In [1] and [3] the authors obtained characterizations of artinian principal ideal rings

using big lattices of classes of modules closed under certain closure properties. Also,
in [4] the authors deal with rings over which all injective hulls of left simple modules are
noetherian. These rings are called left coartinian rings. In this work we further investigate
these notions, among others.

In the sequel, R denotes an associative ring with identity and R-Mod denotes the
category of left unitary R-modules, to which all “modules" and “R-modules" will belong,
unless otherwise specified. A left uniserial ring will be a ring whose left ideals are linearly
ordered. By “QF" we mean “quasi-Frobenius". Also, “N ≤e M" will stand for “N is
essential in M".
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2. Artinian principal ideal rings
Recall that an artinian principal ideal ring is a left and right artinian, left and right

principal ideal ring.

Definition 2.1. We will say that RM is a paraprojective module if RM embeds in RN
whenever RM is an epimorphic image of RN . Dually, we say that RM is a parainjective
module if RM is quotient of each module RN in which RM embeds.

Theorem 2.2. The following statements are equivalent for a ring R.
1) R is an artinian principal ideal ring.
2) Every class of R-modules closed under submodules and direct sums is also closed

under quotients.
3) Every class of R-modules closed under quotients and direct products is also closed

under submodules.
4) There exists an epimorphism P �M precisely when there exists a monomorphism

M � P for each R-module M and for each projective R-module P .
5) R is left noetherian, and every cyclic R-module C is parainjective.

Proof. 1)⇒ 2), 3), 4) and 5) They follow from [3, Theorem 38].
4) ⇒ 1) For each module M there exists an epimorphism R(X) � M for some set X.

Hence, by hypothesis there exists a monomorphismM � R(X). Therefore, by [6, Corollary
24.15], R is a QF ring. Now, let us take a left ideal I of R. By hypothesis, there exists an
epimorphism R� I. Thus, I = Rx for some x ∈ I. Then, R is a left principal ideal ring.
Therefore, by [5, Sec. 4, Theorem 1], R is an artinian principal ideal ring.

2)⇒ 1) Consider the class of modules

C = {M | there exists a monomorphismM � R(X) for some setX}.
It is clear that C is closed under submodules and direct sums. Then, by hypothesis, C is
closed under quotients. Also, R(X) ∈ C for each set X, so C = R-Mod. Then for each
module M , there exists a monomorphism M � R(X) for some set X, so, by [6, Corollary
24.15], R is a QF ring. Let I be any two sided ideal of R. It is straightforward to verify
that the ring R/I also satisfies 2). It follows that R/I is QF. By [6, P. 217], R is an
artinian principal ideal ring.

3) ⇒ 1) Let E be a minimal injective cogenerator. Consider the class of modules
C = {M | there exists an epimorphism EX � M for some set X}. It is clear that C
is closed under quotients and direct products. By hypothesis, C is then closed under
submodules. Of course, EX ∈ C for each set X. But, for each module M , there exists a
monomorphism M � EX for some set X. Then, C = R-Mod. So, for each projective
module P , there exists an epimorphism EX � P , so that P is a direct summand of EX .
Therefore, P is an injective module. Thus, R is a QF ring. Moreover, as the ring R/I
also satisfies 3), R/I is a QF ring for each two sided ideal I of R. Then, by [6, P. 217], R
is an artinian principal ideal ring.

5) ⇒ 1) As there exists a monomorphism R � E(R), by hypothesis there exists an
epimorphism E(R) � R, so R is left self-injective and left noetherian. Therefore, R is a
QF ring. As the ring R/I also satisfies 5), R/I is a QF ring for each two sided ideal I of
R. Then, R is an artinian principal ideal ring. �

Theorem 2.3. Let R be an artinian principal ideal ring. Then the following conditions
are equivalent for an R-module M .

1) M is finitely generated.
2) M is finitely cogenerated.
3) M is artinian.
4) M is noetherian.
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Proof. 4)⇒ 1) and 3)⇒ 2) They are clear.
1)⇒ 4) This is true over every left noetherian ring.
2) ⇒ 3) Consider the class of modules C = {M | M is finitely cogenerated}, which is

closed under submodules. By hypothesis and [3, Theorem 38] the class C is closed under
quotients, so M is artinian for each M ∈ C .

4) ⇒ 2) By hypothesis R is left semiartinian, so that soc(M) ≤e M for each non
zero module M . If M is noetherian, then soc(M) is finitely generated, so M is finitely
cogenerated.

3) ⇒ 1) For this part, we will use freely [3, Theorem 38]. If M is artinian, then M
is finitely cogenerated. Thus soc(M) ≤e M and soc(M) is finitely generated. Therefore
E(soc(M)) = E(M) and soc(M) =

n⊕
i=1
Si with Si a simple module for each i ∈ {1, . . . , n}.

Thus, E(M) = E(soc(M)) = E(
n⊕
i=1
Si) =

n⊕
i=1
E(Si). We claim that each E(Si) is cyclic.

Indeed, take any simple S. By hypothesis, there exists a monomorphism S � R. More-
over, since every artinian principal ideal ring is QF and thus left self-injective, there exists
a monomorphism E(S) � R. Then there exists an epimorphism R � E(S). Therefore,
E(S) is cyclic, as we claim. Thus E(M) is finitely generated, and as the class of finitely
generated modules is closed under submodules by hypothesis, M is finitely generated. �

Recall that an R-module M is cocyclic if M contains an essential simple submodule.

Theorem 2.4. The classes of non-zero cyclic R-modules and of cocyclic R-modules coin-
cide if and only if R is a left uniserial artinian principal ideal ring.

Proof. ⇒] Let us first prove that R must be left artinian. This is equivalent to every
quotient of RR being finitely cogenerated. By the hypothesis, all we need to prove is that
every cocyclic module is finitely cogenerated. Take then any cocyclic M . There is some
simple S ≤e M . It follows that soc(M) = S. Thus, M has a finitely generated essential
socle, a condition well-known to be equivalent to M being finitely cogenerated.

We now show that R is left self-injective. Suppose otherwise, that is, that R � E(R).
The hypothesis gives that RR is cocyclic, so there is some simple S ≤e R. Hence, E(R) =
E(S), which is obviously cocyclic. Using the hypothesis, we get that E(R) is cyclic, so
that there is an epimorphism R

f
� E(R). Consider the following commutative diagram,

where i and j are inclusion maps.
f−1(R)

f�f−1(R)
����

� � i // R

f
����

=

R �
�

6=
j // E(R)

Note that if i were surjective, j would also be so. Thus, f−1(R) � R. Now we may
construct another level of the diagram. Let us write f� for appropriate restrictions of f .

f−1(f−1(R))

f� ����

� � // f−1(R)

f�
����

=

f−1(R)

f�
����

� � i

6=
// R

f
����

=

R �
�

6=
j // E(R)
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As above, the newest inclusion must be proper. Continuing in this manner, we obtain
an infinite descending chain R  f−1(R)  f−1(f−1(R))  . . ., contradicting that RR is
artinian.

Now, R being left artinian and left self-injective is equivalent to R being QF. Take
any two-sided ideal I. It is straightforward to verify (using that cocyclic modules are
precisely those modules having simple essential submodules) that the ring R/I satisfies
the hypothesis, i.e. that an arbitrary R/I-module is cyclic if and only if it is cocyclic. It
follows that for each two-sided ideal I of R, R/I is QF. But, according to [6, P. 217], this
is equivalent to R being an artinian principal ideal ring.

(One can prove directly that R is a left principal ideal ring. Indeed, take some non-
zero left ideal I. By the hypothesis, it suffices to show that I is cocyclic. Note that the
hypothesis gives some simple S ≤e R. Also, as RR is artinian, there is some simple T ≤ I.
But then T ≤ R, so necessarily S = T . And of course, S ≤ I ≤ R implies that S ≤e I.
This establishes that R is a left principal ideal ring. As we have already shown R to be
QF, [5, Sec. 4, Theorem 1] grants that R is an artinian principal ideal ring.)

As every nonzero quotient of R is cocyclic, then every nonzero quotient of R is uniform.
Therefore by [7, Proposition 2.7] R is left uniserial.
⇐] Take any non-zero cyclic module, say R/I for some left ideal I � R. The submodule

lattice of R/I is isomorphic to [I,R], which is a chain. As RR is artinian, then there exists
I ′ minimal such that I � I ′ ≤ R. Linearity ensures that I ′ is essential in [I,R]. Therefore,
I ′/I is an essential simple submodule of R/I, proving its cocyclicity.

Conversely, let M be a cocyclic module. There is some simple S ≤e M . Also, since RR
is artinian, there is some simple T ≤ R. From the hypothesis on linearity it follows that
R must be local and thus left local, so that S ∼= T . Now, any artinian principal ideal ring
is in particular QF and then in particular left self-injective, so we may extend S ∼= T ↪→ R
to a mapping M → R, which is monic due to the fact that S ≤e M . The situation is
depicted below.

S
��

∼=
����

� �

e
// M
��

���
�
�
�
�
�
�
�
�

=

T
� _

��

R

Thus, M is isomorphic to some left ideal of R, which by hypothesis is principal, i.e.,
cyclic. �

Lemma 2.5. If every semisimple R-module M is parainjective and paraprojective, then
R = R1 ×R2, where R1 is a semisimple ring and R2 is a finite direct product of left local
left artinian rings with all simple modules singular.

Proof. By [2, Theorem 4.7] R is a finite direct product of left local, left and right perfect
rings. Thus, R is a left semiartinian ring. Let Rx be a cyclic module. Then soc(Rx) ≤e Rx
and there exists an epimorphism Rx � soc(Rx) by hypothesis, so soc(Rx) is finitely
generated. Therefore, Rx is a finitely cogenerated module. Then R is a left artinian ring.

Now, if M is a projective semisimple R-module, there exists an epimorphism E(M) �
M by hypothesis. Then M is injective. Analogously, if M is a semisimple injective R-
module, M is projective. Thus, M is projective if and only if M is injective, for each
semisimple R-module M .

Write R = R1 × · · · × Rn, where each Ri is a left local, left and right perfect ring.
Let 1 ≤ i ≤ n. Note that Ri is left artinian (either because R is left artinian or because
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Ri satisfies the hypothesis on R), that soc(Ri) ≤e Ri (Ri being left semiartinian), that
soc(Ri) is a direct sum of copies of Si (where Ri-simp = {Si}) and is precisely the Si-socle
of R, and that for each M ∈ Ri-Mod, M is projective (respectively, injective) if and only
if it is a projective (respectively, injective) R-module. We claim that Si is projective if
and only if Ri is a semisimple ring. Sufficiency is clear, because over any semisimple ring
every module is projective. Conversely, suppose that Si is projective. Then so is soc(Ri),
which is thus injective. but this makes soc(Ri) an essential direct summand of Ri, whence
soc(Ri) = Ri. This proves the claim.

Set ISS = {i ∈ {1, . . . , n} | Ri is semisimple}, and put RI =
∏

i∈ISS

Ri (which is the

projective socle of R), and RII =
∏

i∈{1,...,n}\ISS

Ri. Then R = RI ×RII , RI is a semisimple

ring and RII is a finite direct product of left local artinian rings over each of which all
simple modules are singular. �

Observe that the hypothesis of Lema 2.5 holds also for R/I for each two sided ideal I
of R.

Recall that a ring R is called left quasi-duo if each maximal left ideal is two sided.

Remark 2.6. For a ring R the following conditions are equivalent.
(1) R is a left quasi-duo ring.
(2) For each simple R-module S, and for all x ∈ S, (0 : x) is a two-sided ideal of R.

Theorem 2.7. For a left quasi-duo ring R, if every semisimple R-module is parainjective
and paraprojective, then R is a finite direct product of left local left artinian rings and for
each left ideal I of the factor ring Ri, I = rad(Ri)m for some m ∈ N.

Proof. Consider the decomposition supplied by [2, Theorem 4.7]. Let R be a factor
ring. Note that R inherits the current hypotheses. Then, there exists an epimorphism
R → soc(R), so Rx = soc(R) = S1 ⊕ S2 ⊕ · · · ⊕ Sn, where Si is a simple module ∀i ∈
{1, . . . , n}. Write x = x1 + x2 + · · · + xn, where each xi ∈ Si\{0}. It is clear that
(0 : x) ⊆ (0 : xi), ∀i ∈ {1, . . . , n}. Let j ∈ {2, . . . , n}. Since R is left local, there is an
isomorphism fj : S1 → Sj . As Sj = Rfj(x1), there is rj ∈ R such that xj = rjfj(x1).
Then, x = x1 + r2f2(x1) + · · · + rnfn(x1). Note that, for 2 ≤ j ≤ n, (0 : x1)Rfj(x1) = 0
because (0 : x1) is a two sided ideal by hypothesis and Remark 2.6. Thus, (0 : x) = (0 : x1).
Then, Rx ∼= Rx1. Therefore, Rx = soc(R) is a simple module.

As established in the proof of Lemma 2.5, R is a left artinian ring, so that rad(R)
is nilpotent. Let us prove by induction on the nilpotency index that for each left ideal
I of R, I = rad(R)m for some m ∈ N. If n = 1, then rad(R) = 0. Since R is left
artinian, it is semilocal, so in this case it is semisimple and thus a division ring, so that
the only two left ideals are 0 = rad(R) and R = rad(R)0. Let us suppose that n > 1 is the
nilpotency index. As rad(R)n = 0, rad(R)n−1 6= 0 is annhilated by rad(R), so rad(R)n−1 is
a semisimple module (again by semilocality). Then, rad(R)n−1 ⊆ soc(R), but soc(R) is a
simple module, so that rad(R)n−1 = soc(R). Let I be a left ideal of R. Note that, R being
left artinian and having a simple socle, soc(R) ≤ I. Then R/soc(R) = R/(rad(R)n−1) is a
ring with the same hypothesis of R whose radical has nilpotency index n− 1. Therefore,
I/soc(R) = rad(R)m/soc(R) and by the Correspondence Theorem I = rad(R)m, for some
m ∈ N. �

Theorem 2.8. For a commutative ring R the following statements are equivalent.
(1) Every semisimple R-module is parainjective and paraprojective.
(2) R is a finite direct product of uniserial artinian principal ideal rings.

Proof. 1)⇒ 2) Let R be any of the factor rings in the decomposition supplied by Theorem
2.7. We know that, for each ideal I of R, there exists m ∈ N such that I = rad(R)m. In
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the proof of Theorem 2.7, we showed that if rad(R) = 0, then R must be a division ring,
and thus in particular an uniserial artinian principal ideal ring. Suppose then that there
is x ∈ rad(R) but x /∈ rad(R)2. Then rad(R)2 < Rx ≤ rad(R). Thus, rad(R) = Rx.
Then by an induction argument rad(R)m = Rxm,∀m ∈ N. Now we prove that R is a
self-injective ring. Consider the following diagram:

Rxn

f
��

� � i // R

R

where f : Rxn → R is any homomorphism and i : Rxn ↪→ R is the inclusion. Then
f(Rxn) = Rxm with m ≥ n. Put f(xn) = rxm. Consider the homomorphism h : R → R
such that h(s) = s(rxm−n),∀s ∈ R. Thus, for t ∈ R, (hi)(txn) = h(i(txn)) = h(txn) =
txn(rxm−n) = trxm = f(txn). Therefore, R is self-injective. As was established in the
proof of Lemma 2.5, R is artinian. Then R is a QF-ring, Thus, by [5, Sec. 4, Theorem 1],
R is an artinian principal ideal ring.

2)⇒ 1) Follows by [3, Theorem 38]. �

3. Coartinian, conoetherian and quasi-Frobenius rings
The ring R is said to be left coartinian if for every S ∈ R-simp, E(S) is noetherian.

Proposition 3.1. Let R be a ring.
1) R is left artinian if and only if every finitely generated R-module is finitely cogen-

erated.
2) R is left coartinian if and only if every finitely cogenerated R-module is finitely

generated.

Proof. 1) Suppose that R is left artinian and take some finitely generated M ∈ R-Mod.
As R is left noetherian, soc(M), being a submodule of M , is also finitely generated. Also,
R being left semiartinian implies that soc(M) ≤e M . Therefore,M is finitely cogenerated.

Conversely, suppose that every finitely generated module is finitely cogenerated. Any
quotient of RR, being cyclic, is by hypothesis finitely cogenerated. Thus, RR is artinian.

2) Suppose that R is left coartinian and take some finitely cogenerated M ∈ R-Mod.

Then, there are some simple S1, . . . , Sn such that
n⊕
i=1

Si = soc(M) ≤e M . But then

E(M) = E(soc(M)) =
n⊕
i=1

E(Si) is, by hypothesis, noetherian, so that its submodule M

is finitely generated.
Conversely, suppose that every finitely cogenerated module is finitely generated. For

every S ∈ R-simp, any submodule of E(S), being finitely cogenerated, is by hypothesis
finitely generated. Thus, E(S) is noetherian. �

A ring R is called left conoetherian if for every S ∈ R-simp, E(S) is artinian. Accord-
ingly, let us call R left strongly conoetherian if every indecomposable† injective R-module
is artinian.

Theorem 3.2. Let R be a ring. The following statements are equivalent.
1) R is left artinian and left coartinian.
2) The classes of finitely generated and of finitely cogenerated R-modules coincide.

†By “indecomposable" we mean “directly indecomposable".
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3) R is left noetherian and left strongly conoetherian.

Proof. 1)⇔ 2) Direct from Proposition 3.1.
1)⇒ 3) Suppose that 1) holds. Of course, every left artinian ring is left noetherian. Let

E ∈ R-Mod be injective and indecomposable. Since R is artinian, there is some simple
S such that E = E(S). Then, as R is left coartinian, E is noetherian, and in particular
finitely generated. But over a left artinian ring, every finitely generated module is artinian.
Therefore, 3) holds.

3) ⇒ 1) Suppose now that 3) holds. Since R is left noetherian, in order to prove that
it is left artinian it suffices to show that it is left semiartinian. Take then some non-zero
M ∈ R-Mod. As is well-known, left noetherian rings are characterized by the fact that
over them, every injective module is a direct sum of indecomposable modules. We can
apply this to E(M) and then use the fact that R is left strongly conoetherian to obtain
some simple S ≤ E(M). Then, by simplicity, S ≤M .

Let now S ∈ R-simp. Let us write J = rad(R). We have already established that R
is left artinian, so J is nilpotent. Then there is a least n ∈ N such that JnE(S) = 0.
(Of course, n > 0.) Observe that both of Jn−1E(S) and Jn−2E(S)/Jn−1E(S) are artinian
and semisimple. Indeed, they are subquotients of E(S), an artinian module, and they are
annihilated by J , i.e. they are R/J-modules (since R is left artinian, it is semilocal). Thus,
Jn−1E(S) and Jn−2E(S)/Jn−1E(S) are noetherian, so that the short exact sequence

0→ Jn−1E(S)→ Jn−2E(S)→ Jn−2E(S)/Jn−1E(S)→ 0
shows that Jn−2E(S) is noetherian. Next, we use

0→ Jn−2E(S)→ Jn−3E(S)→ Jn−3E(S)/Jn−2E(S)→ 0
to show that Jn−3E(S) is noetherian, and so on. At the n-th step, we obtain that E(S)
is noetherian. �

Theorem 3.3. Let R be a ring. The following conditions are equivalent.
1) R is a domain‡ and the class of free R-modules is closed under taking injective

hulls.
2) R is a division ring.

Proof. 1)⇒ 2) We claim that every free module is injective. Consider R(X) for some set
X. Suppose first that |X| > |R|. By hypothesis, E(R(X)) = R(Y ) for some set Y , so that
|R(X)| ≤ |R(Y )|. Let us verify that |X| ≤ |Y |.

In case both of R(X) and R(Y ) are infinite, we have that
max{|R|, |Y |} = |R(Y )| ≥ |R(X)| = max{|R|, |X|} = |X| > |R|,

so that it must happen that max{|R|, |Y |} = |Y |. Thus, |X| ≤ |Y |.
In case both of R(X) and R(Y ) are finite, we have that

|R||X| = |R(X)| ≤ |R(Y )| = |R||Y |,
so that necessarily |X| ≤ |Y |.

Lastly, in case R(X) is finite and R(Y ) is infinite, we must have that |R| and |X| are
finite, and thus that |Y | is infinite (seeing as, for any set A, R(A) is finite if and only if R
and A are finite).

Thus, we always have that |R| < |X| ≤ |Y |.
Let us write {δy}y∈Y for the canonical basis of R(Y ) §. Since R(X) ↪→e R

(Y ), for each
y ∈ Y there is an ry ∈ R such that 0 6= ryδy ∈ R(X). By the hypothesis on R, the set

‡That is, every product of non-zero elements of R is non-zero.
§That is, for y ∈ Y , δy : Y → R is such that δy : z 7→

{
1 if z = y
0 if z 6= y

, although any basis will do.
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{ryδy}y∈Y is linearly independent. Thus, the submodule of R(X) spanned by {ryδy}y∈Y is
a free module. Therefore,

R(Y ) ∼= R({ryδy}y∈Y ) ∼= 〈{ryδy}y∈Y 〉 ≤ R(X),

so that |R(Y )| ≤ |R(X)|. As we already had the reverse inequality, we obtain that |R(X)| =
|R(Y )|. This cardinality may or may not be finite, but it is now easy to show that, in any
case, |X| = |Y |. This implies that R(X) ∼= R(Y ), whence R(X) is injective.

Now, in case |X| ≤ |R|, simply take some set Z such that |Z| > |R| and note that
R(X) embeds as a direct summand in R(Z), which, by the above argument, is injective.
Therefore, the claim is proved.

Since every projective module is a direct summand of a free module, every projective
module is injective. This condition is well-known to be equivalent to R being QF. Therefore
R is a left artinian domain; thus, there exists a minimal left ideal Rx, which is isomorphic
to R. Therefore R is a division ring.

2)⇒ 1) It is clear. �

Theorem 3.4. Suppose that R is left artinian and that the class of injective cogenerators
of R-Mod is closed under taking projective covers. Then R is a QF ring.

Proof. Take some injective cogenerator of R-Mod, and let P stand for its projective
cover, which exists because R is left perfect. By hypothesis, P is a projective and injective
cogenerator. Let S ∈ R-simp. As S is cogenerated by P , by simplicity S embeds in P ,
so that E(S) embeds in P as a direct summand, which makes it projective. Also observe
that, over any artinian ring, any injective indecomposable module E is the injective hull
of some simple S ≤ E.

Let M ∈ R-Mod be injective. As R is left noetherian, M is a direct sum of injective
indecomposable modules. By the above remark, M is a direct sum of injective hulls
of simple modules, which we know are projective. Therefore, every injective module is
projective. This condition is well-known to be equivalent to R being QF. �
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