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Inversion Laplace transform for integrodifferential
parabolic equation with purely nonlocal conditions
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Abstract

In this paper we prove the existence, uniqueness, and continuous depen-
dence upon the data of solution to integrodifferential parabolic equa-
tion with purely nonlocal integral conditions. The proofs are based on
a priori estimates and Laplace transform method. Finally, we obtain a
solution using a numerical technique which is called Stehfest algorithm
by inverting the Laplace transform.
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1. Introduction
In this paper we are concerned with the following parabolic integrodifferential equation

(1.1)
∂v

∂t
(x, t)− ∂2v

∂x2
(x, t) =

t∫
0

a (t− s) v (x, s) ds, 0 < x < 1, 0 < t ≤ T,

subject to the initial condition

(1.2) v (x, 0) = Φ (x) , 0 < x < 1,
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and the purely nonlocal (integral) conditions
1∫

0

v (x, t) dx = r (t) , 0 < t ≤ T,(1.3)

1∫
0

xv (x, t) dx = q (t) , 0 < t ≤ T,

where v is an unknown function, r, q, and Φ (x) are given functions supposed to be
sufficiently regular, a is suitably defined function satisfying certain some conditions that
will be specified later and T is a positive constant number.

Some problems from modern physics and science can be described in terms of partial
differential equations with nonlocal conditions. For instance, the nonlocal term of our

problem ( i.e
t∫
0

a (t− s) v (x, s) ds ) appears in the modeling of the quasi-static flexure of

a thermo-elastic rod [10, 12]. First this problem with the more general second-order par-
abolic equation or a 2m-parabolic equation has been studied by the second author using
the energy-integral methods and the Rothe method in [10, 12, 14] and [28] respectively.
For other models we refer to [7, 12, 13, 15], [16]-[19],[20]-[27], [29]-[34]. The problem
(1.1) − (1.3) is studied by using the Rothe method in [21]. On the other hand Ang in
[2] considered a one-dimensional heat equation with nonlocal integral conditions and ap-
plied the Laplace transform to the problem. Then he used some numerical techniques to
obtain a numerical solution of the inverse Laplace transform.

Recently the various types of the partial differential equations with nonlocal conditions
have been studied by [3], [4] and [5], [6] and [8], [9].

This paper is organized as follows. In Section 2, we introduce some certain function
spaces what we need in this work, and also give a reduction of our problem to another
equivalent problem with the homogeneous integral conditions. In Section 3, we establish
the existence of the solution by the Laplace transform method. In Section 4, we deal
with a priori estimate which gives the uniqueness and continuous dependence upon the
given data.

2. Statement of the Problem and Notations
Since integral conditions are not homogenous, it is convenient to convert the problem

(1.1)− (1.3) to an equivalent problem with the homogenous integral conditions. For this
reason, we introduce a new function u (x, t) representing the deviation of the function
v (x, t) as

(2.1) u (x, t) = v (x, t)− w (x, t) , 0 < x < 1, 0 < t ≤ T,

where

(2.2) w (x, t) = 6 (2q (t)− r (t))x− 2 (3q (t)− 2r (t)) .

The problem (1.1)−(1.3) with non-homogenous integral conditions (1.3) can be equiv-
alently reduced to the problem of finding a function u satisfying

(2.3)
∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) =

t∫
0

a (t− s)u (x, s) ds, 0 < x < 1, 0 < t ≤ T,

u (x, 0) = ϕ (x) , 0 < x < 1,
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1∫
0

u (x, t) dx = 0, 0 < t ≤ T,(2.4)

1∫
0

xu (x, t) dx = 0, 0 < t ≤ T,

where

ϕ (x) = Φ (x)− w (x, 0) .

The solution of problem (1.1)− (1.3) will be obtained by the relation (2.1) and (2.2).
Let H be the Hilbert space with the norm ‖.‖H and L2 (0, 1) be the space of all the
square integrable functions on the interval (0, 1). Now we are ready to introduce some
appropriate function spaces what we need in this work.

2.1. Definition. (i) We denote by L2 (0, T ;H) the set of all measurable functions u (., t)
from (0, T ) into H equipped with the norm

(2.5) ‖u‖L2(0,T ;H) =

 T∫
0

‖u (., t)‖2H dt

1/2

<∞.

(ii) The space C (0, T ;H) is the set of all continuous functions u (., t) : (0, T ) −→ H
equipped with the norm

‖u‖C(0,T ;H) = max
0≤t≤T

‖u (., t)‖H <∞.

We denote by C0 (0, 1) the space of all continuous functions with a compact support
in (0, 1). Since such functions are Lebesgue integrable with respect to x, we can define a
bilinear form on C0 (0, 1) given by

(2.6) (u,w) =

1∫
0

Jmx u.J
m
x wdx, m ≥ 1,

where

(2.7) Jmx u =

x∫
0

(x− ζ)m−1

(m− 1)!
u (ζ, t) dζ; for m ≥ 1.

We know that the bilinear form (2.6) is a scalar product on C0 (0, 1) but C0 (0, 1) is
not a complete space.

2.2. Definition. Denote by Bm2 (0, 1), the completion of C0 (0, 1) for the scalar product
(2.6), which is denoted by (., .)Bm

2 (0,1) , introduced in [11]. By the norm of a function u
from Bm2 (0, 1), m ≥ 1, we understand the nonnegative number:

(2.8) ‖u‖Bm
2 (0,1) =

 1∫
0

(Jmx u)2 dx

1/2

= ‖Jmx u‖ , for m ≥ 1.

From [11] we have the following lemma.

2.3. Lemma. For all m ∈ Z+ the following inequality

(2.9) ‖u‖2Bm
2 (0,1) ≤

1

2
‖u‖2

Bm−1
2 (0,1)

holds.
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2.4. Corollary. For all m ∈ Z+ we have the elementary inequality

(2.10) ‖u‖2Bm
2 (0,1) ≤

(
1

2

)m
‖u‖2L2(0,1) .

2.5. Definition. We denote by L2(0, T ;Bm2 (0, 1)) the space of functions which are square
integrable in the Bochner sense with the scalar product

(2.11) (u,w)L2(0,T ;Bm
2 (0,1)) =

∫ T

0

(u (., t) , w (., t))Bm
2 (0,1) dt.

Since the space Bm2 (0, 1) is a Hilbert space, it can be shown that L2(0, T ;Bm2 (0, 1)) is
also a Hilbert space. The set of all continuous functions in [0, T ] equipped with the norm

sup
0≤t≤T

‖u (., t)‖Bm
2 (0,1)

will be denoted by C(0, T ;Bm2 (0, 1)).

2.6. Corollary. The following imbedding L2 (0, 1) −→ Bm2 (0, 1) is continuous for m ≥ 1.

By Lemma 1.3.19 in [25], we have the following result.

2.7. Lemma (Gronwall Lemma). Let f1 (t) , f2 (t) ≥ 0 be two integrable functions on
[0, T ], let us suppose that f2 (t) is nondecreasing. If we have

(2.12) f1 (τ) ≤ f2 (τ) + c

∫ τ

0

f1 (t) dt, ∀τ ∈ [0, T ] ,

where c ∈ R+ then we have

(2.13) f1 (t) ≤ f2 (t) exp (ct) , ∀t ∈ [0, T ] .

.

3. Existence of the Solution.
The Laplace transform method is an efficient way to solve many ordinary and partial

differential equations. But the main difficulty with the Laplace transform method is in
the inverting the Laplace domain solution into the real domain. In this section we will
carry out the Laplace transform techniques to find solutions of the partial differential
equations.

Suppose that v (x, t) is defined and is of exponential order for t ≥ 0 i.e. there exists A,
γ > 0 and t0 > 0 such that |v (x, t) | ≤ A exp (γt) for t ≥ t0. Then the Laplace transform
V (x, s) exists and it is given by

(3.1) V (x, s) = {v (x, t) ; t −→ s} =

∫ ∞
0

v (x, t) exp (−st) dt,

where s is a positive real parameter. Applying the Laplace transform on both sides of
(1.1), we have

(3.2) (s−A (s))V (x, s)− d2

dx2
V (x, s) = sΦ (x) ,

where G (x, s) = {g (x, t) ; t −→ s} . Similarly, we have∫ 1

0

V (x, s) dx = R(s),(3.3) ∫ 1

0

xV (x, s) dx = Q(s),
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where

R (s) = {r(t); t −→ s} ,
Q (s) = {q(t); t −→ s} .

Now we have three distinguished cases:
Case 1. s−A (s) > 0.
Case 2. s−A (s) < 0.
Case 3. s−A (s) = 0.
Here we consider only Case 2 and 3, because Case 1 can be dealt as like in [2]. For

(s−A (s)) = 0, we have

(3.4)
d2

dx2
V (x, s) = −sΦ (x) .

The general solution for Case 3 is given by

(3.5) V (x, s) = −
∫ x

0

∫ y

0

[sΦ (x)] dzdy + C1 (s)x+ C2 (s) .

Putting the integral conditions (3.3) in (3.5) we get

1

2
C1 (s) + C2 (s)(3.6)

=

∫ 1

0

∫ x

0

∫ y

0

[sΦ (x)] dzdy +R(s),

1

3
C1 (s) +

1

2
C2 (s)

=

∫ 1

0

∫ x

0

∫ y

0

x [sΦ (x)] dzdy +Q(s),

and

C1 (s) = 12

∫ 1

0

∫ x

0

∫ y

0

x [sΦ (x)] dzdy −(3.7)

6

∫ 1

0

∫ x

0

∫ y

0

[sΦ (x)] dzdy +

12Q(s)− 6R(s),

C2 (s) = 4

∫ 1

0

∫ x

0

∫ y

0

[sΦ (x)] dzdy −

6

∫ 1

0

∫ x

0

∫ y

0

x [sΦ (x)] dzdy −

6Q(s) + 4R(s).

For Case 2, that is, when (s−A (s)) < 0, using the method of variation of parameters,
we have the general solution as

V (x, s) =
1√

A (s)− s2

∫ x

0

(sΦ (x)) ·(3.8)

sin
(√

A (s)− s
)

(x− τ) dτ + d1 (s) cos
√

(A (s)− s)x+

d2 (s) sin
√

(A (s)− s)x.
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From the integral conditions (3.3) we get

d1 (s)

∫ 1

0

cos
√

(A (s)− s)xdx+ d2 (s)

∫ 1

0

sin
√

(A (s)− s)xdx(3.9)

= R(s)− 1√
A (s)− s2

∫ 1

0

∫ x

0

(sΦ (x)) ·

sin
(√

A (s)− s
)

(x− τ) dτdx,

d1 (s)

∫ 1

0

x cos
√

(A (s)− s)xdx+ d2 (s)

∫ 1

0

x sin
√

(A (s)− s)xdx

= Q(s)− 1√
A (s)− s

∫ 1

0

∫ x

0

x (sΦ (x)) ·

sin
(√

A (s)− s
)

(x− τ) dτdx.

Thus d1, d2 are given by

(3.10)
(
d1 (s)
d2 (s)

)
=

(
a11 (s) a12 (s)
a21 (s) a22 (s)

)−1

·
(
b1 (s)
b2 (s)

)
,

where

a11 (s) =

∫ 1

0

cos
√

(A (s)− s)xdx,(3.11)

a12 (s) =

∫ 1

0

sin
√

(A (s)− s)xdx,

a21 (s) =

∫ 1

0

x cos
√

(A (s)− s)xdx,

a22 (s) =

∫ 1

0

x sin
√

(A (s)− s)xdx,

b1 (s) = R(s)− 1√
A (s)− s

∫ 1

0

∫ x

0

(sΦ (x)) ·

sin
(√

A (s)− s
)

(x− τ) dτdx,

b2 (s) = Q(s)− 1√
A (s)− s

∫ 1

0

∫ x

0

x (sΦ (x)) ·

sin
(√

A (s)− s
)

(x− τ) dτdx.

If it is not possible to calculate the integrals directly, then we can calculate them
numerically. So we can approximate them similarly as done in [2]. If the Laplace inversion
is possibly computed directly for (3.5) and (3.8), then we reach the solution explicitly.
Otherwise we have to use the suitable approximate technique to get numerical solution,
therefore we need the numerical inversion of the Laplace transform. Considering A (s)−
s = k (s) and using Gauss’s formula given in [1] we have the following appoximations of
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the integrals ∫ 1

0

(
1

x

)
cos
√
k (s)xdx(3.12)

' 1

2

N∑
i=1

wi

(
1

1
2

[xi + 1]

)
cos

(√
k (s)

1

2
[xi + 1]

)
,

∫ 1

0

(
1

x

)
sin
√
k (s)xdx

' 1

2

N∑
i=1

wi

(
1

1
2

[xi + 1]

)
sin

(√
k (s)

1

2
[xi + 1]

)
,∫ x

0

(sΦ (x)) sin
(√

k (s)
)

(x− τ) dτ

' x

2

N∑
i=1

wi
[
sΦ
(x

2
[xi + 1]

)]
sin
(√

k (s)
[
x− x

2
[xi + 1]

])
,∫ 1

0

[
[sΦ (τ)]

∫ 1

τ

(
1

x

)
sin
(√

k (s)
)

(x− τ) dx

]
dτ

' 1

2

N∑
i=1

wi

[
sΦ

(
1

2
[xi + 1]

)]
(

1− 1
2

[xi + 1]

2

) N∑
i=1

wj

(
1

1− 1
2
[xi+1]

2
xj +

1− 1
2
[xi+1]

2

)
·

sin

(√
k (s)

[
1− 1

2
[xi + 1]

2
xj +

1 + 1
2

[xi + 1]

2
− 1

2
(xi + 1)

])
,

where xi and wi are the abscissa and weights defined as

xi : ith zero of Pn (x) , ωi = 2/
(
1− x2i

) [
P
′
n (x)

]2
.

Their tabulated values can be found in [1] for different values of N.

3.1. A numerical inversion of a Laplace transform. Sometimes an analytical in-
version of the Laplace domain solution is difficult to obtain. Therefore, a numerical
inversion method has to be required. An important comparison of four frequently used
numerical Laplace inversion algorithms is given by H. Hassanzadeh et al in [24]. Here we
use the Stehfest algorithm [34] that is easy to implement. This numerical technique was
first introduced by Graver [22] and then its algorithm is improved by [34]. The Stehfest
algorithm approximates the time domain solution as

(3.13) v (x, t) ≈ ln 2

t

2m∑
n=1

βnV

(
x;
n ln 2

t

)
,

where m is a positive integer,

(3.14) βn = (−1)n+m
min(n,m)∑
k=[n+1

2 ]

km (2k)!

(m− k)!k! (k − 1)! (n− k)! (2k − n)!
,

and [q] is the integer part of the real number q.
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4. A Numerical Example
In this section we perform some results of numerical computations using the Laplace

transform method proposed in the previous section. This technique can be carried out to
solve the problem defined by the problem (1.1)− (1.3). The method is easily applicable
via Matlab 7.9.3 program. So we can give the following example.

4.1. Example. We take the integrodifferential equation

∂v

∂t
(x, t)− ∂2v

∂x2
(x, t) =

t∫
0

exp(t− s)u (x, s) ds, 0 < x < 1, 0 < t ≤ T,

v (x, 0) = sinx, 0 < x < 1,
1∫

0

v (x, t) dx = 0, 0 < t ≤ T,

1∫
0

xv (x, t) dx = 0, 0 < t ≤ T.

In this case the exact solution is given by

v (x, t) = exp(−t). cos t. sinx, 0 < x < 1, 0 < t ≤ T .

The method of solution is easily implemented on the computer, and numerical results
obtained by N = 8 in (3.12) andm = 5 in (3.13). Now we can compare the exact solution
with numerical solution. For t = 0.10 and x ∈ [0.10, 0.90], we calculate v numerically
using the proposed method of solution and compare it with the exact solution as in Table
1.

The relative error computed by the formula v numerical−v exact
v exact

.

x 0.10 0.30 0.50 0.70 0.90

v exact 0.0898817 0.2660619 0.4316350 0.5800001 0.7052425

v numerical 0.0898818 0.2660623 0.4316355 0.5800058 0.7052395

relativ error −0, 0000058 0, 0000017 0, 0000012 0, 0000099 −0, 0000043
Table1

5. Uniqueness and Continuous Dependence of the Solution.
First we establish a priori estimate, then the uniqueness and continuous dependence

of the solution with respect to the given data are immediately obtained.

5.1. Theorem. If u (x, t) is a solution of the Problem (2.3) − (2.4), then we have the
following inequalities

‖u (., τ)‖2L2(0,1) ≤ c1
(
‖ϕ‖2L2(0,1)

)
and(5.1) ∥∥∥∥∂u (., τ)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
≤ c2

(
‖ϕ‖2L2(0,1)

)
,

where c1 = exp (a0T ) , c2 = exp(a0T )
1−a0

, 1 < a (x, t) < a0, and 0 ≤ τ ≤ T.
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Proof. If we take the scalar product of the both side of equation (2.3) by u, and integrate
over (0, τ), then we have∫ τ

0

(
∂u (., t)

∂t
, u

)
B1

2(0,1)

dt−(5.2) ∫ τ

0

(
∂2u (., t)

∂x2
, u

)
B1

2(0,1)

dt

=

∫ τ

0

 t∫
0

a (t− s)u (x, s) ds,
∂u (., t)

∂t


B1

2(0,1)

dt.

Integrating by parts on the left-hand side of (5.2) we obtain

1

2

∥∥∥∥∂u (., t)

∂t

∥∥∥∥2
B1

2(0,1)

+(5.3)

1

2
‖u (., τ)‖2L2(0,1) −

1

2
‖ϕ‖2L2(0,1)

=

∫ τ

0

 t∫
0

a (t− s)u (x, s) ds,
∂u (., t)

∂t


B1

2(0,1)

dt.

By the Cauchy inequality, the right-hand side of (5.3) is bounded by

(5.4)
a0
2

t∫
0

‖u (x, s)‖2
L2(0,T ; B1

2(0,1))
ds+

a0
2

∥∥∥∥∂u (., t)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
.

Substitution of (5.4) into (5.3) yields

(5.5) (1− a0)

∥∥∥∥∂u (., t)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
+ ‖u (., τ)‖2L2(0,1) ≤

‖ϕ‖2L2(0,1) +

a0
2

t∫
0

‖u (x, s)‖2
L2(0,T ; B1

2(0,1))
ds.

By the Gronwall Lemma we have

(1− a0)

∥∥∥∥∂u (., t)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
+ ‖u (., τ)‖2L2(0,1)(5.6)

≤ exp (a0T )
(
‖ϕ‖2L2(0,1)

)
.

From (5.6) , we obtain the estimates (5.1). �

5.2. Corollary. If Problem (2.3)− (2.4) has a solution, then this solution is unique and
depends continuously on ϕ.
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