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Crossed modules of hypergroups associated with
generalized actions

Murat Alp∗†and Bijan Davvaz ‡

Abstract
In this article, by using the notion of generalized action, we introduce
the concept of crossed module of hypergroups, in the sense of Marty,
and its related structures from the light of crossed polymodules. Hyper-
groups in the sense of Marty are more different than polygroups since
they have not identity element or inverse element in general. Exam-
ples of crossed modules of hypergroups are originally presented. These
examples illustrate the structure and behavior of crossed modules of
hypergroups. Moreover, we obtain a crossed module in the sense of
Whitehead from a crossed module of hypergroups by applying the no-
tion of fundamental relation.
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1. Introduction
The crossed module is a very powerful applications tools for mathematicians. The

importance of crossed modules are: crossed modules may be thought of as 2-dimensional
objects (Groups, polygroups, etc), a number of improvements in group theory are better
seen from a crossed module point of view and crossed modules occur geometrically as
π2(X,A) → π1A when A is a subspace of X or as π1F → π1E where F → E → B is a
fibration.

Crossed modules were defined by J. H. C. Whitehead in [25]. The important con-
structions of crossed modules are induced crossed module [8], actor of a crossed module
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[23] and pullback crossed modules of algebroids [3]. A new application of crossed mod-
ule is the crossed module of polygroups [4]. Polygroups application can be taught as
generalization of crossed module on groups. Cat1-structures are defined and proved that
the category of crossed modules is equivalent to the category of cat1- structures by Lo-
day [20]. So, many crossed module applications related to cat1-structure were given by
mathematicians after the definition of cat1-structures such as pullback cat1-commutative
algebra [2] and cat1-polygroups[13]. Also computations of these two categories play very
important role to solve specific problems and construct examples to well known theories.
GAP [16] provides a high level programming language with so many kind advantages. A
GAP share package XMOD [6] was improved by taking these advantages. As example,
[5] and [1] can be considered to this share package usage. Another important applica-
tion of crossed module is the crossed module of hypergroups and is presented in this
paper. When we defined a crossed module of hypergroups we thought normal subgroup
condition gN = Ng since hypergroup does not have inverse element. The importance of
this application comes from this point of view. Polygroups and hypergroups studies can
give a new direction to the different studies such as equivalent categories of simplicial
polygroups and cat1-polygroups. Therefore, properties of crossed module of hypergroups
are given very cletailed in this paper.

Hypergroup theory was born in 1934, when Marty [22] gave the definition of hyper-
group and illustrated some applications and showed its utility in the study of groups,
algebraic functions and relational fractions. Nowadays the hypergroups are studied from
the theoretical point of view and for their applications to many subjects of pure and
applied mathematics: geometry, topology, cryptography and code theory, graphs and hy-
pergraphs, probability theory, binary relations, theory of fuzzy and rough sets, automata
theory, economy, ethnology, etc. (see [10, 11]).

An outline of the paper is as follows. After the introduction, in Section 2, we give the
very well known definition of crossed module and its examples. Definition, properties
and examples of hypergroups are presented in Section 3. To define crossed module of
hypergroups we need hypergroup action and a strong homomorphism. Two important
needs are presented. Specially, hypergroup action and its examples are given in Section 4
due to [24] and [21]. Crossed module of hypergroups and its components such as examples
and properties are given in Section 5.

2. Crossed modules
In this section we recall the definition of crossed module.

2.1. Definition. Let G be a group and X be a non-empty set. A (left) group action is
a binary operator τ : G×X → X that satisfies the following two axioms:

(1) τ(gh, x) = τ(g, τ(h, x)), for all g, h ∈ G and x ∈ X,
(2) τ(e, x) = x, for all x ∈ X.

For x ∈ X and g ∈ G, we write gx := τ(g, x).

2.2. Definition. A crossed moduleX = (M,G, ∂, τ) consists of groupsM andG together
with a homomorphism ∂ : M → G and a (left) action τ : G×M → M on M , satisfying
the conditions:

(1) ∂( gm) = g∂(m)g−1, for all m ∈M and g ∈ G,
(2) ∂(m)m′ = mm′m−1, for all m,m′ ∈M .

The standard examples of crossed modules are inclusionM ↪→ G of a normal subgroup
M of G, the zero homomorphism M → G when M is a G-module, and any surjection
M → G with central kernel, i.e., the kernel is a subset of center. There is also an
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important topological example: if F → E → B is a fibration sequence of pointed spaces,
then the induced homomorphism π1F → π1E of fundamental groups is naturally a
crossed module [7].

In the next sections of the paper we present a very powerful application of crossed
module due to [25]. The importance of this application comes from the fact that hyper-
groups do not have inverse element. From this reason we have to pay more attention to
define hypergroup action and crossed module of hypergroup.

3. Hypergroups
Let H be a non-empty set and ? : H ×H → P∗(H) be a hyperoperation. The couple

(H, ?) is called a hypergroupoid. For any two non-empty subsets A and B of H and
x ∈ H, we define

A ? B =
⋃

a∈A
b∈B

a ? b, A ? x = A ? {x} and x ? B = {x} ? B.

A hypergroupoid (H, ?) is called a semihypergroup if for all a, b, c of H we have (a?b)?c =
a ? (b ? c), which means that ⋃

u∈a?b
u ? c =

⋃
v∈b?c

a ? v.

A hypergroupoid (H, ?) is called a quasihypergroup if for all a of H we have a ? H =
H ? a = H. This condition is also called the reproduction axiom.

3.1. Definition. A hypergroupoid (H, ?) which is both a semihypergroup and a quasi-
hypergroup is called a hypergroup.

3.2. Remark. Every group is a hypergroup.

In a hypergroup (H, ?), an element e ∈ H is called a scalar identity element if e ? x =
x ? e = {x} := x, for all x ∈ H.

There exist many examples of hypergroups in [9, 11]. Here, we present two examples
of hypergroups.

3.3. Example. (1) [9, 11] Let (G, ·) be a group and H be a non-normal subgroup
of it. If we denote G/H = {xH | x ∈ G}, then (G/H, ?) is a hypergroup, where
for all xH, yH of G/H, we have xH ? yH = {zH | z ∈ xHy}.

(2) [14] Let H = {1, 2, 3, 4} with the hyperoperation defined in the following table:

? 1 2 3 4

1 1 {1, 2, 3} {1, 2, 3} {1, 4}
2 {1, 2, 3} {2, 3} {2, 3} {2, 3, 4}
3 {1, 2, 3} {2, 3} {2, 3} {2, 3, 4}
4 {1, 4} {2, 3, 4} {2, 3, 4} 4

Then, (H, ?) is a hypergroup.

3.4. Definition. Let (C, ?) and (H, ◦) be two hypergroups. Let ∂ be a map from C into
H. Then, ∂ is called

(1) an inclusion homomorphism if

∂(x ? y) ⊆ ∂(x) ◦ ∂(y), for all x, y ∈ C;

(2) a strong homomorphism or a good homomorphism if

∂(x ? y) = ∂(x) ◦ ∂(y), for all x, y ∈ C.
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3.5. Example. In Example 3.3(1), suppose that G is the symmetric group of degree 3,
H = 〈(1 2)〉 and C = 〈(2 3)〉. Then, we have

H = (1 2)H = {e, (1 2)}
(1 3)H = (1 3 2)H = {(1 3), (1 3 2)}
(2 3)H = (1 2 3)H = {(2 3), (1 2 3)}

Hence, G/H = {H, (1 3)H, (2 3)H}. By easy calculation we obtain the following
multiplication table on G/H.

◦ H (1 3)H (2 3)H

H H {(1 3)H, (2 3)H} {(1 3)H, (2 3)H}
(1 3)H (1 3)H {H, (2 3)H} {H, (2 3)H}
(2 3)H (2 3)H {H, (1 3)H} {H, (1 3)H}

Similarly, we have
C = (2 3)C = {e, (2 3)}
(1 2)C = (1 3 2)C = {(1 2), (1 3 2}
(1 3)C = (1 2 3)C = {(1 3), (1 2 3}

Hence, G/C = {C, (1 2)C, (1 3)C}. Again, by easy calculation we obtain the following
multiplication table on G/C.

? C (1 2)C (1 3)C

C C {(1 2)C, (1 3)C} {(1 2)C, (1 3)C}
(1 2)C (1 3)C {C, (1 3)C} {C, (1 3)C}
(1 3)C (2 3)C {C, (1 2)C} {C, (1 2)C}

Now, we define the map ∂ : G/C → G/H by ∂(C) = H, ∂((1 2)C) = (1 3)H and
∂((1 3)C) = (2 3)H. It is straightforward to that ∂ is a strong homomorphism.

4. Hypergroup action
According to [17, 24], we can consider a generalized permutation on a non-empty set

X as a map f : X → P∗(X) such that the reproductive axiom holds, i.e.,⋃
x∈X

f(x) = f(X) = X.

We denote the set of all generalized permutations by MX . A generalized permutation
f is said to satisfy the condition θ if x ∈ X and z ∈ f(x), then f(z) = f(x) [24]. We
denote the set of all generalized permutations that satisfies the condition θ by Mθ.

4.1. Proposition. [24] Let f ∈ Mθ and Mf = {g ∈ MX | g ⊆ f}. Then, Mf is a
hypergroup with respect to the hyperoperation ? defined by f1?f2 = {p ∈MX | p ⊆ f1◦f2},
where f1 ◦ f2 is defined by f1 ◦ f2 =

⋃
y∈f2(x)

f1(y).

Several mathematicians considered actions of algebraic hyperstructures, for example
see [21, 12, 26]. In [21], Madanshekaf and Ashrafi considered a generalized action of a
hypergroup H on a non-empty set X and obtained some results in this respect. For the
definition of crossed modules of hypergroups, we need the notion of hypergroup action.
So, we recall the following definition from [21].

4.2. Definition. Let (H, ?) be a hypergroup and X be a non-empty set. A map α :
H ×X → P∗(X) is called a generalized action of H on X, if the following axiom hold:

(1) α(g ? h, x) ⊆ α(g, α(h, x)), for all g, h ∈ H and x ∈ X, where

α(g ? h, x) =
⋃

k∈g?h
α(k, x).
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(2) For all h ∈ H, α(h,X) = X, where

α(h,X) =
⋃
x∈X

α(h, x).

If the equality holds in axiom (1) of Definition 4.2, the action is called strong general-
ized action. Moreover, if H has the scalar identity element e, then the following condition
must holds too,

(3) α(e, x) = {x} := x, for all x ∈ X.

4.3. Example. [21]
(1) For any hypergroup (H, ?) and any non-empty set X, the map α : H × X →

P∗(X), given by α(h, x) = X is a strong generalized action of H on X. If we
define α(h, x) = {x}, then this map is also a strong generalized action of H on
X.

(2) Let (H, ?) be a hypergroup. Then, the map α : H × H → P∗(H), given by
α(h, x) = h ? x is a strong generalized action of H on H.

4.4. Example. [21] Let X be a non-empty set, f ∈ Mθ and H = Mf . Then, the map
α : H ×X → P∗(X), defined by α(h, x) = h(x) is a strong generalized action of H on X.

For x ∈ X, we put hx := α(h, x). Then, for a strong generalized action, we have
(1) g( hx) =g?h x, for all g, h ∈ H and x ∈ X.
(2)

⋃
x∈X

hx = X, for all h ∈ H.

4.5. Example. Consider Example 3.3(1). We define the map α : G/H ×G→ P∗(G) by
yHx := yHx. Then, α is a strong generalized action.

4.6. Example. Suppose that G/H and G/C are the hypergroups defined in Example
3.5 and ∂ is the homomorphism between them. We define α : G/H ×G/C → P∗(G/C)
by

gHxC := {zC | z ∈ gHx}.
We show that α is a strong generalized action.

(1) For all g1H, g2H ∈ G/H and xC ∈ G/C we have
g2H

(
g1HxC

)
= g2H ({zC | z ∈ g1Hx})
= {aC | a ∈ g2Hz, z ∈ g1Hx}
= {aC | a ∈ g2Hg1Hx},

g2H◦g1HxC = {zH | z∈g2Hg1}xC
= {bC | b ∈ zHx, z ∈ g2Hg1}
= {bC | b ∈ g2Hg1Hx}.

Thus, g2H
(
g1HxC

)
=g2H◦g1H xC.

(2) Clearly, for all gH ∈ G/H we have
⋃

xC∈G/C

gHxC = G/C.

5. Crossed module of hypergroups
Now, in this section, we give the notion of crossed module of hypergroups. To define a

crossed module of hypergroups, we need the notion of hypergroup action and boundary
strong homomorphism.

5.1. Definition. A crossed module of hypergroups X = (C,H, ∂, α) consists of hyper-
groups (C, ?) and (H, ◦) together with a strong homomorphism ∂ : C → H and a strong
generalized action α : H × C → P∗(C) on C, satisfying the conditions:
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(1) h ◦ ∂(c) ⊆ ∂( hc) ◦ h, for all c ∈ C and h ∈ H.
(2) c ? c′ ⊆ ∂(c)c′ ? c, for all c, c′ ∈ C.

5.2. Example. Suppose that H is a non-empty set. We define the hyperoperation ◦ on
H by

h1 ◦ h2 = {h1, h2}, for all h1, h2 ∈ H.
Then, (H, ◦) is a hypergroup. Suppose that C is a subhypergroup of H and ∂ : C → H
is the identity map. The map α : H × C → P∗(C) is defined by hc := C is a strong
generalized action. Moreover,

(1) For all c ∈ C and h ∈ H, we have

h ◦ ∂(c) = h ◦ c = {h, c} ⊆ C ∪ {h} = C ◦ h = ∂(C) ◦ h = ∂( hc) ◦ h.

(2) For all c, c′ ∈ C, we have

c ◦ c′ = {c, c′} ⊆ C = C ◦ c = cc′ ◦ c = ∂(c)c′ ◦ c.

Therefore, X = (C,H, ∂, α) is a crossed module of hypergroups.

5.3. Example. Suppose that G is an abelian group and P a non-empty subset of G.
We consider the P -hyperoperation ?P on G as follows:

x ?P y = xyP, for all x, y ∈ G.

Then, (G, ?P ) is a hypergroup. Suppose that ∂ : G → G is the identity map. The map
α : G×G→ P∗(G) is defined by gx := {x} is a strong generalized action. Moreover,

(1) For all x, y ∈ G, we have

g ?P ∂(x) = g ?P x = gxP = xgP = x ?P g = ∂(x) ?P g = ∂( gx) ?P g

(2) For all x, y ∈ G, we have

x ?P y = xyP = yxP = y ?P x = xy ?P x = ∂(x)y ?P x.

Therefore, X = ((G, ?P ), (G, ?P ), ∂, α) is a crossed module of hypergroups.

5.4. Example. The direct product of X1 × X2 of two crossed modules of hypergroups
has source C1 ×C2, range H1 ×H2 and boundary homomorphism ∂1 × ∂2 with H1 ×H2

acting obviously on C1 × C2.

5.5. Theorem. Every crossed module is a crossed module of hypergroups.

Proof. By using Remark 3.2, the proof is straightforward. �

Let (H◦) be a hypergroup. We define the relation β∗H as the smallest equivalence
relation on H such that the quotient H/β∗H , the set of all equivalence classes, is a group.
In this case β∗H is called the fundamental equivalence relation on H and H/β∗H is called
the fundamental group. The product � in H/β∗H is defined as follows: β∗H(x)� β∗H(y) =
β∗H(z), for all z ∈ β∗H(x) ◦ β∗H(y). This relation is introduced by Koskas [18] and studied
mainly by Corsini [9], Leoreanu-Fotea [19] and Freni [15] concerning hypergroups, Vou-
giouklis [24] concerning Hv-groups, Davvaz concerning polygroups [11], and many others.
We consider the relation βH as follows:

x βH y ⇔ there exist z1, . . . zn such that {x, y} ⊆ ◦
n∏
i=1

zi.

Freni proved that for hypergroups β = β∗ i in [15]. The kernel of the canonical
map ϕH : H −→ H/β∗H is called the heart of H and is denoted by ωH . Here we also
denote by ωH the unit of H/β∗H . The heart of a hypergroup H is the intersection of all
subhypergroups of H, which are complete parts.
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5.6. Lemma. [9] ωP is a subhypergroup of H.

Throughout the paper, we denote the binary operations of the fundamental groups
H/β∗H and C/β∗C by � and ⊗, respectively.

Now, we consider the notion of kernel of a strong homomorphism of hypergroups.

5.7. Definition. Let (H, ◦) and (C, ?) be two hypergroups and ∂ : C → H be a strong
homomorphism. The core-kernel of ∂ is defined by

ker∗∂ = {x ∈ C | ∂(x) ∈ ωH}.

5.8. Theorem. ker∗∂ is a subhypergroup of C.

Proof. Suppose that x, y ∈ ker∗∂ are arbitrary. Then, ∂(x), ∂(y) ∈ ωH and so

β∗H((∂(x ? y))) = β∗H(∂(x) ◦ ∂(y)) = β∗H(∂(x))⊗ β∗H(∂(x)) = ωH ⊗ ωH = ωH .

Therefore, ∂(x?y) ⊆ ωH . This implies that x?y ⊆ ker∗∂. Now, we show that x?ker∗∂ =
ker∗∂ ? x = ker∗∂, for all x ∈ ker∗∂. Clearly, according to the above proof, we have
x ? ker∗∂ ⊆ ker∗∂. So, we show that ker∗∂ ⊆ x ? ker∗∂. Suppose that x, y ∈ ker∗∂.
Then, there exists z ∈ C such that y ∈ x ? z. Hence,

∂(y) ∈ ∂(x ? z) = ∂(x) ◦ ∂(z).
This implies that

β∗H(∂(y)) = β∗H(∂(x) ◦ ∂(z)) = β∗H(∂(x))� β∗H(∂(z))

and so we obtain ωH = ωH�β∗H(∂(z)). Hence, z ∈ ker∗∂. Thus, y ∈ x?ker∗∂. Similarly,
we can show that ker∗∂ ? x = ker∗∂. �

5.9. Definition. We say that (A,B, ∂′, α′) is a subcrossed module of the crossed module
of hypergroups (C,H, ∂, α) if

(1) A is a subhypergroup of C, and B is a subhypergroup of H,
(2) ∂′ is the restriction of ∂ to A,
(3) the action of B on A is induced by the action of H on C.

5.10. Definition. Let X = (C,P, ∂, α) and X′ = (C′, P ′, ∂′, α′) be two crossed modules
of hypergroups. A crossed module of hypergroups morphisms

< θ, φ >: (C,H, ∂, α)→ (C′, H ′, ∂′, α′)

is a commutative diagram of strong homomorphisms of hypergroups

C
θ //

∂

��

C′

∂′

��
H

φ
// H ′

such that for all h ∈ H and c ∈ C, we have

θ( hc) = φ(h)θ(c).

We say that < θ, φ > is an isomorphism if θ and φ are both isomorphisms. Similarly,
we can define monomorphism, epimorphism and automorphism of crossed modules of
hypergroups.

5.11. Proposition. Let (C, ?) and (H, ◦) be two hypergroups and let ∂ : C → H be a
strong homomorphism. Then, ∂ induces a group homomorphism D : C/β∗C → H/β∗H by
setting

D(β∗C(c)) = β∗H(∂(c)), for all c ∈ C.
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Proof. First, we prove that D is well defined. Suppose that β∗C(c1) = β∗C(c2). Then,

there exist a1, . . . , an such that {c1, c2} ⊆ ?
n∏
i=1

ai. So,

{∂(c1), ∂(c2)} ⊆ ∂
(
?
n∏
i=1

ai

)
= ◦

n∏
i=1

∂(ai).

Hence, ∂(c1) β∗H ∂(c2), which implies that D (β∗C(c1)) = D (β∗C(c2)). Now, we have

D(β∗C(c1)⊗ β∗C(c2)) = D(β∗C(c1 ? c2)) = β∗H(∂(c1 ? c2))

= β∗H(∂(c1) ◦ ∂(c2)) = β∗H(∂(c1))� β∗H(∂(c2))

= D(β∗C(c1))�D(β∗C(c2)).

�

We say the action of H on C is productive, if for all c ∈ C and h ∈ H there exist
c1, . . . , cn in C such that hc = c1 ? . . . ? cn.

Let (C, ?) and (H, ◦) be two hypergroups and let α : H ×C → P∗(C) be a productive
action on C. We define the map ψ : H/β∗H ×H/β∗C → P∗(H/β∗C) as usual manner:

ψ(β∗H(h), β∗C(c)) = {β∗C(x) | x ∈
⋃

y ∈ β∗C(c)
z ∈ β∗H (h)

zy}.

By the definition of β∗C , since the action of H on C is productive, we conclude that
ψ(β∗H(h), β∗C(c)) is singleton, i.e., we have

ψ : H/β∗H ×H/β∗C → H/β∗C ,

ψ(β∗H(h), β∗C(c)) = β∗C(x), for all x ∈
⋃

y ∈ β∗C(c)
z ∈ β∗H (h)

zy.

We denote ψ(β∗H(h), β∗C(c)) =
[β∗H (h)] [β∗C(c)].

5.12. Proposition. Let (C, ?) and (H, ◦) be two hypergroups and let α : H×C → P∗(C)
be a productive action on C. Then, ψ is an action of the group H/β∗H on the group C/β∗C .

Proof. Suppose that g, h ∈ H and c ∈ C. Then, we have

ψ(β∗H(h)� β∗H(g), β∗C(c)) = ψ(β∗H(h ◦ g), β∗C(c)) = [β∗H (h◦g)] [β∗C(c)] ,

and

ψ(β∗H(h), ψ(β∗H(g), β∗C(c))) = ψ
(
β∗H(h), [β∗H (g)] [β∗C(c)]

)
= [β∗H (h)]

(
[β∗H (g)] [β∗C(c)]

)
.

By the condition (1) of Definition 4.2, we have h( gc) = h◦gc. Now, it is not difficult to
see that

[β∗H (h◦g)] [β∗C(c)] =
[β∗H (h)]

(
[β∗H (g)] [β∗C(c)]

)
.

�

5.13. Theorem. Let X = (C,H, ∂, α) be a crosed module of hypergroups such that the
action of H on C is productive. Then, X = (C/β∗C , H/β

∗
H ,D, ψ) is a crossed module.
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Proof. By Propositions 5.11 and 5.12, it is enough to show that the conditions of Defi-
nition 2.2 hold. Suppose that c ∈ C and h ∈ H are arbitrary. Then, we have

D
(
[β∗H (h)] ([β∗C(c)])

)
� β∗H(h) = D ([β∗C(z])� β∗H(h), for all z ∈ hc

= β∗H(∂(z))� β∗H(h), for all z ∈ hc

= β∗H(∂( hc)) ◦ h))

= β∗H(h ◦ ∂(c))

= β∗H(h)� β∗H(∂(c))

= β∗H(h)�D(β∗C(c)),

which implies that D
(
[β∗H (h)] ([β∗C(c)])

)
= β∗H(h) � D(β∗C(c)) � β∗H(h)−1. So, the first

condition of Definition 2.2 holds. For the second condition, suppose that c, c′ ∈ C are
arbitrary. Then, we have

[D(β∗C(c))] [β∗C(c
′)]⊗ β∗C(c) = [β∗P (∂(c))] [β∗C(c

′)]⊗ β∗C(c)

= β∗C(z)⊗ β∗C(c), for all z ∈ ∂(c)c′

= β∗C

(
∂(c)c′ ? c

)
= β∗C(z), for all z ∈ c ? c′

= β∗C(c ? c
′)

= β∗C(c)⊗ β∗C(c′),

which implies that [D(β∗C(c))] [β∗C(c
′)] = β∗C(c)⊗ β∗C(c′)⊗ β∗C(c)−1. �

5.14. Theorem. Let X = (C,H, ∂, α) be a crossed module of hypergroups, ϕC and ϕP
be canonical maps. Then, < ϕC , ϕH > is a crossed modules of hypergroups morphisms.

Proof. Note that according to Theorem 5.13, we can consider (C/β∗C , P/β
∗
P ,D, ψ) as a

crossed module of hypergroups. We show that the following diagram is commutative.

C
ϕC //

∂

��

C/β∗C

D

��
H

ϕH

// H/β∗H

Indeed, we have DϕC(c) = D (β∗C(c)) = β∗H(∂(c)) = ϕH∂(c), for all c ∈ C. Moreover,

ϕC(
hc) = β∗C(

hc) = [β∗H (h)] [β∗C(c)] =
ϕH (h)ϕC(c),

for all c ∈ C and h ∈ H. Therefore, < ϕC , ϕH > is a crossed module of hypergroup
morphism. �

The following example give us another crossed module structure on the fundamental
groups.
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5.15. Example. Suppose that (H, ◦) is a hypergroup. Then, H/β∗H is a group. Sup-
pose that Aut (H/β∗H) its group of automorphisms. There is an obvious action α of
Aut (H/β∗H) on H/β∗H , and a group homomorphism ∂ : H/β∗H → Aut (H/β∗H) sending
each β∗H(h) ∈ P/β∗P to the inner automorphism of conjugation by β∗P (p). These together
form a crossed module (H/β∗H , Aut (H/β

∗
H) , ∂, α).
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