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Autoisoclinism classes and autocommutativity
degrees of finite groups
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Abstract
The notion of autoisoclinism was first introduced by Moghaddam et.
al., in 2013. In this article we derive more properties of autoisoclinism
and define autocommutativity degrees of finite groups. This work also
generalizes some results of Lescot in 1995. Among the other results,
we determine an upper bound for autocommutativity degree of finite
groups.
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1. Introduction
If G is a finite group then the commutativity degree d(G) of G is defined as

d(G) =
1

|G|2 |{(x, y) ∈ G×G|[x, y] = 1}| ,

which is the probability that two randomly chosen elements of G commute, where [x, y] =
x−1y−1xy. The commutative degree first studied by Gustafson in 1973, where he showed
that d(G) ≤ 5

8
for every non-abelian finite group G. The equality holds when G/Z(G) '

Z2×Z2. In 1995, Lescot investigated this concept by considering the notion of isoclinism
of groups. Whence he obtained certain results in this regard. In 2007, Erfanian et. al.,
introduced the concept of relative commutativity degree d(H,G) of a subgroup H in a
given group G as

d(H,G) =
1

|H||G| |{(x, y) ∈ H ×G|[x, y] = 1}| ,
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which is the probability that an arbitrary element of H commutes with an element of G.
In this article, we introduce the autocommutativity degree and the relative autocommu-
tativity degree of a subgroup H of G, denoted by daut(G) and daut(H,G), respectively,
which are defined as follows:

daut(G) =
1

|G||Aut(G)| |{(x, α) ∈ G×Aut(G)|[x, α] = 1}| ,

and

daut(H,G) =
1

|H||Aut(G)| |{(x, α) ∈ H ×Aut(G)|[x, α] = 1}| ,

where [x, α] = x−1xα. Clearly, daut(G) = 1 if and only if Aut(G) = {1}, that is, if and
only if |G| ≤ 2.
In Hegarty [5], the characteristic subgroups K(G) and L(G) of G are defined as follows:

K(G) = 〈 [x, α] | x ∈ G,α ∈ Aut(G) 〉 ,

and

L(G) = { x | [x, α] = 1, ∀α ∈ Aut(G) },

which are called autocommutator subgroup and absolute centre of G, respectively. One
can easily check that K(G) contains the derived subgruop G′ of G and L(G) is contained
in the centre, Z(G), of G.

2. Results on the relative autocommutativity degree
Let G be a group, and α be an automorphism of G. The subgroup CG(α) of G is

defined by

CG(α) = { x ∈ G | [x, α] = 1 }.

The following lemma gives an upper bound for daut(G), which is similar to Lemma
1.3 of [6].

2.1. Lemma. Let G be a finite nontrivial group. If p is the smallest prime divisor of
|G|, then daut(G) ≤ p−1

p|Aut(G)| + 1
p
.

Proof. Let p be the smallest prime divisor of |G|. Then |CG(α)| ≤ |G|/p for α 6= 1 which
α ∈ Aut(G) and hence

|G||Aut(G)|daut(G) =
∑
α∈Aut(G) |CG(α)|

=
∑
α=1 |CG(α)|+

∑
α∈Aut(G)\{1} |CG(α)|

= |G|+ |CG(α)|(|Aut(G)| − 1)

≤ |G|+ |G|
p

(|Aut(G)| − 1)

=
|G|
p

((p− 1) + |Aut(G)|) .

Therefore

daut(G) ≤ p− 1

p|Aut(G)| +
1

p
.

�
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2.2. Example. Consider the Klein four-group,

V4 =
〈
a, b | a2 = b2 = (ab)2 = 1

〉
.

It is easy to see that |Aut(V4)| = 6. Thus

daut(V4) =
|{(1, α)|α(1) = 1}|+ 3|{(b, α)|α(b) = b}|

|V4||Aut(V4)|

=
6 + 6

24
=

1

2
<

7

12
,

(α ∈ Aut(V4)) which satisfies Lemma 2.1.

The following theorem is a generalization of Lemma 2.1 of [1]. Moreover its first part
implies Lemma 2.2, Proposition 2.1 and Theorem 2.2 of [8].

2.3. Theorem. Let G be a finite group and H ≤ K ≤ G. Then daut(K,G) ≤ daut(H,G),
and equality holds if and only if K = HCK(α) for all α ∈ Aut(G).

Proof. Put A = {h ∈ H|hα = h} and B = {k ∈ K|kα = k}. Clearly the map
{hA|h ∈ H} → {kB|k ∈ K}, with hA 7→ hB is one-to-one. So we have |H|

|{ h | hα=h }| ≤
|K|

|{ k | kα=k }| , that is
|CK(α)|
|K| ≤ |CH (α)|

|H| for each α ∈ Aut(G). Hence

daut(K,G) =
1

|Aut(G)|
∑

α∈Aut(G)

|CK(α)|
|K|

≤ 1

|Aut(G)|
∑

α∈Aut(G)

|CH(α)|
|H|

= daut(H,G).

Also daut(K,G) = daut(H,G) if and only if |CK(α)|
|K| = |CH (α)|

|H| for all α ∈ Aut(G), which
is equivalent to K = HCK(α) for all α ∈ Aut(G). �

Clearly for any subgroup H ≤ G, we have daut(G) ≤ daut(H,G). For example, in the
Klein four-group we have daut(V4) = 1

2
≤ 2

3
= daut(< a >, V4).

2.4. Definition. Two groups G and H are autoisoclinic, (written G ∼aut H), if there
exists isomorphisms α, β and γ, as follows:

α :
G

L(G)
−→ H

L(H)

β : K(G) −→ K(H)

γ : Aut(G) −→ Aut(H),

where α induces β in following sense: if g ∈ G, h ∈ α(gL(G)) and if ϕH = γ(ϕG) , then
β([g, ϕG]) = [h, ϕH ].
The pair (α× γ, β) is called an autoisoclinism between G and H, see also [7] (and [6] for
isoclinism).

Let (α× γ, β) be an autoisoclinism between the groups G and H, then the following
diagram is commutative:
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G

L(G)
×Aut(G) - H

L(H)
×Aut(H)

K(G) - K(H)

? ?

α× γ

β

Next, we present the following lemma which is similar to Lemma 2.4 of [6].

2.5. Lemma. Let G and H be two autoisoclinic finite groups, then daut(G) = daut(H).

Proof. Let pair (α× γ, β) be an autoisoclinism from G to H, then one has

| G

L(G)
||Aut(G)|daut(G) =

1

|L(G)| |G||Aut(G)|daut(G)

=
1

|L(G)| |{(g, ϕG) ∈ G×Aut(G)| [g, ϕG] = 1 }|

= |{(gL(G), ϕG) ∈ G

L(G)
×Aut(G)| β([g, ϕG]) = 1 }|

= |{(hL(H), ϕH) ∈ H

L(H)
×Aut(H)| [h, ϕH ] = 1 }|

=
1

|L(H)| |{(h, ϕH) ∈ H ×Aut(H)| [h, ϕH ] = 1 }|

=
1

|L(H)| |H||Aut(H)|daut(H)

= | H

L(H)
||Aut(H)|daut(H).

But G
L(G)

and H
L(H)

are isomorphic, so | G
L(G)
| = | H

L(H)
|. From the fact that Aut(G)

and Aut(H) are isomorphic, we conclude |Aut(G)| = |Aut(H)|, from which the equality
daut(G) = daut(H) follows. �

3. Results on autoisoclinism
We begin this section by establishing some elementary lemmas which will be used to

derive the results on autoisoclinism (see also [2, 6]). Now, we present the following lemma
which is similar to Lemma 2.6 of [6].

3.1. Lemma. Let S be a characteristically simple group of order more than two, then
any group G autoisoclinic to S is isomorphic to S × L(G).

Proof. By order of S we have K(S) 6=< 1 > and L(S) 6= S. Suppose G ∼aut S. Hence
K(G) ' K(S). Since S is a characteristically simple group, then K(S) = S ' K(G).
Thus K(G) ∩ L(G) ⊆ L(K(G)) = {1}. On the other hand G

L(G)
' S

L(S)
' S because

G ∼aut S and S is a characteristically simple group. Hence

K(
G

L(G)
) ' K(S) = S ' G

L(G)

⇒ L(G)K(G)

L(G)
= K(

G

L(G)
) =

G

L(G)

⇒ G = K(G)L(G) = K(G)× L(G) ' S × L(G).

�
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3.2. Lemma. Let H be a finite subgroup of G, where H and G are autoisoclinic, then
G = HL(G).

Proof. If H is finite group autoisoclinic to G, then G
L(G)

' H
L(H)

is also finite. But

| G

L(G)
| ≥ |HL(G)

L(G)
|

= | H

H ∩ L(G)
|

= | H

L(H)
|| L(H)

H ∩ L(H)
|

≥ | H

L(H)
|

= | G

L(G)
|.

This implies that G = HL(G). �

3.3. Lemma. Let H be a characteristic subgroup of finite group G, and G = HL(G)
such that Aut(H) ' Aut(G). Then G and H are autoisoclinic.

Proof. If H is a characteristic subgroup of G, then H ∩ L(G) ⊆ L(H). Also L(H) '
H ∩ L(G) because Aut(H) ' Aut(G), and

H

L(H)
=

H

L(G) ∩H

' HL(G)

L(G)

=
G

L(G)
,

the isomorphism i1 : H/L(H) −→ G/L(G) being induced by the inclusion i : H −→ G.
Furthermore, let g ∈ G, α ∈ Aut(G), then g = lh for some l ∈ L(G) and h ∈ H. Hence
[g, α] = [lh, α] = (lh)−1(lh)α = h−1l−1lαhα = h−1hα = [h, α] ∈ K(H), On the other
hand K(H) ' 〈[h, α] | h ∈ H,α ∈ Aut(G)〉 ⊆ K(G), and so K(G) = K(H). This argu-
ment shows that (i1 × 1Aut(G), 1K(G)) is an autoisoclinism from H to G. �

3.4. Theorem. Let G be a finite group such that G = HL(G) where H is a characteristic
subgroup of G with Aut(H) ' Aut(G). Then daut(G) = daut(H).

Proof. It follows from Lemma 2.5 and Lemma 3.3 . �

The following lemma is similar to Lemma 1.3 of [2], will be used in the next theorem.

3.5. Lemma. Let G be a group with characteristic subgroup N. Then
G/N ∼aut G/(N ∩K(G)). In particular, if N ∩K(G) = {1} , then G ∼aut G/N .
Conversely, if |K(G)| <∞ and G ∼aut G/N , then N ∩K(G) = {1}.

Proof. We set Ḡ = G/N and Ĝ = G/(N ∩K(G)). For any k1, k2 ∈ K(G), k̄1 = k̄2 ⇔
k̂1 = k̂2. For g ∈ G and ϕ ∈ Aut(G), we have therefore, [ḡ, ϕ̄] = 1̄ ⇔ [ĝ, ϕ̂] = 1̂(because
N is characteristic subgroup of G), where ϕ̄ : gN → ϕ(g)N and ϕ̂ : g(N ∩ K(G)) →
ϕ(g)(N ∩K(G)). This implies that ḡ ∈ L(Ḡ) if and only if ĝ ∈ L(Ĝ). Let α(ḡL(Ḡ)) =

ĝL(Ĝ). Then α is an isomorphism of Ḡ/L(Ḡ) onto Ĝ/L(Ĝ). If γ(ϕ̄Ḡ) = ϕ̂Ĝ, then γ is
an isomorphism of Aut(Ḡ) onto Aut(Ĝ). Let k ∈ K(G) and denote β(k̄) = k̂. Then β

defines an isomorphism of K(Ḡ) onto K(Ĝ) and β is induced by α in Definition 2.4 .
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Conversely, if N E G and G ∼aut G/N , then

K(G) ' K(G/N) = K(G)N/N ' K(G)/(N ∩K(G)).

Thus, if |K(G)| <∞, then N ∩K(G) = {1}. �

The following theorem follows from the above lemma and is similar to Theorem 1.4
of [2].

3.6. Theorem. Let G and H be finite groups. Then G and H are autoisoclinic if and
only if there exists finite groups C, LG, LH , CG and CH such that G ' C/LH and
H ' C/LG and the following two (equivalent) properties hold:

(i) G ' C/LH ∼aut C ∼aut C/LG ' H,
(ii) C/LH × C/K(C) ∼aut CH ' C ' CG ∼aut C/LG × C/K(C), where CH and

CG are subgroups of C/LH × C/K(C) and C/LG × C/K(C) respectively.

Proof. One part of the theorem is trivial. Assume that G ∼aut H, and let β be the
isomorphism between K(G) and K(H) given in Definition 2.4. Finally, let C be the
direct product of G and H with identified factor groups G/L(G) and H/L(H). If

LH = {(1, l) | l ∈ L(H) } and LG = {(l, 1) | l ∈ L(G) },

then we have C/LH ' G and C/LG ' H, where LH ' L(H) and LG ' L(G).

(i) It follows from Definition 2.4 that K(C) is generated by elements of the form

([g, ϕG], β([g, ϕG]))

where g ∈ G,ϕG ∈ Aut(G). We claim that

K(C) ∩ LG = K(C) ∩ LH = 1.

For, if (1, l) = (g, h) ∈ K(C), then h = β(g) = 1. Similarly for K(C) ∩ LG. By
Lemma 3.5 we therefore have

C/LH ∼aut C ∼aut C/LG.

(ii) Let
CG = {(cLG, cK(C) | c ∈ C}.

CG is a group, isomorphic to C, since K(C) ∩ LG = {1}. Moreover, it follows
from Lemma 3.3 that CG ∼aut C/LG × C/K(C). Now we have the equality

CGL(C/LG × C/K(C)) = C/LG × C/K(C).

To see this, let x = (c1LG, c2K(C)) be an element of the direct product of
the groups C/LG and C/K(C). Then x = yl, where y = (c1LG, c1K(C)) ∈
CG, and l = (LG, c1

−1c2K(C)). Since C/K(C) is an autoabelian group, then
L(C/K(C)) = C/K(C) and LG is identity of C/LG. It follows that l ∈
L(C/LG × C/K(C)).
Similarly

C ' CH ∼aut C/LH × C/K(C).

�
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