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Boundary value problem for a Sturm-Liouville
operator with piecewise continuous coefficient

K. R. Mamedov ∗ and F. A. Cetinkaya †

Abstract
In this paper, a self adjoint boundary value problem with a piecewise
continuous coefficient on the positive half line [0,∞) is considered. The
resolvent operator is constructed and the expansion formula with re-
spect to eigenfunctions or equivalently Parseval equality is obtained.
The spectrum of the operator is discussed.
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1. Introduction
Here, we consider the boundary value problem on the half line 0 < x <∞ generated

by the differential equation

(1.1) −y′′ + q(x)y = λ2ρ(x)y

and the boundary condition

(1.2) y′(0)− hy(0) = 0,

where λ is a spectral parameter, q(x) is a real valued function satisfying the condition

(1.3)
∫ ∞

0

(1 + x) |q(x)| dx <∞
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and

ρ(x) =

{
α2, 0 ≤ x < a,
1, x ≥ a,

where 0 < α 6= 1. It is not hard to verify that the function

f0(x, λ) =
1

2

(
1 +

1√
ρ(x)

)
eiλµ

+(x) +
1

2

(
1− 1√

ρ(x)

)
eiλµ

−(x)

is the solution of equation (1.1) when q(x) ≡ 0, where

µ±(x) = ±x
√
ρ(x) + a(1∓

√
ρ(x)).

As it is known from [5, 8] that for λ from the closed upper half plane equation (1.1) has
a unique solution f(x, λ) which can be represented in the form

(1.4) f(x, λ) = f0(x, λ) +

∫ ∞
µ+(x)

K(x, t)eiλtdt,

where K(x, ·) ∈ L1(µ+(x),+∞). The function f(x, λ) is called the Jost solution of
equation (1.1).

Note that, a singular Sturm-Liouville problem in the form of (1.1), (1.2) is encoun-
tered when applying separation of variables to mathematical physics problems in non-
homogeneous media, e. g. when q(x) ≡ 0 an application of electric prospecting problem,
was given in [13, 15]. In this works, expansion formula was obtained by using Titch-
marsh’s [14] method with the help of integral representation (1.4), for the solution of
equation (1.1). When ρ(x) ≡ 1 spectral expansion formula, for singular differantial oper-
ators on the interval [0,∞) was investigated with different methods in [14, 10], etc. When
ρ(x) 6= 1, spectral properties of similar problems were considered in [4, 3, 5, 7, 8, 9]. Also,
in this case the direct and inverse problem in a finite interval were examined in [1, 11].

Using (1.4) we have for real λ 6= 0 that the functions f(x, λ) and f(x, λ) form the
fundamental system of solutions of equation (1.1) and the Wronskian of this system is
equal to 2iλ:

W
{
f(x, λ), f(x, λ)

}
= f ′(x, λ)f(x, λ)− f(x, λ)f ′(x, λ) = 2iλ.

By ω(x, λ), we denote the solutions of equation (1.1) satisfying the initial data

ω(0, λ) = 1, ω′(0, λ) = h.

Proof of the following propositions can be done analoguously to [8].
1.1. Proposition. For real λ 6= 0 the following identity

(1.5) 2iλ
ω(x, λ)

f ′(0, λ)− hf(0, λ)
= f(x, λ)− S(λ)f(x, λ)

holds, here

S(λ) =
f ′(0, λ)− hf(0, λ)

f ′(0, λ)− hf(0, λ)
and |S(λ)| = 1.

S(λ) is called the scattering function of the boundary value problem (1.1), (1.2).
1.2. Proposition. The function ϕ(λ) ≡ f ′(0, λ) − hf(0, λ) 6= 0 may have only a finite
number of zeros λk, (k = 1, 2, ..., n) in the half plane Imλ > 0. These zeros are all simple
and lie on the imaginary axis. For λ = iλj (λj > 0), j = 1, n, we get

m−2
j ≡

∫ ∞
0

ρ(x) |f(x, iλj)|2 dx = − 1

2iλj
ϕ̇(iλj)f(0, iλj).
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These values are called the norming constants of the boundary value problem (1.1), (1.2).

2. Spectrum
This section is devoted to examine the properties of the eigenvalues of the boundary

value problem (1.1), (1.2).
2.1. Theorem. The operator L has no eigenvalues on the positive half line.
Proof. Let λ2

0 > 0 be an eigenvalue of the operator L and y0(x) = y(x, λ0) be the
corresponding eigenfunction. Since f(x, λ0) and f(x, λ0) form the fundamental system
of solutions, the general solution of (1.1) can be written in the form

y0(x) = c1f(x, λ0) + c2f(x, λ0).

As x→∞,

f(x, λ0)→ eiλ0x and f(x, λ0)→ e−iλ0x,

hence

y0(x) = c1e
iλ0x + c2e

−iλ0x + o(1).

Since, its principal part is periodic this function does not belong to L2(0,∞) for any
values of c1 and c2. �
2.2. Theorem. For −λ2

0 (λ0 6= 0) to be an eigenvalue it is necessary and sufficient that
ϕ(λ0) = 0.
Proof. Indeed, let ϕ(λ0) = 0 (Imλ0 > 0). Thus, f ′(0, λ0) − hf(0, λ0) = 0. Therefore,
f(x, λ0) is a solution of the boundary value problem (1.1), (1.2). While x→∞ f(x, λ0)
decreases exponentially. Hence, f(x, λ0) ∈ L2(0,∞) and for the corresponding eigenvalue
−λ2

0 f(x, λ0) is the eigenfunction of operator L. On the other hand, let −λ2
0 (λ0 6=

0) be an eigenvalue and y(x, λ0) be the suitable eigenfunction of operator L. Then
y′(0, λ0)−hy(0, λ0) = 0. It is clear that, y(0, λ0) 6= 0. Without loss of generality assume
that y(0, λ0) = 1, then y′(0, λ0) = h. Since, f(x, λ0) and f̂(x, λ0) form the fundamental
system of solutions of equation (1.1) (see [12] p. 297), we can write

y(x, λ0) = c1f(x, λ0) + c2f̂(x, λ0).

As x→∞, we obtain c2 = 0, then c1 6= 0. Substituting x = 0 in the last relation, we get

y′(0, λ0)− hy(0, λ0) = c1

i.e.,

f ′(0, λ0)− hf(0, λ0) = ϕ(λ0) = 0.

Thus, for each eigenvalue −λ2
0, there is one and only one adequate (up to a multiplicative

constant) eigenfunction:

y(x, λ0) = cf(x, λ0), (c 6= 0).

�
The proof of the following theorem can be obtained directly form Theorem 2.1 and
Theorem 2.2. 2.3. Theorem. The operator L has a finite number of eigenvalues:
−λ2

1,−λ2
2, ...,

−λ2
n.

Therefore, it is appropriate at this point to note that the spectral problem (1.1), (1.2) has
a finite number of negative eigenvalues and it fills positive half line with its continuous
spectrum.
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3. The Resolvent Operator and Expansion Formula for the Eigen-
functions
In the space L2,ρ(0,∞), we define an inner product by

< f, g >:=

∫ ∞
0

f(x)g(x)ρ(x)dx,

where f(x), g(x) ∈ L2,ρ(0,∞).

Let us define

D(L) =

{
f(x) ∈ L2,ρ(0,∞) : f(x), f ′(x) ∈ AC [0,∞) , l(f) ∈ L2,ρ(0,∞),

f ′(0)− hf(0) = 0

}
,

as L : f → l(f) where

l(f) =
1

ρ(x)

{
−f ′′(x) + q(x)f(x)

}
.

The boundary value problem (1.1), (1.2) is equivalent to the equation Ly = λ2y and
the operator L is self-adjoint in the space L2,ρ(0,∞).

Let us assume that λ2 is not a spectrum point of operator Rλ2(L) = (L−λ2I)−1 and
find the expression of the operator Rλ2(L) as all numbers λ2 (Imλ ≥ 0, ϕ(λ) 6= 0) belong
to the resolvent set of the operator L.
3.1. Theorem. The resolvent Rλ2(L) is the integral operator

Rλ2(L) =

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

with the kernel,

(3.1) G(x, t;λ) = − 1

ϕ (λ)

{
ω (x, λ) f (t, λ) , t ≥ x,
f (x, λ)ω (t, λ) , t ≤ x.

Proof. Let g(x) ∈ D(L) and assume that it is a finite function at infinity. To construct
the resolvent operator of L we need to solve the boundary value problem

(3.2) −y′′ + q(x)y = λ2ρ(x)y + g(x)ρ(x),

(3.3) y′(0)− hy(0) = 0.

We know that the functions w(x, λ) and f(x, λ) are the solutions of homogeneous
problem for Imλ > 0. Now let us find the solutions of the problem (3.2), (3.3) which has
the form

(3.4) y(x, λ) = c1(x, λ)w(x, λ) + c2(x, λ)f(x, λ).

By applying the method of variation of constants, we get the system of equations

(3.5)
{

c′1 (x, λ)w (x, λ) + c′2 (x, λ) f (x, λ) = 0,
c′1 (x, λ)w′ (x, λ) + c′2 (x, λ) f ′ (x, λ) = −ρ (x) g (x) .

Since y (x, λ) ∈ L2,ρ (0,∞), then c1 (0,∞) = 0. By using this relation and the system
equations (3.5), we obtain

c1(x, λ) = − 1

ϕ(λ)

∫ ∞
x

f(t, λ)g(t)ρ(t)dt,
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(3.6) c2(x, λ) = c2(0, λ)− 1

ϕ(λ)

∫ x

0

w(t, λ)g(t)ρ(t)dt.

Substituting (3.6) into (3.4) and taking (3.3) into consideration, the proof of Theorem
3.1 is completed. �
3.2. Lemma. Let g(x) be a twice continuously differential function vanishing outside of
some finite interval and g(x) ∈ D(L). Then, as |λ| → ∞, Imλ > 0 the following holds:

(3.7)
∫ ∞

0

G(x, t;λ)g (t) ρ (t) dt = −g (x)

λ2
+
Z(x, λ)

λ2
,

where

Z(x, λ) =

∫ ∞
0

G(x, t, λ)g̃(t)ρ(t)dt

as g̃(t) = −g′′(t) + q(t)g(t).
Proof. The proof can be easily seen by using Theorem 3.1 and integrating by parts. �

Bounded solutions of boundary value problem (1.1), (1.2) are given in the following
way:

u(x, λ) =

√
1

2π

[
f(x, λ)− S(λ)f(x, λ)

]
, 0 < λ2 <∞,

u(x, iλj) = mjf(x, iλj), j = 1, 2, ..., n.

By using the contour integration, it can be shown that they form a complete system.
3.3. Theorem. The expansion formula which is equivalent to Parseval equality

(3.8) δ(x− t) =

n∑
j=1

u(x, iλj)u(t, iλj)ρ(t) +

∫ ∞
0

u(x, λ)u(t, λ)ρ(t)dλ

holds, where δ (x) is Dirac delta function, also when x → ∞ the following asymptotic
formulae are true:

(3.9)
u(x, λ) = e−iλx − S(λ)eiλx + o(1), (0 < λ2 <∞)

u(x, iλj) = mje
−λjx [1 + o(1)] , (j = 1, ..., n).

Proof. Let ΓR denote the circle of radius R and center zero which boundary contour
is positive oriented. Assume D = {z : |z| ≤ R, |Imz| ≥ ε}, denote the positive oriented
boundary contour of D as ΓR,ε and take integration along this contour. By multiplying
both sides of (3.7) by 1

2πi
λ and integrating it with respect to λ, we obtain

1

2πi

∫
ΓR,ε

λdλ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt = − 1

2πi

∫
ΓR,ε

g(x)

λ
dλ+ ZR,ε(x),

where

ZR,ε(x) =
1

2πi

∫
ΓR,ε

Z(x, λ)

λ
dλ.

It can be shown from the properties of the functions w(x, λ), f(x, λ) that, as R → ∞
and ε→ 0, ZR,ε → 0 holds for ∀x ∈ [0, T ] ⊂ [0,∞) uniformly. From the last relation, as
R→∞, ε→ 0 we can write

1

2πi

∫
ΓR,ε

λdλ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt→ −g(x)+

+
1

2πi

∫ ∞
−∞

λdλ

∫ ∞
0

[G(x, t;λ+ i0)−G(x, t;λ− i0)]g(t)ρ(t)dt.
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On the other hand, using the residue calculus, we get

1

2πi

∫
ΓR,ε

λdλ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt =

n∑
j=1

Res
λ=iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
+

+

n∑
j=1

Res
λ=−iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
.

From the last two relations we obtain

g(x) = −
n∑
j=1

Res
λ=iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
−

−
n∑
j=1

Res
λ=−iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
+

+
1

2πi

∫ ∞
−∞

dλ

∫ ∞
0

[G(x, t;λ+ i0)−G(x, t;λ− i0)]g(t)ρ(t)dt.

Let ψ(x, λ) be the solution of (1.1) satisfying the initial conditions

ψ(0, λ) = 0, ψ′(0, λ) = 1

and W {ω(x, λ), f(x, λ)} = 1. From here, we can write

f(x, λ) = f(0, λ)ω(x, λ)− ϕ(λ)ψ(x, λ).

Therefore, from (3.1) we have

G(x, t;λ) = −f (0, λ)

ϕ (λ)
ω(x, λ)ω(t, λ)−

{
ω (x, λ)ψ(t, λ), x ≤ t,
ψ(x, λ)ω(t, λ), t ≤ x.

Accordingly for Imλ ≥ 0, we obtain∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt = − 1

ϕ (λ)
f (0, λ)ω (x, λ)

∫ ∞
0

ω (t, λ) g(t)ρ(t)dt−

− ψ(x, λ)

∫ x

0

ω (t, λ) g(t)ρ(t)dt−

− ω(x, λ)

∫ ∞
x

ψ (t, λ) g(t)ρ(t)dt.

Therefore, we get

Res
λ=iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
+ Res
λ=−iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
=

= − 2iλj
ϕ̇(iλj)

f(0, iλj)ω(x, iλj)

∫ ∞
0

ω(t, iλj)g(t)ρ(t)dt =

= u(x, iλj)

∫ ∞
0

u(t, iλj)g(t)ρ(t)dt.

We can write

G(x, t;λ+ i0)−G(x, t;λ− i0) =

[
−f(0, λ+ i0)

ϕ(λ+ i0)
+
f(0, λ− i0)

ϕ(λ− i0)

]
ω(x, λ)ω(t, λ) =

=
ϕ(λ)f(0, λ)− ϕ(λ)f(0, λ)

|ϕ(λ)|2
ω(x, λ)ω(t, λ) =

=
2iλ

|ϕ(λ)|2
ω(x, λ)ω(t, λ).
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It follows that
1

2πi

∫ ∞
−∞

λdλ

∫ ∞
0

[G(x, t;λ+ i0)−G(x, t;λ− i0)]g(t)ρ(t)dt =

=
2

π

∫ ∞
0

λ2

|ϕ(λ)|2
ω(x, λ)

∫ ∞
0

ω(t, λ)g(t)ρ(t)dtdλ =

=

∫ ∞
0

u(x, λ)

∫ ∞
0

u(t, λ)g(t)ρ(t)dtdλ.

Therefore, from (3.10) we get the expansion formula for the eigenfunctions:

(3.11) g(x) =

n∑
j=1

u(x, iλj)

∫ ∞
0

u(t, iλj)g(t)ρ(t)dt+

+

∫ ∞
0

u(x, λ)

∫ ∞
0

u(t, λ)g(t)ρ(t)dtdλ

or we obtain (3.8) that is equivalent to the Parseval equality. Asymptotic expressions
(3.9) can be obtained from (1.5) when x→∞. �

Writing the expansion formula (3.11) in the form of Stieltjes integral we have

g(x) =

∫ ∞
−∞

ω(x, λ)

(∫ ∞
0

ω(t, λ)g(t)ρ(t)dt

)
dσ(λ),

where

dσ(λ) =


2
π

λ2dλ
|ϕ(λ)|2 , λ ≥ 0,

∑n
j=1

(2iλj)
2δ(λ−iλj)

m2
j ϕ̇(iλj)2

, λ < 0

is the spectral function of operator L.
Now taking

G(λ) =

∫ ∞
0

ω(x, λ)g(x)ρ(x)dx,

we get

g(x) =

∫ ∞
−∞

G(λ)ω(x, λ)dσ(λ).

Multiplying both sides of this equivalence by g(x), we obtain the Parseval equality∫ ∞
0

g2(x)dx =

∫ ∞
−∞

G2(λ)dσ(λ).
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