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Abstract
This paper defines generalizations of paracompactness on generalized
topological spaces (GTS) and establishes that paracompactness, near
paracompactness and several other paracompact-like properties follow
as special cases, by choosing the GT suitably. Also, the generalizations
of locally finite and closure preserving collections in a GTS, have been
studied, pointing out their interrelations. Finally, it has been observed
that the celebrated theorem of E.Michael in the context of regular para-
compact spaces follow as a corollary to a result achieved in this paper.
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1. Introduction & Preliminaries
Paracompactness [2] is a very natural and perhaps the most successful generalization

of compactness. Various eminent mathematicians of different times have studied several
stronger as well as weaker forms of paracompactness, the most widely investigated one
being near paracompactness [5]. The main purpose of this paper is to define a gener-
alization of paracompactness on generalized topological spaces (GTS) which is a wider
framework than topological spaces; and establish that by choosing the GT suitably para-
compactness as well as near paracompactness follow as special cases. Also, it has been
observed that by suitably choosing the generalized topology one may think of various
paracompact-like spaces other than the two mentioned above.
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In section 2, we introduce a closure operator γµ on a GTS (X,µ) and find certain rela-
tionships among the generalized closure operator on (X,µ) and the newly defined one.
We have also generalized and studied local finite and closure preserving collections of sets
with respect to the GT µ and the operator γµ.
In section 3, we define and investigate generalization of paracompactness which we have
called µ-paracompactness and gµ-paracompactness. The celebrated theorem of E.Michael
in the context of regular paracompact spaces follow as a corollary to a result achieved in
this paper for more general setting what we have called γµ-regular gµ-paracompact GTS.
Let X be a nonempty set and µ be a collection of subsets of X (i.e. µ ⊆ P(X)). µ is
called a generalized topology (briefly GT) [1] on X iff φ ∈ µ and Gλ ∈ µ for λ ∈ Λ(6= φ)
implies ∪λ∈ΛGλ ∈ µ. The pair (X,µ) is called a generalized topological space (briefly
GTS). The elements of µ are called µ-open sets and their complements are called µ-closed
sets. The generalized closure of a subset S of X, denoted by cµ(S), is the intersection of
all µ-closed sets containing S. The set of all µ-open sets containing an element x ∈ X
is denoted by µ(x). The set of all open, δ-open [7] and θ-open [7], subsets of X are
denoted respectively by τ(X) ( or τ), ∆(X) (or ∆) and Θ(X) (or Θ). In what follows
we shall denote the set of all natural numbers, integers and real numbers respectively by
N,Z and R.

2. Generalized local finite and Generalized closure preserving col-
lection
Before generalizing locally finite and closure preserving collections we introduce a new

operater on a GTS (X,µ) and show that such operator actually give rise to a topology
on X.

2.1. Definition. Let (X,µ) be a GTS. Then for each x ∈ X we define
µ∗(x) = {∩ni=1Wi : Wi ∈ µ(x), ∀ i = 1, 2, · · · , n;n ∈ N}

2.1. Remark. For any x ∈ X, µ(x) ⊆ µ∗(x) and µ∗(x) is closed under finite intersection.

2.2. Definition. Let (X,µ) be a GTS. Then γµ-closure of a subset S of X, denoted by
γµ(S) is defined by
γµ(S) = {x ∈ X : V ∩ S 6= φ for all V ∈ µ∗(x)}

The table below shows that how γµ-closure operator unifies several closure type oper-
ator.

µ γµ
P (X) identity operator
τ closure operator
∆ δ-closure operator [7]
Θ θ-closure operator [7]

In a GTS (X,µ) γµ-closure operator satisfies the following properties (i) γµ(φ) = φ, (ii)
S ⊆ X ⇒ S ⊆ γµ(S) ⊆ cµ(S) and γµ(γµ(S)) = γµ(S), (iii) A ⊆ B ⊆ X ⇒ γµ(A) ⊆
γµ(B) and γµ(A∪B) = γµ(A)∪ γµ(B). Clearly γµ is a closure operator on X and hence
give rise to a topology on X, denoted by µ∗ and given by µ∗ = {S ⊆ X : γµ(X\S) =
X\S}. The elements of µ∗ are called µ∗-open sets and the complements are called µ∗-
closed sets. In fact for every x ∈ X, W ∈ µ∗(x) is a -open set. From now we may call
the elements of µ∗(x) the open neighbourhoods of x.
In particular, if µ itself is a topology on X then µ = µ∗. Otherwise µ∗ is finer than GT
µ.
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2.1. Example. Let us consider the set X = {a, b, c}. Then µ = {φ, {a, b}, {a, c}, X} is
clearly a GT on X. Let S = {b, c}. Now for any V ∈ µ(a), V ∩S 6= φ i.e. a ∈ cµ(S), but
a /∈ S. So cµ(S) 6= S. Therefore S is not a µ-closed set. Again if we take V1 = {a, b} and
V2 = {a, c} then (V1 ∩ V2) ∩ S = φ. i.e. a /∈ γµ(S). This implies that S = γµ(S) (using
S ⊆ γµ(S) and X = {a, b, c}). Therefore S is a µ∗-closed set.

With the help of µ-open and µ∗-open sets we generalize the known concepts of local
finite and closure preserving collections.

2.3. Definition. A family U = {Uα : α ∈ A} of sets in a GTS (X,µ) is called
(i) µ-locally finite (resp. gµ-locally finite) if for each x ∈ X there exists V ∈ µ(x) (resp.
V ∈ µ∗(x)) such that V intersects at most finitely many members of U i.e. V ∩ Uα 6= φ
for at most finitely many indices α.
(ii) µ-closure preserving (resp. γµ-closure preserving ) if for any subcollection V of U ,
cµ[∪{V : V ∈ V}] = ∪{cµV : V ∈ V} (resp. γµ[∪{V : V ∈ V}] = ∪{γµV : V ∈ V}).

In general, every µ-locally finite family on a GTS (X,µ) is a gµ-locally finite family
but not conversely.

2.2. Example. Let X = Z. Then µ = {A ⊆ Z : A is infinite } ∪ {φ} forms a GT on X.
Let us construct In = {x ∈ X : x ≥ n}, n ∈ N and Jn = {x ∈ X : x ≤ −n}, n ∈ N. Now
consider the family U = {In} ∪ {Jn}. Then for any x ∈ X,V ∈ µ(x) intersects infinitely
many members of U. Therefore U is not a µ-locally finite family. Again for any x ∈ X
if we take V1 = {y ∈ X : y ≥ x} and V2 = {y ∈ X : y ≤ x} then V1, V2 ∈ µ(x) and
V1 ∩V2(= {x}) ∈ µ∗(x). If x > 0 then V1 ∩V2 intersects only I1, I2, · · · , Ix. If x < 0 then
V1 ∩ V2 intersects only J1, J2, · · · , Jx. If x = 0 then V1 ∩ V2 intersects no members of U.
It follows that U is a gµ-locally finite family.

But when we take µ as τ then both coincide with locally finite [2]. Moreover, when we
take µ as τ then both of µ-closure preserving and γµ-closure preserving property coincide
with closure preserving.

2.1. Theorem. If U = {Uα : α ∈ A} is a µ-locally finite (resp. gµ-locally finite) family
on a GTS (X,µ). Then
(i) any subcollection of U is also µ-locally finite (resp.gµ-locally finite).
(ii) cµU = {cµ(U) : U ∈ U} (resp. γµU = {γµ(U) : U ∈ U}) is also µ-locally finite (resp.
gµ-locally finite).

Proof. (i) Straightforward.
(ii) Let x ∈ X. Then since U = {Uα : α ∈ A} is µ-locally finite (resp. gµ-locally finite),
there exists V ∈ µ(x) (resp. V ∈ µ∗(x)) such that V ∩ Uα 6= φ for at most finitely many
α’s. Now we show that V ∩ cµ(Uα) 6= φ (resp. V ∩γµ(Uα) 6= φ) for at most finitely many
α’s. Let y ∈ V , then V ∈ µ(y) (resp. V ∈ µ∗(y)) is such that V intersects at most finitely
many Uα’s. From the definition of cµ(Uα) (resp. γµ(Uα)), y ∈ cµ(Uα) (resp. γµ(Uα)) for
at most finitely many Uα’s. This implies that V ∩ cµ(Uα) 6= φ (resp. V ∩ γµ(Uα) 6= φ)
for at most finitely many α’s, as desired. �

2.2. Theorem. If U = {Uα : α ∈ A} is a gµ-locally finite family on a GTS (X,µ), then
U is γµ-closure preserving.

Proof. Let B be any subcollection of U. We show that γµ[∪{B : B ∈ B}] = ∪{γµ(B) :
B ∈ B}. Since γµ(B) ⊆ γµ[∪{B : B ∈ B}] for all B ∈ B, ∪{γµ(B) : B ∈ B} ⊆ γµ[∪{B :
B ∈ B}]. Next let x /∈ ∪{γµ(B) : B ∈ B} Since B is a subcollection of a gµ-locally finite
collection U, B is also gµ-locally finite and so there exists V ∈ µ∗(x) such that V intersects
at most finitely many members of B, say B1, B2, · · · , Bn. Again since x /∈ ∪{γµ(B) : B ∈
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B}, x /∈ γµ(Bi) for i = 1, 2, · · · , n and so there exist Wi ∈ µ∗(x) for i = 1, 2, · · · , n such
that Wi ∩Bi = φ. Let W = V ∩W1 ∩W2 ∩ · · · ∩Wn. Since V,W1,W2, · · · ,Wn ∈ µ∗(x),
W ∈ µ∗(x). So we have W ∈ µ∗(x) such that W ∩ [∪{B : B ∈ B}] = φ. This implies that
x /∈ γµ[∪{B : B ∈ B}]. Therefore γµ[∪{B : B ∈ B}] ⊆ ∪{γµ(B) : B ∈ B}, consequently
γµ[∪{B : B ∈ B}] = ∪{γµ(B) : B ∈ B}. �

2.1. Corollary. The arbitrary union of µ∗-closed sets from a gµ-locally finite family in
a GTS (X,µ) is also µ∗-closed.

Let (X,µ) be a GTS. Then a family U = {Uα : α ∈ Λ} on X is said to be a covering of
X if X = ∪α∈ΛUα. Moreover, if each Uα is µ-open (resp. µ-closed, µ∗-open, µ∗-closed)
then U is called µ-open (resp. µ-closed, µ∗-open, µ∗-closed) covering of X.
Let U and V be two covering of X, then V is said to be subcovering of U if each member
of V is also a member of U. Moreover if V contains finite (resp. countable) number of
members, then V is called finite (resp. countable) subcovering of U.
Let (X,µ) be a GTS. Then a family U = {Uα : α ∈ Λ} on X is said to be a point finite
covering of X if for each x ∈ X, there exists at most finitely many indices α ∈ Λ such
that x ∈ Aα. Moreover, if each member of U is µ-open then U is called point finite µ-open
covering of X.
Let (X,µ) be a GTS. Let U and V be two covering of X, then V is said to refine (or be
a refinement of ) U if for each V ∈ V there exists U ∈ U such that V ⊆ U . We write
V ≺ U. If W ≺ U and W ≺ V then W is called common refinement of U and V.

2.2. Remark. Each subcovering of a covering is a refinement of that covering.

2.3. Theorem. Let (X,µ) be a GTS. Let A = {Aα : α ∈ A} and B = {Bβ : β ∈ B} be
two covering of X. Then

(1) A ∧B = {Aα ∩Bβ : (α, β) ∈ A×B} is a covering of X, refining both A and B.
Furthermore if both A and B are µ-locally finite (resp.gµ-locally finite), so also
is A ∧ B.

(2) any common refinement of A and B is also a refinement of A ∧ B.

Proof. Straightforward. �

2.4. Definition. Let (X,µ) be a GTS. A refinement {Bβ : β ∈ B} of {Aα : α ∈ A} is
called a precise refinement if A = B and Bα ⊆ Aα, for each α.

2.4. Theorem. Let (X,µ) be a GTS. If a covering {Aα : α ∈ A} of X has a µ-locally
finite (resp. gµ-locally finite) refinement {Bβ : β ∈ B} that covers X, then it has a
precise µ-locally finite (resp. gµ-locally finite) refinement {Cα : α ∈ A} that covers X.
Furthermore, if each Bβ is µ-open then each Cα can be chosen to be µ-open also.

Proof. Define a map φ : B → A by assigning each β ∈ B to some α ∈ A such that
Bβ ⊆ Aα. For each α, let Cα = ∪{Bβ : φ(β) = α}, some Cα may be empty. Clearly
Cα ⊆ Aα for each α i.e {Cα : α ∈ A} is a refinement of {Aα : α ∈ A}. Also since
{Bβ : β ∈ B} is a covering of X, each Bβ appears somewhere {Cα : α ∈ A} and so
{Cα : α ∈ A} is a covering of X. Again since {Bβ : β ∈ B} is µ-locally finite (resp.
gµ-locally finite), for each x ∈ X there exists V ∈ µ(x) (resp.V ∈ µ∗(x)) such that V
intersects at most finitely many Bβ ’s and consequently finitely many Cα’s. This implies
that {Cα : α ∈ A} is µ-locally finite (resp. gµ-locally finite). Hence the first part follows.
For the second part, if each Bβ is µ-open then clearly each Cα is also µ-open. �

2.3. Remark. In the above theorem µ-locally finite (resp. gµ-locally finite) can be
replaced by point finite.
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2.5. Theorem. Let {Eα : α ∈ Λ} be any family of sets on a GTS (X,µ) and {Bβ : β ∈
B} be any gµ-locally finite µ∗-closed covering of X. If each Bβ intersects at most finitely
many sets Eα, then each Eα is contained in a µ∗-open set U(Eα) such that the family
{U(Eα) : α ∈ Λ} is gµ-locally finite.

Proof. For each α define U(Eα) = X\ ∪ {Bβ : Bβ ∩ Eα = φ}. Since, {Bβ}is gµ-locally
finite family of µ∗-closed sets U(Eα) is µ∗-open (since, ∪{Bβ : Bβ ∩ Eα = φ} is µ∗-
closed, by corollary 2.1). Also Eα ⊆ U(Eα) (since, x /∈ U(Eα) ⇒ ∃ x ∈ Bβ0 for some
β0 ∈ B such that Bβ0 ∩ Eα = φ. Again x ∈ Bβ0 and Bβ0 ∩ Eα = φ ⇒ x /∈ Eα. i.e.
x /∈ U(Eα)⇒ x /∈ Eα).
We now prove that {U(Eα) : α ∈ A} is gµ-locally finite. Since, {Bβ : β ∈ B} is gµ-
locally finite, for any given x ∈ X there exists V ∈ µ∗(x) such that V intersects at most
finitely many Bβ ’s say Bβ1 , Bβ2 , ..., Bβn . Obviously V contained in ∪ni=1Bβi , as {Bβ}
forms a covering of X. Since Bβ ∩ U(Eα) 6= φ iff Bβ ∩ Eα 6= φ ( since, Bβ ∩ Eα 6= φ iff
Bβ * ∪{Bβ : Bβ ∩Eα = φ} iff Bβ ∩ (X\∪ {Bβ : Bβ ∩Eα = φ}) 6= φ iff Bβ ∩U(Eα) 6= φ)
and each Bβi , i = 1, 2, · · · , n intersects at most finitely many Eα, ∪ni=1Bβi intersects
at most finitely many U(Eα). Thus we have V ∈ µ∗(x) such that V intersects at most
finitely many U(Eα) (since,V ⊆ ∪ni=1Bβi) and so {U(Eα) : α ∈ Λ} is gµ-locally finite. �

2.2. Corollary. Let {Eα : α ∈ Λ} be any family of sets on a GTS (X,µ) with µ = µ∗

and {Bβ : β ∈ B} be any µ-locally finite µ-closed covering of X. If each Bβ intersects at
most finitely many sets Eα, then each Eα is contained in a µ-open set U(Eα) such that
the family {U(Eα) : α ∈ Λ} is µ-locally finite.

3. µ-paracompactness and gµ-paracompactness
In this section we define generalized paracompactness to unify the existing concept of

paracompact and nearly paracompact spaces. We see that many more paracompact-like
properties may also be obtained by choosing the generalized topology suitably.

3.1. Definition. A GTS (X,µ) is said to be µ-paracompact (resp. gµ-paracompact) if
every µ-open covering of X has a µ-locally finite (resp. gµ-locally finite) µ-open refine-
ment that covers X.

3.1. Remark. gµ-paracompactness is a generalization of µ-paracompactness, since every
µ-paracompact GTS is a gµ-paracompact GTS, but not conversely in general. If we take
µ as τ then both µ-paracompact and gµ-paracompact coincide with paracompact. If we
take µ as ∆ then both coincide with nearly paracompact.

3.2. Definition. A GTS (X,µ) is said to be µ-compact [6] (resp. µ-Lindelöf) if every
µ-open covering of X has a finite (resp. countable ) subcovering.

3.2. Remark. In general, every µ-compact GTS (X,µ) is µ-Lindelöf , but not con-
versely.

3.1. Theorem. Let (X,µ) be a GTS. If (X,µ) is µ-compact then it is also µ-paracompact.

Proof. Straightforward. �

The converse of above theorem is not true in general, which follows from the following
example:

3.1. Example. Let X = Z, µ= discrete topology on X. then {{n} : n ∈ Z} is a µ-open
covering of X which has no finite subcover but every µ-open cover of X has a µ-locally
finite µ-open refinement {{n} : n ∈ Z} that covers X (since, {{n} : n ∈ Z} is a refinment
of every µ-open cover of X).
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3.3. Definition. [3] Let (X,µ) be a GTS. Then (X,µ) is said to be µ-regular if for any
x ∈ X and a µ-closed set F not containing x, there exist two disjoint µ-open sets U and
V such that x ∈ U and F ⊆ V .

3.4. Definition. Let (X,µ) be a GTS. Then (X,µ) is said to be γµ-regular if for any
x ∈ X and a µ-open set U containing x, there exists a µ-open set V contaning x such
that γµ(V ) ⊆ U .

3.2. Theorem. Let (X,µ) be a GTS. If (X,µ) is µ-regular then it is also γµ-regular.

Proof. Straightforward. �

The converse is not neccesarily true. This is observed in the following example:

3.2. Example. Let X = {a, b, c} and µ = {φ, {a, b}, {b, c}, {c, a}, X}. Then µ be a GT
on X. Here cµ(U) = X and γµ(U) = U for every µ-open set containing x ∈ X. It is easy
to check that X is γµ-regular but not µ-regular.

3.3. Theorem. For any γµ-regular GTS (X,µ), (1)⇒ (2)⇒ (3)⇒ (4) hold, where
(1) (X,µ) is gµ-paracompact.
(2) Every µ-open cover of X has a µ-open refinement that covers X and can be decom-
posed into at most countable collection of gµ-locally finite families of µ-open sets.
(3) Each µ-open cover of X has a gµ-locally finite refinement that cover X.
(4) Each µ-open cover of X has a µ∗-closed gµ-locally finite refinement that covers X.

Proof. (1)⇒ (2) Straightforward.
(2)⇒ (3) Let {Uβ : β ∈ B} be any µ-open covering of X. By (2) there exists an µ-open
covering {Vn,α : (n, α) ∈ N × A}, which is a refinement of {Uβ : β ∈ B}, where for each
n0 ∈ N, the family {Vn0,α : α ∈ A} is gµ-locally finite (not necessarily a covering). For
each n ∈ N, let Wn = ∪αVn,α, then {Wn, n ∈ N} is a µ-open covering of X. For each
i ∈ N define Ai = Wi\ ∪i−1

j=1 Wj . We now show that {Ai} is a gµ-locally finite covering
of X. For each x ∈ X, let Wi0 is the first member of {Wn, n ∈ N} such that x ∈ Wi0 .
Then it is clear that x ∈ Ai0 , hence {Ai} is a covering of X. Again Wi0 ∩ Ai = φ for
each i > i0 i.e. we have Wi0 ∈ µ(x) ⊆ µ∗(x) such that Wi0 intersects at most finitely
many members of {Ai}. Hence {Ai} is gµ-locally finite.
We now show that K = {An ∩ Vn,α : (n, α) ∈ N × A} is gµ-locally finite refinement of
{Uβ : β ∈ B} that covers X. For any An ∩ Vn,α ∈ K, since {Vn,α : (n, α) ∈ N × A} is
a refinement of {Uβ : β ∈ B} there exists Uβ such that An ∩ Vn,α ⊆ Vn,α ⊆ Uβ . Hence
K is a refinement of {Uβ : β ∈ B}. Again K is obviously a covering of X (since for
x ∈ X, ∃ An such that x ∈ An ⇒ x ∈ Wn = ∪αVn,α ⇒ x ∈ Vn,α0 for some α0 ∈ A i.e.
x ∈ An ∩ Vn,α0 for some (n, α0) ∈ N × A ). Next let x ∈ X. Then since {An : n ∈ N}
is gµ-locally finite, there exists W ∈ µ∗(x) such that W intersects at most finitely many
member of {An : n ∈ N} say, An1 , An2 , · · · , Anr . Again since {Vnj ,α : α ∈ A}, ( for
j = 1, 2, · · · , r) is gµ-locally finite we have Wnj ∈ µ∗(x), ( for j = 1, 2, · · · , r) such that
Wnj intersects atmost finitely many Vnj ,α’s. Let V = W ∩Wn1 ∩Wn2 · · · ∩Wnr then
since W,Wnj ∈ µ∗(x), V ∈ µ∗(x). So we have V ∈ µ∗(x) such that V intersects at
most finitely many member of K. Hence K is gµ-locally finite. Thus K is the required
gµ-locally finite refinement of {Uβ : β ∈ B} that covers X.
(3) ⇒ (4) Let U be a µ-open covering of X. With each y ∈ X, associate a definite
Uy ∈ U containing it and then since X is γµ-regular, there exists a µ-open set Vy such
that y ∈ Vy ⊆ γµ(Vy) ⊆ Uy. The family {Vy : y ∈ X} is then a µ-open covering and by
(2) and theorem 2.4 it has a precise gµ-locally finite refinement {Ay : y ∈ X}. Since
{γµ(Ay) : y ∈ X} is also gµ-locally finite (by theorem 2.1) and γµ(Ay) ⊆ γµ(Vy) ⊆ Uy
for each y, {γµ(Ay) : y ∈ X} is the desired refinement. �
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3.3. Remark. For a gµ-regular GTS (X,µ), if we take µ as µ∗ then all the conditions (1)
- (4) stated in the above theorem become equivalent. We have already proved (1)⇒(2),
(2)⇒(3) and (3)⇒(4). So if we show (4)⇒(1) then our purpose will be fulfilled.

3.4. Theorem. For any γµ-regular GTS (X,µ) with µ = µ∗, if each µ-open cover of X
has a µ∗-closed gµ-locally finite refinement that covers X then (X,µ) is gµ-paracompact.

Proof. Let U be any µ-open covering of X and ξ be any µ∗-closed gµ-locally finite re-
finement of it. Since µ = µ∗, ξ is a µ-closed µ-locally finite refinement. Then for each
x ∈ X, there exists a µ-open set Vx containing x such that Vx intersects at most finitely
many sets E of ξ. Using the µ-open covering {Vx : x ∈ X}, by given hypothesis we get a
µ∗-closed gµ-locally finite and hence a µ-closed µ-locally finite refinement B that covers
X. Since each B of B intersects at most finitely many sets E of ξ it follows from that
we can enlarge each E to an µ-open set G(E) such that {G(E)} is µ-locally finite (by
corollary 2.2). Associating with each E a single set U(E) ∈ U containing E, it is evident
that {G(E) ∩ U(E)} is an µ-open µ-locally finite refiinement of U. �

If we consider a regular topological space (X, τ) and choose in particular the GT as
τ then from theorem 3.3 and theorem 3.4 we obtain E.Michael’s theorem. On the
other hand, if µ = δ-open sets of (X, τ) then we obtain a characterization parallel to
E.Michael’s theorem for almost regular nearly paracompact spaces [4].
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