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Abstract
In this paper, we extend the generalized Caristi’s fixed point theorem proved by Bollen-
bacher and Hicks to p-orbitally complete fuzzy metric spaces by considering the fuzzy
metric spaces in the sense of George and Veeramani. We also give some illustrative exam-
ples that support our results.
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1. Introduction
In 1976, Caristi [8] proved the following fixed point theorem on a complete metric space,

which is one of the most important generalization of famous Banach contraction principle
and is equivalent the Ekeland’s variational principle [13].

Let T is a self-mapping of a complete metric space (X, d) such that there is a lower
semi continuous function ϕ from X into [0,∞) satisfying

d(x, Tx) ≤ ϕ(x)− ϕ(Tx)
for all x ∈ X, then T has a fixed point.

In this theorem, saying that ϕ is lower semi continuous at x if for any sequence {xn} ⊂
X, we have lim xn = x implies ϕ(x) ≤ lim inf ϕ(xn).

Several authors have obtained various extensions and generalizations of Caristi’s the-
orem by considering Caristi type mappings on many different spaces. For example,
[1–7,9, 23–25,27,28,30,31,33,38,40], and others.

In this paper, we extend the results in [7] to fuzzy metric spaces.
Several notions of fuzzy metric spaces have been introduced and discussed in different

directions by many mathematicians, see [10, 14, 29, 34, 39]. In particular, Kramosil and
Michalek [34] introduced and studied the notion of fuzzy metric space which is closely
related to a class of probabilistic metric spaces. In [15,17] George and Veeramani modified
the concept of fuzzy metric space of Kramosil and Michalek, and obtained a Hausdorff
and first countable topology on the modified fuzzy metric space. In [16,20], it was proved
that the topology induced by a fuzzy metric space in George and Veeramani’s sense is
metrizable. Grabiec [18] obtained a fuzzy version of the Banach contraction principle
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in fuzzy metric spaces in Kramosil and Michalek’s sense, and since then many author
[11,12,22,26,32,35,41,42] have proved fixed point theorems in fuzzy metric spaces in the
sense of Kramosil and Michalek and George and Veeramani, using one of the two different
types of completeness in Grabiec’s sense [18] or George and Veeramani’s sense [15].

In [36] Miheţ defined a concept weaker than convergence called p-convergence and
proved a fixed point theorem for fuzzy contractive mappings. Then, in [19] Gregori et
al. introduced the concept of p-Cauchy sequence and showed that p-Cauchy sequence and
Cauchy sequence are two different concepts even in principal fuzzy metric spaces and they
also defined the concept p-completeness.

In this paper, we consider (X,M, ∗) fuzzy metric space in George and Veeramani’s sense
and prove some fixed point theorems for Caristi type mappings orbitally p-complete fuzzy
metric spaces.

2. Preliminaries
In this section, we give some known basic notion of fuzzy metric space in the sense

of George and Veeramani. Throughout this paper, we denote by N the set of positive
integers.

Definition 2.1 ([39]). A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm
if satisfies the following conditions:

(i) ∗ is associative and commutative,
(ii) ∗ is continuous,
(iii) a ∗ 1 = a for every a ∈ [0, 1],
(iv) a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.2 ([15]). The 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an
arbitrary set, ∗ is a continuous t-norm andM is a fuzzy set on X×X× (0,+∞) satisfying
the following conditions, for all x, y, z ∈ X and t, s > 0:

(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 iff x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(v) M(x, y, ·) : (0,+∞)→ (0, 1] is continuous.
If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) is a fuzzy metric on X. If

we replace (iv) by
(vi) M(x, y, t) ∗M(y, z, s) ≤M(x, z,max{t, s}),

then 3-tuple (X,M, ∗) is called a non-Archimedean fuzzy metric space. Since (vi) implies
(iv) then each non-Archimedean fuzzy metric space is a fuzzy metric space.

Example 2.3. Let (X, d) be a metric space. Denote by a.b the usual multiplication for
all a, b ∈ [0, 1], and let Md be the function defined on X ×X × (0,+∞) by

Md(x, y, t) = t

t+ d(x, y) .

Then (X,Md, ·) is a fuzzy metric space called standard fuzzy metric space and (Md, ·) is
called the standard fuzzy metric of d (see [15]).

George and Veeramani proved in [15] that ever fuzzy metric (M, ∗) on X generates a
topology τM on X which has as a base the family of sets of the form

{B(x, r, t) : x ∈ X, 0 < r < 1, t > 0},
where

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}
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for all r ∈ (0, 1) and t > 0. They proved also that (X, τM ) is a Hausdorff first countable
topological space.

Definition 2.4 ([21]). A fuzzy metric M on X is said to be stationary if M does not
depend on t, i.e. if for each x, y ∈ X, the function Mx,y(t) = M(x, y, t) is constant. In
this case we write M(x, y) instead of M(x, y, t).

Theorem 2.5 ([15]). A sequence {xn} in a fuzzy metric space (X,M, ∗) converges to x
if and only if M(xn, x, t)→ 1 as n→ +∞.

The following definition was given by Miheţ.

Definition 2.6 ([36]). A sequence {xn} in a fuzzy metric space (X,M, ∗) is called p-
convergent to x0 ∈ X (we write xn →p x0) if limnM(xn, x0, t0) = 1 for some t0 > 0.

If {xn} is p-convergent to x0, then
(1) {xn} in X has at most one limit.
(2) Every subsequence of {xn} is also convergent and has the same limit as the whole

sequence, see [36].
Note that {xn} is convergent to x0 if and only if {xn} is p-convergent to x0 for all t > 0,

see [19].
In [36] the author gave an example that there exist p-convergent but not convergent

sequences.

Definition 2.7 ([18]). A sequence {xn} in a fuzzy metric space (X,M, ∗) is G-Cauchy
sequence iff limn→∞M(xn+p, xn, t) = 1 for all t > 0 and p ∈ N. A fuzzy metric space
(X,M, ∗) is G-complete if every G-Cauchy sequence is convergent in X.

Definition 2.8 ([15]). A sequence {xn} in a fuzzy metric space (X,M, ∗) is Cauchy
sequence iff for each ε ∈ (0, 1) and each t > 0, there exists n0 ∈ N such thatM(xn, xm, t) >
1−ε for all n,m ≥ n0. A fuzzy metric space (X,M, ∗) is complete if every Cauchy sequence
is convergent in X.

In [19] Gregori et al. gave the following definition of Cauchyness and completeness in a
natural way from the p-convergence concept.

Definition 2.9 ([19]). A sequence {xn} in a fuzzy metric space (X,M, ∗) is called p-
Cauchy if there exists t0 > 0 such that for each ε ∈ (0, 1) there exists n0 ∈ N such that
M(xn, xm, t0) > 1 − ε for all n,m ≥ n0, or equivalently limn,m→∞M(xn, xm, t0) = 1 for
some t0 > 0. A fuzzy metric space (X,M, ∗) is p-complete if every p-Cauchy sequence in
X is p-convergent to some point of X.

Note that {xn} is a Cauchy sequence if and only if {xn} is p-Cauchy for all t > 0 and,
obviously, p-convergent sequences are p-Cauchy.
p-completeness and completeness are equivalent concepts in stationary fuzzy metrics,

see [19].

Remark 2.10 ([19]). Let (X,Md, ∗) be a standard fuzzy metric space as in Example 2.3.
Then (X,Md, ∗) is p-complete if and only if the metric space (X, d) is complete.

Definition 2.11 ([12]). Let (X,M, ∗) be a fuzzy metric space. The fuzzy metric M is
triangular if it satisfies the condition

1
M(x, y, t) − 1 ≤ 1

M(x, z, t) − 1 + 1
M(z, y, t) − 1

for every x, y, z ∈ X and every t > 0.

Note that every standard fuzzy metric (Md, ·) is triangular.
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Theorem 2.12 ([37]). Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous
function on X ×X × (0,+∞).

Definition 2.13. Let (X,M, ∗) be a fuzzy metric space and T : X → X a mapping. The
set OT (x,∞) = {x, Tx, T 2x, . . . } is called the orbit of x. If for an x ∈ X, every p-Cauchy
sequence in OT (x,∞) is p-converges to a point in X, then the fuzzy metric space (X,M, ∗)
is said to be (x, T )-orbitally p-complete.

Definition 2.14. Let (X,M, ∗) be a fuzzy metric space and T : X → X a mapping. A
real-valued function G : X × (0,+∞)→ [0,∞) is said to be (x, T )- orbitally p-weak lower
semi-continuous (p-w.l.s.c.) at u iff {xn} is a sequence in OT (x,∞) and

xn →p u implies G(u, t0) ≤ lim
n→∞

supG(xn, t0)

for some t0 > 0. That is, G(., t0) is p-w.l.s.c on X in Ćirić’s sense, see [9].

3. Main results
In this section, we state and prove our main results in orbitally p-complete fuzzy metric

spaces. Now, we give the first main result as follows.

Theorem 3.1. Let (X,M, ∗) be a fuzzy metric space with M is triangular, T : X → X
and Φ : X × (0,+∞)→ [0,∞). Suppose there exist x ∈ X and t0 > 0 such that (X,M, ∗)
is (x, T )-orbitally p-complete, and

1
M(y, Ty, t0) − 1 ≤ Φ(y, t0)− Φ(Ty, t0) (3.1)

for all y ∈ OT (x,∞). Then:
(i) Tnx→p x

′ exists,
(ii) 1

M(T nx,x′,t0) − 1 ≤ Φ(Tnx, t0),
(iii) Tx′ = x′ if and only if G(z, t0) = 1

M(z,T z,t0) − 1 is (x, T )-orbitally p-w.l.s.c. at x′,
(iv) 1

M(T nx,x,t0) − 1 ≤ Φ(x, t0) and 1
M(x′,x,t0) − 1 ≤ Φ(x, t0).

Proof. (i) Using inequality (3.1) we have

Sn =
n∑

i=0

( 1
M(T ix, T i+1x, t0) − 1

)
≤

n∑
i=0

[
Φ(T ix, t0)− Φ(T i+1x, t0)

]
= Φ(x, t0)− Φ(Tn+1x, t0) ≤ Φ(x, t0)

for n = 0, 1, 2, . . .. Therefore, {Sn} is bounded from above and also non-decreasing and so
convergent.

Let m > n. Since M is triangular, we have

1
M(Tnx, Tmx, t0) − 1 ≤

m−1∑
k=n

( 1
M(T kx, T k+1x, t0) − 1

)
(3.2)

Since {Sn} is convergent, for every 1 > ε > 0, we can choose a sufficiently large N ∈ N
such that

∞∑
k=n

( 1
M(T kx, T k+1x, t0) − 1

)
< ε

for all n ≥ N . Thus, we get from inequality (3.2) that

1
M(Tnx, Tmx, t0) − 1 ≤

m−1∑
k=n

( 1
M(T kx, T k+1x, t0) − 1

)
< ε
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and so
1

M(Tnx, Tmx, t0) < 1 + ε.

Since 1− ε2 < 1, it follows that

M(Tnx, Tmx, t0) > 1
1 + ε

= 1− ε
1− ε2 > 1− ε

for all n,m ≥ N . Hence, {Tnx} is a p-Cauchy sequence in OT (x,∞). Since (X,M, ∗) is
(x, T )- orbitally p-complete, Tnx→p x

′ ∈ X exists.

(ii) Let m > n. Using inequalities (3.1) and (3.2) we have

1
M(Tnx, Tmx, t0) − 1 ≤

m−1∑
k=n

( 1
M(T kx, T k+1x, t0) − 1

)
≤

m−1∑
k=n

[Φ(T kx, t0)− Φ(T k+1x, t0)]

= Φ(Tnx, t0)− Φ(Tmx, t0) ≤ Φ(Tnx, t0).
Letting m tend to infinity, we have from (i) and Theorem 2.12

1
M(Tnx, x′, t0) − 1 ≤ Φ(Tnx, t0).

(iii) Assume that Tx′ = x′ and {xn} is a sequence in OT (x,∞) with xn →p x
′. Then

G(x′, t0) = 1
M(x′, Tx′, t0) − 1 = 0 ≤ lim sup

( 1
M(x′n, Tx′n, t0) − 1

)
= lim supG(xn, t0),

and so G is (x, T )-orbitally p-w.l.s.c. at x′.

Now let xn = Tnx and G is (x, T )-orbitally p-w.l.s.c. at x′. Then from (i) we have

0 ≤ 1
M(x′, Tx′, t0) − 1 = G(x′, t0) ≤ lim supG(Tnx, t0)

= lim sup
( 1
M(Tnx, Tn+1x, t0) − 1

)
= 0

which implies 1
M(x′,T x′,t0) − 1 = 0. Thus M(x′, Tx′, t0) = 1 and so Tx′ = x′.

(iv) We first of all prove by induction that

1
M(Tnx, x, t0) − 1 ≤

n−1∑
k=0

( 1
M(T kx, T k+1x, t0) − 1

)
(3.3)

for all n = 1, 2, 3, . . . .
Inequality (3.3) is trivial when n = 1 and so we will assume that inequality (3.3) holds

for n− 1. Since M is triangular, it follows from inequality (3.1) we have
1

M(Tnx, x, t0) − 1 ≤ 1
M(Tnx, Tn−1x, t0) − 1 + 1

M(Tn−1x, x, t0) − 1

≤
n−2∑
k=0

( 1
M(T kx, T k+1x, t0) − 1

)
+ 1
M(Tnx, Tn−1x, t0) − 1

=
n−1∑
k=0

( 1
M(T kx, T k+1x, t0) − 1

)
.
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It therefore follows by induction that inequality (3.3) holds.
Using inequalities (3.1) and (3.3) we have

1
M(Tnx, x, t0) − 1 ≤

n−1∑
k=0

( 1
M(T kx, T k+1x, t0) − 1

)
≤

n−1∑
k=0

[
Φ(T kx, t0)− Φ(T k+1x, t0)

]
= Φ(x, t0)− Φ(Tnx, t0) ≤ Φ(x, t0).

Letting n tend to infinity we have
1

M(x′, x, t0) − 1 ≤ Φ(x, t0).

�

Corollary 3.2. Let (X,M, ∗) be a fuzzy metric space with M is triangular and T be a
self-mapping of X. Suppose there exist x ∈ X and t0 > 0 such that (X,M, ∗) is (x, T )-
orbitally p-complete, and

1
M(Ty, T 2y, t0) − 1 ≤ k

( 1
M(y, Ty, t0) − 1

)
(3.4)

for all y ∈ OT (x,∞). Then:
(i) Tnx→p x

′ exists,
(ii) 1

M(T nx,x′,t0) − 1 ≤ kn(1− k)−1( 1
M(x,T x,t0) − 1

)
,

(iii) Tx′ = x′ if and only if G(z, t0) = 1
M(z,T z,t0) − 1 is (x, T )-orbitally p-w.l.s.c. at x′,

(iv) 1
M(T nx,x,t0) − 1 ≤ 1

1−k

( 1
M(x,T x,t0) − 1

)
, 1

M(x′,x,t0) − 1 ≤ 1
1−k

( 1
M(x,T x,t0) − 1

)
.

Proof. Put Φ(y, t) = (1 − k)−1( 1
M(y,T y,t) − 1

)
for y ∈ OT (x,∞). Let y = Tnx in (3.4).

Then we have,
1

M(Tn+1x, Tn+2x, t0) − 1 ≤ k
( 1
M(Tnx, Tn+1x, t0) − 1

)
and ( 1

M(Tnx, Tn+1x, t0) − 1
)
− k

( 1
M(Tnx, Tn+1x, t0) − 1

)
≤

( 1
M(Tnx, Tn+1x, t0) − 1

)
−
( 1
M(Tn+1x, Tn+2x, t0) − 1

)
and so

1
M(Tnx, Tn+1x, t0) − 1 ≤

(1− k)−1
[( 1
M(Tnx, Tn+1x, t0) − 1

)
−
( 1
M(Tn+1x, Tn+2x, t0) − 1

)]
.

Thus, we get
1

M(y, Ty, t0) − 1 ≤ Φ(y, t0)− Φ(Ty, t0)

so (i), (iii) and (iv) are immediate from Theorem 3.1.
Using inequality (3.4) we have

1
M(Tnx, Tn+1x, t0) − 1 ≤ kn( 1

M(x, Tx, t0) − 1
)
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and then from Theorem 3.1 (ii) we get
1

M(Tnx, x′, t0) − 1 ≤ Φ(Tnx, t0)

= (1− k)−1( 1
M(Tnx, Tn+1x, t0) − 1

)
≤ kn(1− k)−1( 1

M(x, Tx, t0) − 1
)

and this gives (ii). �

In the following theorem, we will show that if (M, ∗) is non-Archimedean fuzzy metric,
where the continuous t-norm is defined as a ∗ b = min{a, b} for all a, b ∈ [0, 1], then (i)
and (iii) of Theorem 3.1 can be obtained without the triangular property of M .

Theorem 3.3. Let (X,M, ∗) be a non-Archimedean fuzzy metric space, where the con-
tinuous t- norm is defined as a ∗ b = min{a, b} for all a, b ∈ [0, 1]. Let T : X → X and
Φ : X × (0,+∞) → [0,∞). Suppose there exist x ∈ X and t0 > 0 such that (X,M, ∗)
is (x, T )- orbitally p-complete, and satisfying the inequality (3.1) for all y ∈ OT (x,∞).
Then:

(i) Tnx→p x
′ exists,

(ii) Tx′ = x′ if and only if G(z, t) = 1
M(z,T z,t0) − 1 is (x, T )-orbitally p-w.l.s.c. at x′.

Proof. (i) Using the same procedure as in the proof of Theorem 3.1, we obtain that

Sn =
n∑

i=0

( 1
M(T ix, T i+1x, t0) − 1

)
is convergent. Therefore we have
∞∑

n=0

( 1
M(Tnx, Tn+1x, t0) − 1

)
<∞ and so lim

n→∞

( 1
M(Tnx, Tn+1x, t0) − 1

)
= 0

Thus, limn→∞M(Tnx, Tn+1x, t0) = 1. Hence for 0 < ε < 1, there exists n0 ∈ N such that
M(Tnx, Tn+1x, t0) > 1 − ε for all n > n0. Let n0 < n < m. Using (vi) of Definition 2.2,
we have

M
(
Tnx, Tmx, t0

)
≥

m−n︷ ︸︸ ︷
M
(
Tnx, Tn+1x, t0

)
∗ · · · ∗M

(
Tm−1, Tmx, t0

)
= min

{
M
(
Tnx, Tn+1x, t0

)
, . . . ,M

(
Tm−1x, Tmx, t0

)}
> 1− ε

and so the sequence
{
Tnx

}
is a p-Cauchy sequence in OT (x,∞). Since (X,M, ∗) is (x, T )-

orbitally p-complete, Tnx→p x
′ exists.

Using the same procedure as in the proof of Theorem 3.1 (iii), we obtain (ii). �

Similarly, using the same procedure as in the proof of Corollary 3.2 (i) and (iii), we
obtain the following result.

Corollary 3.4. Let (X,M, ∗) be a non-Archimedean fuzzy metric space, where the con-
tinuous t- norm is defined as a∗b = min{a, b} for all a, b ∈ [0, 1]. Let T be a self- mapping
of X. Suppose there exists an x ∈ X such that (X,M, ∗) is (x, T )- orbitally complete, and
satisfying the inequality (3.4), for all y ∈ OT (x,∞). Then:

(i) Tnx→p x
′ exists,

(ii) Tx′ = x′ if and only if G(z, t) = 1
M(z,T z,t0) − 1 is (x, T )-orbitally p-w.l.s.c. at x′.
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If we replace non-Archimedean fuzzy metric by stationary fuzzy metric in the Theorem
3.3, then using the same procedure as in the proof of Theorem 3.3 and Corollary 3.2 we
obtain the following results.

Theorem 3.5. Let (X,M, ∗) be a stationary fuzzy metric space, where the continuous t-
norm is defined as a∗b = min{a, b} for all a, b ∈ [0, 1]. Let T : X → X and Φ : X → [0,∞).
Suppose there exists an x ∈ X such that (X,M, ∗) is (x, T )- orbitally p-complete, and

1
M(y, Ty) − 1 ≤ Φ(y)− Φ(Ty)

for all y ∈ OT (x,∞). Then:
(i) Tnx→p x

′ exists,
(ii) Tx′ = x′ if and only if G(z) = 1

M(z,T z) − 1 is (x, T )-orbitally p-w.l.s.c. at x′.

Corollary 3.6. Let (X,M, ∗) be a stationary fuzzy metric space, where the continuous
t-norm is defined as a ∗ b = min{a, b} for all a, b ∈ [0, 1]. Let T be a self- mapping of X.
Suppose there exists an x ∈ X such that (X,M, ∗) is (x, T )- orbitally p-complete, and

1
M(Ty, T 2y) − 1 ≤ k

( 1
M(y, Ty) − 1

)
for all y ∈ OT (x,∞). Then:

(i) Tnx→p x
′ exists,

(ii) Tx′ = x′ if and only if G(z) = 1
M(z,T z) − 1 is (x, T )-orbitally p-w.l.s.c. at x′.

Note that Theorem 3.5 and Corollary 3.6 are true for complete fuzzy metric spaces since
p-completeness and completeness are equivalent concepts in stationary fuzzy metrics.

The following theorem is slight generalization of Theorem 3 in [7].

Theorem 3.7 ([7]). Let (X, d) be a metric space, T : X → X and ϕ : X → [0,∞).
Suppose there exists an x ∈ X such that

d(y, Ty) ≤ ϕ(y)− ϕ(Ty) (3.5)
for all y ∈ OT (x,∞), and (X, d) is (x, T )- orbitally complete. Then:

(i) limn→∞ T
nx = x′ exists,

(ii) d(Tnx, x′) ≤ ϕ(Tnx),
(iii) Tx′ = x′ if and only if F (z) = d(z, Tz) is (x, T )-orbitally w.l.s.c. at x′,
(iv) d(Tnx, x) ≤ ϕ(x) and d(x′, x) ≤ ϕ(x).

Proof. We consider the (Md, .) standard fuzzy metric induced by d on X as in Exam-
ple 2.3. By Remark 2.10 (X,Md, ∗) is (x, T )- orbitally p-complete since (X, d) orbitally
complete. Also (Md, .) is triangular.

Since Md(x, y, t) = t
t+d(x,y) , we have d(x, y) = t

Md(x,y,t) − t for all x, y ∈ X and t > 0.
Define Φ(x, t0) = 1

t0
ϕ(x) for all x ∈ X. Then from inequality (3.5) we have

t0
Md(y, Ty, t0) − t0 ≤ t0(Φ(y, t0)− Φ(Ty, t0))

and so
1

Md(y, Ty, t0) − 1 ≤ Φ(y, t0)− Φ(Ty, t0).

Thus T satisfies inequality (3.1) of Theorem 3.1.

(i) From Theorem 3.1 (i) we have Tnx →p x
′ exists and so limn→∞ T

nx = x′ (in the
metric space).
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(ii) From Theorem 3.1 (ii) we have

1
M(Tnx, x′, t0) − 1 ≤ Φ(Tnx, t0),

and so
1
t0

t0+d(T xx,x′)
− 1 = t0 + d(Tnx, x′)− t0

t0
= d(Tnx, x′)

t0
≤ 1
t0
ϕ(Tnx).

Thus d(Tnx, x′) ≤ ϕ(Tnx).

(iii) From Theorem 3.1 (iii) we have

1
Md(x, Tx, t0) − 1 = d(x, Tx)

t0
.

If G(x, t0) = 1
Md(x,T x,t0) −1 is (x, T ) orbitally p-w.l.s.c. at x′, then t0G(x, t0) = d(x, Tx)

is (x, T )- orbitally w.l.s.c. at x′ too. Thus (iii) follows from Theorem 3.1 (iii).

(iv) From Theorem 3.1 (iv) we have

1
Md(Tnx, x, t0) − 1 ≤ Φ(x, t0) and so d(Tnx, x′)

t0
≤ 1
t0
ϕ(x).

Thus d(Tnx, x) ≤ ϕ(x). Similarly 1
Md(x′,x,t0) − 1 ≤ Φ(x, t0) and so d(x′, x) ≤ ϕ(x). �

By considering the (Md, .) standard fuzzy metric induced by d on X in Corollary 3.2
we obtain the following corollary.

Corollary 3.8 ([7]). Let (X, d) be a metric space and T be a self mapping of X. Suppose
there exists an x ∈ X such that

d(Ty, T 2y) ≤ d(y, Ty)

for all y ∈ OT (x,∞), and (X, d) is (x, T )- orbitally complete. Then:
(i) limn→∞ T

nx = x′ exists,
(ii) d(Tnx, x′) ≤ ϕ(Tnx),
(iii) Tx′ = x′ if and only if F (z) = d(z, Tz) is (x, T )-orbitally w.l.s.c. at x′,
(iv) d(Tnx, x) ≤ ϕ(x) and d(x′, x) ≤ ϕ(x).

4. Some examples
We finally give some examples which illustrate our results.

Example 4.1. Let X = [0,∞), a ∗ b = min{a, b} for all a, b ∈ [0, 1] and let

M(x, y, t) = t

t+ |x− y| ,

for all x, y ∈ X, t > 0, then (X, ∗) is triangular. Define T : X → X by

T (x) =
{
x/2 if 0 ≤ x < 1,
x+ 1 if 1 ≤ x <∞

for all x ∈ X.
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If we take 0 ≤ x0 < 1, then OT (x0,∞) = {x0, x0/2, x0/22, . . . , x0/2n−1, . . . } for n =
1, 2, . . . and so (X,M, ∗) is (x0, T )- orbitally p-complete. Also define Φ(x, t) = x and put
t0 = 1. Then for all y ∈ OT (x0,∞) we have

1
M(y, Ty, t0) − 1 = 1

1
1+|y−T y|

− 1 = |y − Ty|

=
∣∣∣ x0
2n−1 −

x0
2n

∣∣∣ = x0
2n

= Φ(y, t0)− Φ(Ty, t0).

Moreover,

G(z, t0) = 1
M(z, Tz, t0) − 1 = |z − Tz| =

{
z/2 if 0 ≤ z < 1,
1 if 1 ≤ z <∞

is (x0, T )-orbitally p-w.l.s.c. at x = 0.
All the conditions of Theorem 3.1 are therefore satisfied and x = 0 is a fixed point of

T .

Example 4.2. Let X = (0,∞), a ∗ b = min{a, b} for all a, b ∈ [0, 1] and let

M(x, y, t) = t

t+ |x− y| ,

for all x, y ∈ X, t > 0. Define T : X → X by

T (x) =
{
x/2 if 0 < x < 1,
1 if 1 ≤ x <∞

for all x ∈ X.
If we take 0 < x0 < 1, then OT (x0,∞) = {x0, x0/2, x0/22, . . . , x0/2n−1, . . . } for n =

1, 2, . . . . But (X,M, ∗) is not (x0, T )- orbitally p-complete.
Now we take 1 ≤ x0 < ∞. Then OT (x0,∞) = {x0, 1, 1, 1, . . . }. Thus (X,M, ∗) is

(x0, T )- orbitally p-complete.
Define Φ(x, t) = x and put t0 = 1. Then for y = x0 6= 1 we have

1
M(y, Ty, t0) − 1 = |y − Ty| = |x0 − 1| = x0 − 1 = Φ(y, t0)− Φ(Ty, t0).

Also inequality (3.1) is satisfied for y = 1. Moreover,

G(z, t0) = 1
M(z, Tz, t0) − 1 = |z − Tz| =

{
z/2 if 0 < z < 1,
z − 1 if 1 ≤ z <∞

is (x0, T )-orbitally p-w.l.s.c. at x = 1.
All the conditions of Theorem 3.1 are therefore satisfied and x = 1 is a fixed point of

T .

Example 4.3. Let X = [0,∞), a ∗ b = min{a, b} for all a, b ∈ [0, 1] and let

M(x, y, t) =
{

1
1+max{x,y} , if x 6= y,
1 if x = y,

for all x, y ∈ X, t > 0. (X,M, ∗) is non-Archimedean fuzzy metric space. Define T : X →
X by T (x) = x/2 for all x ∈ X.

If we take x0 = 1, then OT (1,∞) = {1, 1/2, 1/22, . . . , 1/2n−1, . . . } for n = 1, 2, . . .
and so (X,M, ∗) is (1, T )- orbitally p-complete. Also define Φ(x, t) = 2x. Then for all
y ∈ OT (1,∞) we have

1
M(y, Ty, t0) − 1 = y = 1

2n−1 = 2
2n−1 −

2
2n

= Φ(y, t0)− Φ(Ty, t0).

Moreover, G(z, t0) =
{
z, if z 6= Tz,
0 if z = Tz

is (1, T )-orbitally p-w.l.s.c. at x = 0.
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All the conditions of Theorem 3.3 are therefore satisfied and x = 0 is a fixed point of
T .

References
[1] T. Abdeljawad and E. Karapınar, Quasicone metric spaces and generalizations of

Caristi Kirk’s theorem, Fixed Point Theory Appl. Vol. 2009, ID 574387, 9 p, 2009.
[2] Ö. Acar and İ. Altun, Some generalizations of Caristi type fixed point metric spaces,

Filomat 26(4), 833-837, 2012.
[3] Ö. Acar, İ. Altun and S. Romaguera, Caristi’s type mappings on complete partial

metric spaces, Fixed Point Theory 14(1), 3-10, 2013.
[4] R.P. Agarwal and M.A. Khamsi, Extension of Caristi’s fixed point theorem to vector

valued metric spaces, Nonlinear Anal. 74, 141-145, 2011.
[5] İ. Altun and D. Mihet, Ordered non-archimedean fuzzy metric spaces and some fixed

point results, Fixed Point Theory Appl. Vol. 2010, ID 782680, 11 p., 2010.
[6] J.S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math.

Anal. Appl. 284, 690-697, 2003.
[7] A. Bollenbacher and T.L. Hicks, A fixed point theorem revisited, Proc. Amer. Math.

Soc. 102, 898-900, 1988.
[8] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans.

Amer. Math. Soc. 215, 241-251, 1976.
[9] L. Ćirić, Periodic and fixed point theorems in a quasi-metric space, J. Austral. Math.

Soc. Ser. A 54, 80-85, 1993.
[10] Z. Deng, Fuzzy pseudometric spaces, J. Math. Anal. Appl. 86, 74-95, 1982.
[11] C. Di Bari and C. Vetro, A fixed point theorem for a family of mappings in a fuzzy

metric space, Rend. Circ. Mat. Palermo 52, 315-321, 2003.
[12] C. Di Bari and C. Vetro, Fixed points, attractors and weak fuzzy contractive mappings

in a fuzzy metric space, J. Fuzzy Math. 13, 973-982, 2005.
[13] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47, 324-353, 1974.
[14] M.A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69, 205-230,

1979.
[15] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and

Systems 64, 395-399, 1994.
[16] A. George and P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy Math.

3, 933-940, 1995.
[17] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces,

Fuzzy Sets and Systems 90, 365-368, 1997.
[18] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27, 385-389,

1988.
[19] V. Gregori, A. López-Crevillén, S. Morillas, and A. Sapena, On convergence in fuzzy

metric spaces, Topology Appl. 156, 3002-3006, 2009.
[20] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and

Systems 115, 485-489, 2000.
[21] V. Gregori and S. Romaguera, Characterizing completable fuzzy metric spaces, Fuzzy

Sets and Systems 144, 411-420, 2004.
[22] V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy

Sets and Systems 125, 245-252, 2002.
[23] A.M. Harder and L.M. Saliga, Periodic and fixed point theorems in d-complete topo-

logical spaces, Indian J. Pure Appl. Math. 26, 787-796, 1995.
[24] T.L. Hicks, Fixed point theorems for quasi-metric spaces, Math. Japon. 33, 231-236,

1988.



86 H. Karayılan, M. Telci

[25] T.L. Hicks, Fixed point theorems for d-complete topological spaces I, Internat. J.
Math. Math. Sci. 15, 435-440, 1992.

[26] C. Ionescu, Sh. Rezapour and M.E. Samei, Fixed points of a class of contractive-type
multifunctions on fuzzy metric spaces, U.P.B. Sci. Bull., Series A 76, 3-12, 2014.

[27] J.R. Jachymski, Caristi’s fixed point theorem and selections of set-valued contractions,
J. Math. Anal. Appl. 227, 55-67, 1998.

[28] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed
point theorems in complete metric spaces, Math. Japon. 44, 381-391, 1996.

[29] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12, 215-
229, 1984.

[30] E. Karapınar, Generalizations of Caristi Kirk’s theorem on partial metric spaces,
Fixed Point Theory Appl. 2011:4, 2011.

[31] E. Karapınar, İ.M. Erhan and A. Öztürk, Fixed point theorems on quasi-partial
metric spaces, Math. Com. Mod. 57, 2442-2448, 2013.

[32] H. Karayılan and M. Telci, Common fixed point theorems for contractive type map-
pings in a fuzzy metric spaces, Rend. Circ. Mat. Palermo 60, 145-152, 2011.

[33] M.A. Khamsi, Remarks on Caristi’s fixed point theorem, Nonlinear Anal. 71, 227-231,
2009.

[34] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica
11, 336-344, 1975.

[35] D. Miheţ, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and
Systems 144, 431-439, 2004.

[36] D. Miheţ, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and
Systems 158, 915-921, 2007.

[37] J. Rodríguez-López and S. Romaguera, The Hausdorff fuzzy metric on compact sets,
Fuzzy Sets and Systems 147, 273-283, 2004.

[38] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces,
Fixed Point Theory Appl. Vol. 2010, ID 493298, 6 p, 2010.

[39] I. Schweizer and A. Sklar, Statistical metric spaces, Pac. J. Math. 10, 314-334, 1960.
[40] T. Suzuki, Generalized Caristi’s fixed point theorems by Bae and others, J. Math.

Anal. Appl 302, 502-508, 2005.
[41] R. Vasuki, A common fixed point theorem in a fuzzy metric space, Fuzzy Sets and

Systems 97, 395-397, 1998.
[42] C. Vetro and P. Vetro, Common fixed points for discontinuous mappings in fuzzy

metric spaces, Rend. Circ. Mat. Palermo 57, 295-303, 2008.


