\int Hacettepe Journal of Mathematics and Statistics Volume 45 (3) (2016), 675–682

On the *P*-interiors of submodules of Artinian modules

H. Ansari-Toroghy^{*†}, F. Farshadifar[‡], and S. S. Pourmortazavi[§]

Abstract

Let R be a commutative ring and M an Artinian R-module. In this paper, we study the dual notion of saturations (that is, P-interiors) of submodules of M and obtain some related results.

Keywords: Second submodule, saturation, P-interior.

2000 AMS Classification: 13C13, 13C99, 13E10

Received: 15.12.2014 Accepted: 14.15.2015 Doi: 10.15672/HJMS.20164513104

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and " \subset " will denote the strict inclusion. We write $N \leq M$ to indicate that N is a submodule of an R-module M. Also Spec(R) and \mathbb{Z} will denote the set of all prime ideals of R and the ring of integers respectively.

Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$. A non-zero submodule S of M is said to be second if for each $a \in R$, the endomorphism $S \xrightarrow{a} S$ is either surjective or zero (see [13]). A submodule N of M is said to be completely irreducible if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M. Thus, the intersection of all completely irreducible submodule of M is zero (see [6]).

^{*}Department of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.

 $Email: {\tt ansari@guilan.ac.ir}$

[†]Corresponding Author.

[‡]University of Farhangian, Tehran, Iran.

Email: f.farshadifar@gmail.com

[§]Department of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.

Email : mortazavi@phd.guilan.ac.ir

The saturation of $N \leq M$ with respect to $P \in Spec(R)$ is the contraction of N_P in M and designated by $S_P(N)$. It is well known that

$$S_P(N) = \{ e \in M : es \in N \text{ for some } s \in R - P \}.$$

In [1], H. Ansari-Toroghy and F. Farshadifar, introduced the dual notions of saturations of submodules, that is, *P*-interiors of submodules and investigated some related results (see [1] and [3]). Let N be a submodule of M. The *P*-interior of N relative to Mis defined [1, 2.7] as the set

 $I_P^M(N) = \cap \{L \mid L \text{ is a completely irreducible submodule of } M \text{ and} \}$

 $rN \subseteq L$ for some $r \in R - P$.

There are considerable results about saturation of a module with respect to a prime ideal in literature (see, for example, [7], [8], and [9]). It is natural to ask that to what extent the dual of these results hold. The purpose of this paper is to answer this question and provide more information about the P-interiors of submodules in case that our module is an Artinian module.

2. *P*-interiors of submodules and related properties

Recall that an *R*-module *L* is said to be *cocyclic* if *L* is a submodule of E(R/m) for some maximal ideal *m* of *R*, where E(R/m) is the injective envelope of R/m (see [14]).

2.1. Lemma. Let L be a completely irreducible submodule of an R-module M and $a \in R$. Then $(L:_M a)$ is a completely irreducible submodule of M.

Proof. This follows from the fact that a submodule L of M is a completely irreducible submodule of M if and only if M/L is a cocyclic R-module by [6] and that $M/(L:_M a) \cong (aM + L)/L$.

We use the following basic fact without further comment.

2.2. Remark. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

2.3. Lemma. Let $P \in Spec(R)$ and N be a submodule of an R-module M. If $M/I_P^M(N)$ is a finitely cogenerated R-module, then there exists $r \in R - P$ such that $rN \subseteq I_P^M(N)$.

Proof. Since $M/I_P^M(N)$ is finitely cogenerated, there exists a finite number of completely irreducible submodules $L_1, L_2, ..., L_n$ of M such that $I_P^M(N) = \bigcap_{i=1}^n L_i$ and $r_i N \subseteq L_i$ for some $r_i \in R - P$. Set $r = r_1 ... r_n$. Then $rN \subseteq I_P^M(N)$.

2.4. Theorem. Let $P \in Spec(R)$ and N be a submodule of an R-module M. Then we have the following.

- (a) If M is an Artinian R-module, then $I_P^M(I_P^M(N)) = I_P^M(N)$.
- (b) If M is an Artinian R-module, then $Hom_R(R_P, I_P^M(N)) = Hom_R(R_P, N)$.
- (c) $Ann_R(N) \subseteq S_P(Ann_R(N)) \subseteq Ann_R(I_P^M(N)).$
- (d) If M is an Artinian R-module, then $Ann_R(I_P^M(N)) = S_P(Ann_R(I_P^M(N)))$.

Proof. (a) Clearly, $I_P^M(I_P^M(N)) \subseteq I_P^M(N)$. To prove the opposite inclusion, let L be a completely irreducible submodule of M such that $I_P^M(I_P^M(N)) \subseteq L$. By Lemma 2.3, there exists $r \in R - P$ such that $rI_P^M(N) \subseteq I_P^M(I_P^M(N))$. Therefore, $rI_P^M(N) \subseteq L$. Again by Lemma 2.3, there exists $s \in R - P$ such that $sN \subseteq I_P^M(N)$. Hence $rsN \subseteq L$. It follows that $I_P^M(N) \subseteq L$, as required.

(b) By Lemma 2.3, there exists $r \in R - P$ such that $rN \subseteq I_P^M(N)$. Now $rN \subseteq I_P^M(N) \subseteq N$ implies that

$$Hom_R(R_P, rN) \subseteq Hom_R(R_P, I_P^M(N)) \subseteq Hom_R(R_P, N).$$

As $r \in R - P$, one can see that $Hom_R(R_P, rN) = Hom_R(R_P, N)$. Therefore,** $Hom_R(R_P, N) = Hom_R(R_P, I_P^M(N))$.

(c) Clearly, $Ann_R(N) \subseteq S_P(Ann_R(N))$. Now let $r \in S_P(Ann_R(N))$. Then there exists $s \in R - P$ such that $rs \in Ann_R(N)$ and so $rsN = (\mathbf{0})$. Thus for each $i \in I$, $rsN \subseteq L_i$, where $\{L_i\}_{i \in I}$ is the collection of all completely irreducible submodules of M. Hence $sN \subseteq (L_i :_M r)$ for each $i \in I$. This implies that $I_P^M(N) \subseteq (L_i :_M r)$ for each $i \in I$ because $(L_i :_M r)$ is a completely irreducible submodule of M by Lemma 2.1. Therefore, $rI_P^M(N) \subseteq \cap_{i \in I} L_i = (\mathbf{0})$. Thus $r \in Ann_R(I_P^M(N))$.

(d) Clearly, $Ann_R(I_P^M(N)) \subseteq S_P(Ann_R(I_P^M(N)))$. Now let $r \in S_P(Ann_R(I_P^M(N)))$. Then there exists $s \in R - P$ such that $rs \in Ann_R(I_P^M(N))$ and so $rsI_P^M(N) = (\mathbf{0})$. As M is an Artinian R-module, there exists $t \in R - P$ such that $tN \subseteq I_P^M(N)$ by Lemma 2.3. Therefore, $strN = (\mathbf{0})$. This implies that for each $i \in I$, $stN \subseteq (L_i :_M r)$, where $\{L_i\}_{i \in I}$ is the collection of all completely irreducible submodules of M. Hence $I_P^M(N) \subseteq (L_i :_M r)$. Therefore, $rI_P^M(N) \subseteq \cap_{i \in I} L_i = (\mathbf{0})$. Hence $r \in Ann_R(I_P^M(N))$, as required.

2.5. Definition. We say that a submodule N of an R-module M is cotorsion-free with respect to (w.r.t.) P if $I_P^M(N) = N$, where $P \in Spec(R)$.

2.6. Lemma. Let N be a submodule of an R-module M and $P \in Spec(R)$. If N is cotorsion-free w.r.t. P, then N is cotorsion-free w.r.t. Q for each $Q \in V(P)$.

Proof. Since $P \subseteq Q$, $I_P^M(N) \subseteq I_Q^M(N)$. Therefore, $N = I_P^M(N) \subseteq I_Q^M(N) \subseteq N$. Hence $N = I_P^M(N) = I_Q^M(N)$ for each $Q \in V(P)$.

A non-zero *R*-module *M* is said to be *secondary* if for each $a \in R$, the endomorphism $M \xrightarrow{a} M$ is either surjective or nilpotent (see [10]). Clearly, every second module is a secondary module.

2.7. Example. (1) If $P \in Spec(R)$, then every *P*-secondary submodule of an *R*-module *M* is cotorsion-free w.r.t. *P* by [4, 2.8].

(2) The \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ is cotorsion-free w.r.t. (0).

2.8. Corollary. Let $P \in Spec(R)$ and N be a submodule of an R-module M. If N is cotorsion-free w.r.t. P, then $Ann_R(I_P^M(N)) = S_P(Ann_R(I_P^M(N)))$.

Proof. The results follows from part (c) of Theorem 2.4 because $N = I_P^M(N)$.

The cosupport of an R-module M [12] is denoted by Cosupp(M) and it is defined by

 $Cosupp(M) = \{P \in Spec(R) | P \supseteq Ann_R(L) \text{ for some cocyclic}\}$

homomorphic image L of M.

2.9. Theorem. Let $P \in Spec(R)$ and N be a submodule of an Artinian R-module M. Then we have the following.

(1) $Ann_{R_P}(Hom_R(R_P, N)) = (Ann_R(I_P^M(N)))_P.$

(2) The following statements are equivalent.

- (a) $Hom_R(R_P, N) \neq (\mathbf{0}).$
- (b) $Ann_R(I_P^M(N)) \subseteq P$.
- (c) $I_P^M(N) \neq (\mathbf{0}).$
- (d) $P \in Cosupp_R(N)$.

Proof. (1) By Theorem 2.4 (b), $Hom_R(R_P, I_P^M(N)) = Hom_R(R_P, N)$. It is easy to see that

$$(Ann_R(I_P^M(N)))_P \subseteq Ann_{R_P}(Hom_R(R_P, I_P^M(N)))$$

To see the reverse inclusion, we note that $I_P^M(I_P^M(N)) = \phi(Hom_R(R_P, I_P^M(N)))$ by [2, 2.15], where $\phi: Hom_R(R_P, I_P^M(N)) \to I_P^M(N)$ is the natural homomorphism defined by $\phi(f) = f(1_{R_P})$ for any $f \in Hom_R(R_P, I_P^M(N))$. Now by Theorem 2.4 (a), $I_P^M(N) = \phi(Hom_R(R_P, I_P^M(N)))$. But always we have

$$Ann_R(Hom_R(R_P, I_P^M(N))) \subseteq Ann_R(\phi(Hom_R(R_P, I_P^M(N)))).$$

Hence $Ann_R(Hom_R(R_P, I_P^M(N))) \subseteq Ann_R(I_P^M(N))$. Therefore,

 $Ann_{R_P}(Hom_R(R_P, I_P^M(N))) \subseteq (Ann_R(I_P^M(N)))_P,$

as required.

(2) (a) \Leftrightarrow (d). By [12, 2.3], $Cosupp_R(N) = V(Ann_R(N))$ and by [11, p. 130], $Cos_R(N) = V(Ann_R(N))$, where $Cos_R(N) = \{P \in Spec(R) : Hom_R(R_P, N) \neq (\mathbf{0})\}$. Hence we get the equivalence (a) and (d).

 $(b) \Rightarrow (c)$. This is clear.

 $(a) \Rightarrow (b)$. $Hom_R(R_P, N) \neq (0) \Leftrightarrow Ann_{R_P}(Hom_R(R_P, N)) \neq R_P$. Thus by using part (1), we have

$$Hom_R(R_P, N) \neq (\mathbf{0}) \Leftrightarrow (Ann_R(I_P^M(N)))_P \neq R_P \Leftrightarrow Ann_R(I_P^M(N)) \subseteq P.$$

(c)
$$\Rightarrow$$
 (a). If $Hom_R(R_P, N) = (\mathbf{0})$, then $Hom_R(R_P, I_P^M(N)) = (\mathbf{0})$. Thus by [2, 2.15],
 $I_P^M(N) = I_P^M(I_P^M(N)) = \phi(Hom_R(R_P, I_P^M(N))) = (\mathbf{0}),$

where $\phi : Hom_R(R_P, I_P^M(N)) \to I_P^M(N)$ is the natural homomorphism defined by $\phi(f) = f(1_{R_P})$ for any $f \in Hom_R(R_P, I_P^M(N))$. This contradiction completes the proof. \Box

We need the following lemma.

2.10. Lemma. [7, 2.2] Let I be an ideal of R and $P \in Spec(R)$. Then the following statements are equivalent.

(a) $S_P(I)$ is a *P*-primary ideal of *R*.

(b)
$$\sqrt{S_P(I)} = P$$

(c) P is a minimal prime ideal of I.

2.11. Theorem. Let $P \in Spec(R)$ and N be a submodule of an Artinian R-module M. Then the following statements are equivalent.

- (a) $I_P^M(N)$ is a *P*-secondary submodule of *M*.
- (b) $Ann_R(I_P^M(N))$ is a *P*-primary ideal of *R*.
- (c) $\sqrt{Ann_R(I_P^M(N))} = P.$

In particular, $I_P^M(N)$ is *P*-second if and only if $Ann_R(I_P^M(N)) = P$.

Proof. $(a) \Rightarrow (b)$. This is clear.

 $(b) \Rightarrow (a)$. Since $Ann_R(I_P^M(N))$ is a *P*-primary ideal of *R* and $I_P^M(I_P^M(N)) = I_P^M(N)$ by Theorem 2.4 (a), $I_P^M(N)$ is a *P*-secondary submodule of *M* by [4, 2.2].

 $(b) \Rightarrow (c)$. This is elementary.

 $(c) \Rightarrow (b)$. Put $I = Ann_R(I_P^M(N))$. Then by Theorem 2.4 (d), $S_P(I) = I$. Now, we have $\sqrt{I} = P = \sqrt{S_P(I)}$ by the hypothesis. It follows from Lemma 2.10 that $S_P(I)$ is a *P*-primary ideal of *R*. Hence $I = S_P(I) = Ann_R(I_P^M(N))$ is a *P*-primary ideal of *R*, as required.

678

2.12. Definition. Let M be an R-module, $(\mathbf{0}) \neq N \leq M$ and $P \in Spec(R)$. We say the pair (N, P) satisfies property (**) if $S_P(Ann_R(N)) = Ann_R(I_P^M(N)) \neq R$. We say the module M satisfies property (**) if for every (0) $\neq N \leq M$ and $P \in V(Ann_R(N))$ the pair (N, P) satisfies property (**).

- (a) For every $N \leq M$ and $P \in Spec(R)$, if $Ann_R(N) \not\subseteq P$, then 2.13. Remark. $I_P^M(N) = (\mathbf{0})$ because there exists $r \in R - P$ such that $rN = (\mathbf{0})$. Hence for each $i \in I, rN \subseteq L_i$, where $\{L_i\}_{i \in I}$ is the set of all completely irreducible submodules of M. Therefore, $I_P^M(N) \subseteq \bigcap_{i \in I} L_i = (0)$. However, the converse is not true in general. As a counter example, take the \mathbb{Z} -module \mathbb{Z} as $M, N = \mathbb{Z}$, and P = (0).
 - (b) Let M be an R-module, $(\mathbf{0}) \neq N \leq M$ and $P \in Spec(R)$. If a pair (N, P)satisfies property (**), then by part (a), we have $Ann_R(N) \subseteq P$.
- (a) The \mathbb{Z} -module \mathbb{Z} does not satisfy property (**) because (\mathbb{Z} , 2.14. Example. (0)) does not satisfy this property.
 - (b) Let N be a non-zero submodule of an R-module M and let P be a prime ideal of R. If N is cotorsion-free w.r.t. P, then (N, P) satisfies property (**). This is because $I_P^M(N) = N \neq (\mathbf{0})$ implies that $Ann_R(I_P^M(N)) = Ann_R(N) \neq R$ and hence by Corollary 2.8, we have

 $Ann_R(N) = S_P(Ann_R(N)) = Ann_R(I_P^M(N)) \neq R.$

Moreover, not only (N, P), but also (N, Q) for each $Q \in V(P)$ satisfies property (**) by Lemma 2.6. In particular, every *P*-secondary submodule *S* of *M* and each $Q \in V(P) = V(Ann_R(S))$ satisfies property (**) by Example 2.7.

2.15. Theorem. Every non-zero Artinian *R*-module *M* satisfies property (**).

Proof. Let (0) $\neq N \leq M$ and $P \in V(Ann_R(N))$. By Lemma 2.3, there exists $t \in$ R-P such that $tN \subseteq I_P^M(N)$. Now let $r \in Ann_R(I_P^M(N))$. Then $rtN = (\mathbf{0})$. Hence $r \in S_P(Ann_R(N))$. Thus $R \neq Ann_R(I_P^M(N)) \subseteq S_P(Ann_R(N))$. The reverse inclusion follows from Theorem 2.4 (c). \square

2.16. Remark. Those modules M which satisfy property (**) are not necessarily Artinian. For example, every vector space W satisfies property (**) even it is of infinite dimensional. This is due to that every non-zero subspace U of W is (0)-second with $V(Ann_R(U)) = \{(0)\}.$

2.17. Corollary. Let M be an Artinian R-module, $(\mathbf{0}) \neq N \leq M$ and $P \in Spec(R)$.

- (1) The following statements are equivalent.
 - (a) $I_P^M(N)$ is a *P*-secondary submodule of *M*.
 - (b) $\sqrt{S_P(Ann_R(N))} = P.$
 - (c) P is a minimal prime ideal of $Ann_R(N)$.
- (2) $I_P^M(N)$ is a P-second submodule of M if and only if $S_P(Ann_R(N)) = P$.

In particular, if $Ann_R(N) = P$, then $I_P^M(N)$ is a P-second submodule of M.

Proof. The proof is straightforward from Theorem 2.11, Lemma 2.10, and Theorem 2.4.

3. Maximal second submodules

A submodule N of an R-module M is said to be a maximal second submodule of a submodule K of M, if $N \subseteq K$ and there does not exist a second submodule L of M such that $N \subset L \subset K$ (see [1]).

3.1. Lemma. Let R be an integral domain and let M be an Artinian non-zero R-module.

- (a) If $I_{(0)}^M(M) \neq (\mathbf{0})$, then $I_{(0)}^M(M)$ is a maximal (0)-second submodule of M and it contains every (0)-second submodule of M.
- (b) $I_{(0)}^M(M) = M$ if and only if M is a (0)-second submodule of M.

Proof. (a) This follows from [1, 2.9] and [3, 2.10].

(b) This follows from part (a) and [3, 2.10].

3.2. Theorem. Let R be an integral domain of dimension 1, M be a non-zero Artinian R-module and $(0) \neq P \in V(Ann_R(M))$. Then $I_P^M((0 :_M P))$ is a maximal second submodule of M if and only if $I_P^M((0 :_M P)) \not\subseteq I_{(0)}^M(M)$.

Proof. Since $(0) \subset P \subseteq Ann_R((0:_M P))$, dimR = 1, and R is a domain, it follows that if $Ann_R((0:_M P)) \neq R$, then $Ann_R((0:_M P)) = P$. Hence $I_P^M((0:_M P))$ is a second submodule of M by [1, 2.8].

Suppose that $I_P^M((0:_M P))$ is a maximal second submodule of M. Then there are two cases:

(i)
$$I_P^M((0:_M P)) = M$$
 and

(ii) $I_P^M((0:_M P)) \neq M.$

In case (i), M is a P-second submodule for $P \neq (0)$. Consequently, $I^M_{(0)}(M) \neq M$ by Lemma 3.1 (b). Hence $I^M_P((0:_M P)) \not\subseteq I^M_{(0)}(M)$.

In case (ii), $I_P^M((0:_M P))$ is a proper maximal second submodule of M. Hence M is not a second submodule, in particular, it is not a (0)-second submodule so that $I_{(0)}^M(M) \neq M$ by Lemma 3.1 (b) again. Thus if $I_{(0)}^M(M) \neq (\mathbf{0})$, then $I_{(0)}^M(M)$ is a proper maximal (0)-second submodule of M by Lemma 3.1 (a). Consequently, $I_P^M((0:_M P)) \not\subseteq I_{(0)}^M(M)$ by the maximality of $I_P^M((0:_M P))$ in M. On the other hand, if $I_{(0)}^M(M) = (\mathbf{0})$, then obviously, $I_P^M((0:_M P)) \not\subseteq I_{(0)}^M(M)$.

Conversely, suppose that $I_P^M((0;_M P)) \not\subseteq I_{(0)}^M(M)$. Then clearly $I_{(0)}^M(M) \neq M$. Thus by Lemma 3.1 (b), M is not a (0)-second submodule. To see that $I_P^M((0:_M P))$ is a maximal second submodule of M, let K be a second submodule of M such that $I_P^M((0:_M P)) \subseteq K \subseteq M$. Then

$$(0) \subseteq Ann_R(M) \subseteq Ann_R(K) \subseteq Ann_R(I_P^M((0:_M P))) = P.$$

. .

Since dim R = 1, the prime ideal $Ann_R(K) = (0)$ or P. If $Ann_R(K) = (0)$, then K is a (0)-second submodule. However, $K \neq M$ because M is not a (0)-second submodule as we have seen above. Since every proper (0)-second submodule contained in $I_{(0)}^M(M)$, we have that $I_P^M((0:_M P)) \subseteq K \subseteq I_{(0)}^M(M) \neq (0)$ which contradicts to $I_P^M((0:_M P)) \not\subseteq I_{(0)}^M(M)$. Therefore, $Ann_R(K) = P$, i.e., K is a P-second submodule. Thus $K = I_P^M(K) \subseteq I_P^M((0:_M P))$. Therefore, $K = I_P^M((0:_M P))$. This proves that $I_P^M((0:_M P))$ is a maximal second submodule of M.

3.3. Proposition. Let Y be a set of prime ideals of R which contains all the maximal ideals, M be an Artinian R-module, and N be a non-zero submodule of M. Then $N = \sum_{P \in Y} I_P^M(N)$.

Proof. Let L be a completely irreducible submodule of M such that $\sum_{P \in Y} I_P^M(N) \subseteq L$ so that $I_P^M(N) \subseteq L$ for every $P \in Y$. Hence by Lemma 2.3, we have $(L :_R N) \not\subseteq P$ for every $P \in Y$. This implies that $(L :_R N) \not\subseteq m$ for every maximal ideal $m \in Y$. This in turn implies that $(L :_R N) = R$ and hence $N \subseteq L$. Thus $N \subseteq \sum_{P \in Y} I_P^M(N)$. The reverse inclusion is clear.

680

3.4. Corollary. Let (R, m) be a local ring, M an Artinian R-module, and $(\mathbf{0}) \neq N \leq M$. Then N is cotorsion-free w.r.t. m.

Proof. Take $Y = \{m\}$ in Proposition 3.3. Then we have $I_m^M(N) = N$.

Let N be a submodule of an R-module M. The (second) socle of N is defined as the sum of all second submodules of M contained in N and it is denoted by soc(N) or sec(N) (see [1] and [5]). In case N does not contain any second submodule, the socle of N is defined to be (**0**).

3.5. Proposition. Let M be an Artinian R-module, $P \in Spec(R)$, and $(\mathbf{0}) \neq N \leq M$. If P is a minimal prime ideal of $Ann_R(N)$ and $I_P^M((0:_N P)) \neq (\mathbf{0})$, then $I_P^M((0:_N P))$ is a maximal second submodule of $K \leq M$ with $I_P^M((0:_N P)) \subseteq K \subseteq N$. In particular $I_P^M((0:_N P))$ is a maximal P-second submodule of sec(N).

Proof. Since $I_P^M((0:_N P)) \neq (\mathbf{0}), I_P^M((0:_N P))$ is a maximal *P*-second submodule of $(0:_N P)$ by [1, 2.9]. Now suppose that *K* is a submodule of *M* such that $I_P^M((0:_N P)) \subseteq K \subseteq N$ and *S* is a *Q*-second submodule of *M* such that $I_P^M((0:_N P)) \subseteq S \subseteq K \subseteq N$. Then as *P* is a minimal prime ideal of $Ann_R(N)$, we have Q = P. Thus $S \subseteq (0:_N P)$. It follows that $S = I_P^M((0:_N P))$ as desired. The last assertion follows from the fact that $I_P^M((0:_N P)) \subseteq Sec(N) \subseteq N$. So the proof is completed.

The following example shows that the condition $I_P^M((0:_N P)) \neq (\mathbf{0})$ in the statement of Proposition 3.5 can not be dropped.

3.6. Example. Consider $M = N = \mathbb{Z}_{p^{\infty}}$ as \mathbb{Z} -module, where p is a prime number. Let $q \neq p$ be an another prime number. Then clearly, $q\mathbb{Z}$ is a minimal prime ideal of $Ann_{\mathbb{Z}}(M)$ and $I^{M}_{(q)}((0:_{N}q\mathbb{Z})) = (\mathbf{0})$.

The next theorem gives an important information on the maximal second submodules of an Artinian R-modules.

3.7. Theorem. Let N be a non-zero submodule of an Artinian R-module M. Then every maximal second submodule of N must be of the form $I_P^M((0 :_N P))$ for some $P \in V(Ann_R(N))$.

Proof. Let S be a maximal P-second submodule of N. Then $S \subseteq N$ and $Ann_R(S) = P$ so that $S \subseteq (0:_N P)$. Therefore, $S = I_P^M(S) \subseteq I_P^M((0:_N P)) \subseteq N$ by [3, 2.10]. Since $P \in V(Ann_R(N)), I_P^M((0:_N P))$ is a P-second submodule, as we have seen in the proof of Proposition 3.5. Thus $S = I_P^M((0:_N P))$.

3.8. Corollary. Let M be an Artinian R-module and $(\mathbf{0}) \neq N \leq M$. Then $sec(N) = \sum_{P \in Y} I_P^M((0:_N P))$, where Y is a finite subset of $V(Ann_R(N))$.

Proof. By [1, 2.6, 2.2], there exists $n \in \mathbb{Z}$ such that $sec(N) = \sum_{i=1}^{n} S_i$, where for $1 \leq i \leq n, S_i$ is a maximal second submodule of N. Now the proof follows from Theorem 3.7. We remark that this corollary is also a direct consequence of [3, Proposition 2.7 (a)].

3.9. Corollary. Let N be a non-zero submodule of an Artinian R-module M. If $I_P^M((0:_N P)) \neq (\mathbf{0})$ and N is a P-secondary submodule of an R-module M for some $P \in Spec(R)$, then we have the following.

- (a) $I_P^M((0:_N P))$ is a maximal *P*-second submodule of sec(N).
- (b) If P is a maximal ideal of R, then $sec(N) = I_P^M((0:_N P))$ so that sec(N) is a P-second submodule of M.

Proof. (a) This follows from Proposition 3.5 because P is a minimal prime ideal of $Ann_R(N)$.

(b) By Corollary 3.8, $sec(N) = \sum_{Q \in V(Ann_R(N))} I_Q^M((0:_N Q))$. Since P is maximal and $\sqrt{Ann_R(N)} = P$, $V(Ann_R(N)) = \{P\}$. Thus $sec(N) = I_P^M((0:_N P))$ as required.

3.10. Corollary. Let *I* be an ideal of *R* and *M* be an Artinian *R*-module such that $(0:_M I) \neq (0)$. Then $sec((0:_M I)) = \sum_{P \in V(Ann_R((0:_M I)))} I_P^M((0:_M P))$.

Proof. Set $N = (0 :_M I)$. Then this follows from Corollary 3.8 since, $(0 :_{(0:_M I)} P) = (0 :_M P)$ for every $P \in V(Ann_R((0:_M I)))$.

3.11. Example. For any prime integer p, let $M = (\mathbb{Z}/p\mathbb{Z}) \times \mathbb{Z}_{p^{\infty}}$. Then M is an Artinian faithful \mathbb{Z} -module and $V(Ann_{\mathbb{Z}}(M)) = V((0)) = Spec(\mathbb{Z})$. Hence $sec(M) = \sum_{(q) \in V((0))} I^M_{(q)}((0:_M q\mathbb{Z}))$ by Corollary 3.10. Since $I^M_{(q)}((0:_M q\mathbb{Z})) = I^M_{(q)}(\mathbf{0}) = (\mathbf{0})$ for each prime number $p \neq q$,

$$sec(M) = I^{M}_{(0)}(M) + I^{M}_{(p)}((0:_{M} p\mathbb{Z}))$$
$$= ((0) \times \mathbb{Z}_{p^{\infty}}) + ((\mathbb{Z}/p\mathbb{Z}) \times < 1/p + \mathbb{Z} >)$$
$$= M.$$

Acknowledgments. We would like to thank the referees for the careful reading our manuscript and valuable comments.

References

- H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq. 19 (Spec 1)(2012), 1109-1116.
- [2] H. Ansari-Toroghy and F. Farshadifar, The Zariski topology on the second spectrum of a module, Algebra Colloq. 21 (4) (2014), 671-688.
- [3] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules (II), Mediterr. J. Math., 9 (2) (2012), 327-336.
- [4] H. Ansari-Toroghy, F. Farshadifar, S.S. Pourmortazavi, and F. Khaliphe On secondary modules, Int. J. Algebra, 6 (16) (2012), 769-774.
- [5] S. Ceken, M. Alkan, P.F. Smith, The dual notion of the prime radical of a module, J. Algebra. 392 (2013), 265-275.
- [6] L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in: Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121–145.
- [7] C.P. Lu, Saturations of submodules, Comm. Algebra **31** (6) (2003), 2655–2673.
- [8] R.L. McCasland and P.F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math 23 (3) (1993), 1041-1062.
- [9] R.L. McCasland and P.F. Smith, Generalised associated primes and radicals of submodules, Int. Electron. J. Algebra 4 (2008), 159-176.
- [10] I.G. Macdonald, Secondary representation of modules over a commutative ring, Sympos. Math. XI (1973), 23-43.
- [11] L. Melkersson and P. Schenzel, The co-localization of an Artinian module, Proc. Edinburgh Math. 38 (2) (1995), 121-131.
- [12] S. Yassemi, Coassociated primes, Comm. Algebra. 23 (1995), 1473-1498.
- [13] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), 273–278.
- [14] S. Yassemi, The dual notion of the cyclic modules, Kobe. J. Math. 15 (1998), 41-46.

682