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Abstract
In this note, we prove that a finite group G is p-supersolvable if and only if there exists
a power d of p with p2 ≤ d < |P | such that H ∩ Op(G∗p) is normal in Op(G) for all
non-cyclic normal subgroups H of P with |H| = d, where P is a Sylow p-subgroup of G.
Moreover, we also prove that either lp(G) ≤ 1 and rp(G) ≤ 2 or else |P ∩ Op(G)| > d if
there exists a power d of p with 1 ≤ d < |P | such that H ∩ Op(G∗p2) is normal in Op(G)
for all non-meta-cyclic normal subgroups H of P with |H| = d.
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1. Introduction
All groups considered in this note are finite. We use conventional notions and notation,

as in [9].
It is quite interesting to investigate the structure of a group by using some kind of

the embedding properties of subgroups and many interesting results have been given (for
example, see [1, 6, 8, 13]). Recently, Guo and Isaacs [6] proved the following theorem by
using the embedding condition “H ∩Op(G) �Op(G)”.
Theorem 1.1. ([6, Theorem B]). Let P ∈ Sylp(G), and let d be a power of p such that
1 ≤ d < |P |. Assume that H ∩ Op(G) � Op(G) for all subgroups H � P with |H| = d.
Then either G is p-supersolvable or else |P ∩Op(G)| > d.

An interesting idea of [6] is that in the hypothesis of the theorem only the normal
subgroups of order d are considered, not necessarily the family of all subgroups of order d.
Recall that a subgroup H of a group G is said to be S-semipermutable in G (see [12]) if
H permutes with all Sylow q-subgroups of G for the primes q not dividing |H|. Ballester-
Bolinches etc in their paper [1] proved an analogous result, but they only assume that
H ∩Op(G) are S-semipermutable in Op(G) instead of assuming that these subgroups are
normal in Op(G).
Theorem 1.2. ([1, Theorem 2]). Let P ∈ Sylp(G), and let d be a power of p such that
1 ≤ d < |P |. Assume that H ∩ Op(G) is S-semipermutable in G for all subgroups H � P
with |H| = d. Then either G is p-supersolvable or else |P ∩Op(G)| > d.
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More recently, Yu in his paper [13] use the subgroup G∗p of a group G, and consider the
embedding condition Op(G∗p) ∩H � Op(G) to prove the following result, where G∗p is the
unique smallest normal subgroup of a group G for which the corresponding factor group
is abelian of exponent dividing p− 1.

Theorem 1.3. ([13, Theorem 2]). Let P ∈ Sylp(G), and let d be a power of p such that
1 ≤ d < |P |. Then G is p-supersolvable if and only if |P ∩Op(G∗p)| ≤ d and H ∩Op(G∗p)�
Op(G) for all subgroups H � P with |H| = d.

Remark 2.3 and Example 2.4 in [13] show that it is better to use the embedding condition
Op(G∗p)∩H�Op(G) to investigate the p-supersolvability of groups. On the other hand, in
all of the above results all normal subgroups of order d in P are considered. So we wonder
whether we may reduce the number of normal subgroups of order d in P?

In fact, we have the following results.

Theorem 1.4. Let P ∈ Sylp(G), and let d be a power of p such that p2 ≤ d < |P |. Then
G is p-supersolvable if and only if |P ∩ Op(G∗p)| ≤ d and H ∩ Op(G∗p) � Op(G) for all
non-cyclic subgroups H � P with |H| = d.

Theorem 1.5. Let p be a prime dividing the order of a group G of odd order, let d be
a power of p such that 1 ≤ d < |P | and P ∈ Sylp(G) with |P | > d. And suppose that
H ∩ Op(G∗p2) � Op(G) for all non-meta-cyclic normal subgroups H in P with | H |= d.
Then either p-length lp(G) ≤ 1 and p-rank rp(G) ≤ 2 or else |P ∩Op(G∗p2)| > d, where G∗p2

is the unique smallest normal subgroup of the group G for which the corresponding factor
group is abelian of exponent diving p2 − 1.

We should notice that we assume d ≥ p2 in Theorem 1.4. In fact, if p = 2 and d = 2 ,
then the result is still true. Since |P∩Op(G∗p)| ≤ 2, it follows from Burnside Theorem[9, IV,
2.8] that Op(G∗p) is 2-nilpotent, and thus G∗p is 2-nilpotent. Hence G is 2-supersolvable.
However, the result is not true if p is odd prime and d = p in Theorem 1.4. In fact, let
D be a non-abelian simple group such that Sylow p-subgroups of D are cyclic of order p,
and let G = D × C with a cyclic group C of order p. Clearly, G∗p = G and H ∩ Op(G∗p)
is normal in Op(G) for every non-cyclic normal subgroup H of P of order d, where P is a
Sylow p-subgroup. But |P ∩Op(G∗p)| = p and G is not p-supersolvable.

We also notice that the hypothesis “G is an odd order group” in Theorem 1.5 can not
be removed. In fact, let D be a non-abelian simple group such that Sylow p-subgroups
of D are cyclic of order pm(d ≥ pm ≥ 1), and let G = D × C with a cyclic group
C of order pn(n ≥ 1). Clearly, H ∩ Op(G∗p2) is normal in Op(G) for every non-meta-
cyclic normal subgroup H of P of order d, where P is a Sylow p-subgroup of G. But
|P ∩Op(G∗p2)| = pm ≤ d and G is not p-solvable.

Furthermore, the following example tells us that G may not be p-supersolvable if G
satisfies the hypotheses in Theorem 1.5. Let p be an odd prime with p 6= 2k − 1 for all
positive integer k. Write P = 〈a〉×〈b〉 ' C2

pn . So Aut(Ω1(P )) ' GL(2, p) and there exists
a cyclic subgroup T of order p2−1 in Aut(Ω1(P )). Note that p+1 is not a power of 2, then
we can choose an automorphism α ∈ T with order q such that q|p + 1 and q 6= 2. Now,
considering the surjective homomorphism φ : Aut(P ) → Aut(Ω1(P )); we can choose an
automorphism α of P such that φ(α) = α. Write the semidirect product G = P o〈α〉, it is
clear that H ∩Op(G∗p2) is normal in Op(G) for every non-meta-cyclic normal subgroup H
of P of order d = pm (m < 2n). Now we prove that G is not p-supersolvable. If the action
of α on Ω1(P ) = 〈a1〉 × 〈b1〉 ' C2

p is reducible, then it follows from p 6= q and Maschke’s
Theorem that 〈a1〉, 〈b1〉 are α-invariant. It follows from g.c.d.(p+1, p−1) = 2 that q - p−1,
and therefore α acts trivially on both 〈a〉 and 〈b〉, that is, α acts trivially on Ω1(P ), a
contradiction. Hence α acts irreducibly on Ω1(P ), implying that α acts irreducibly on
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Ω1(P ). Then we have Ω1(P ) ' C2
p is a minimal normal subgroup of G and so rp(G) = 2.

It follows that G is not p-supersolvable.

2. Preliminary results
In this section we list some basic and known results which will be used in our proofs.

Definition 2.1. ([7, Definition 1.9]). Let p be prime. A group G is said to be a CS(p, n)-
group if G is a p-group with a characteristic series

1 = G0 < G1 < · · · < Gm = G

such that |Gi/Gi−1| ≤ pn for all i ≥ 1.

It is clear that meta-cyclic p-groups and p-groups of maximal class are both CS(p, 2)-
groups.

Lemma 2.2. ([3, Lemma 1.4]). Let p be a prime, let P be a p-group and let d be a power
of p such that p2 ≤ d < |P |. Let N � P , where |N | ≥ d, and suppose that every normal
subgroup of P that has order d and is contained in N is cyclic. Then N is cyclic, dihedral,
semidihedral or generalized quaternion.

Lemma 2.3. ([2, Lemma 2.4]). Let P � G, where P is a p-group. Also, let N ≤ G be
a p-subgroup with |N | ≤ |P | and N 6≤ P . Then N < PN , and every subgroup H with
N < H ≤ NP is non-cyclic.

Lemma 2.4. ([8, Lemma 2.5]). If a group P of order 2n > 23 has a subgroup M of order
2n−1 of maximal class, then either P is of maximal class or P/P ′ ' C3

2 , and P ′ is cyclic.

Lemma 2.5. ([3, Exercise 1(b), p.114]). Let P be dihedral, semidihedral or generalized
quaternion, then P has the only one normal subgroup N of order 2a for every 1 < 2a <
|P |/2 and N is cyclic.

Lemma 2.6. ([4, Corollary 69.5]). Let p be an odd prime and d be a power of p such
that d ≥ p3, and let N be a normal subgroup of a p-group P with |N | ≥ d. If every
normal subgroup of P that has order d and is contained in N is meta-cyclic, then N is a
meta-cyclic group or a 3-group of maximal group.

Lemma 2.7. Let p be a odd prime, and let P be a meta-cyclic p-group or a 3-group of
maximal class. If N is normal in P , then Ω1(N) . Cp×Cp or N is a 3-group of maximal
class.

Proof. If P is meta-cyclic, then Ω1(N) . Cp × Cp. Now assume that P is a 3-group of
maximal class. It follows from [3, Exercise 9.1] that N is a 3-group of maximal class or
absolutely regular, where a p-group N is absolutely regular if |G/01(G)| < pp (see [3, List
of definitions and notations]). If N is absolutely regular, then |Ω1(N)| = |N/01(N)| ≤ 32,
and thus Ω1(N) . Cp × Cp by [3, Lemma 1.4]. �

Lemma 2.8. Let p be a prime and d be a power of p such that p3 ≤ d, and let P be a
p-group. Also, let N and P1 be normal subgroups of P with N . Cp × Cp and N < P1.
If P1 contains a non-meta-cyclic normal subgroup of order d of P , then there exists a
non-meta-cyclic normal subgroup H of order d of P such that N < H ≤ P1.

Proof. Let H1 be a non-meta-cyclic normal subgroup of order d of P with H1 ≤ P1. If
N 6≤ H1, then |N ∩H1| = 1 or p by N . Cp × Cp, that is, |N : N ∩H1| = p2 or p. First,
we assume that |N : N ∩H1| = p. Since N ∩H1 is normal in P , there exists a maximal
subgroupM of H1 such thatM�P and N∩H1 ≤M , and so H = NM is normal in P and
|H| = d. Noting that H1 is non-meta-cyclic, we have that M is non-cyclic. It follows from
N 6≤ M and N . C2

p that Ω1(H) > Ω1(M) ≥ p2. Thus H is non-meta-cyclic by Lemma
2.7 and H ≤ P1. Now assume that |N : N ∩ H1| = p2 and take a subgroup M1 of H1
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with |M1| = d/p2 and M1 � P . Then H = NM1 is a normal subgroup of P with |H| = d.
Noticing that N ' Cp × Cp and N ∩M = 1, we see |Ω1(H)| ≥ |Ω1(N)||Ω1(M)| ≥ p3.
Hence H is non-meta-cyclic by Lemma 2.7, as we wanted. �

Lemma 2.9. ([7, Lemma 2.2]). Let P be a p-group. If P has a meta-cyclic maximal
subgroup and P is not isomorphic to C3

p , then P is a CS(p, 2)-group.

Lemma 2.10. ([7, Lemma 3.2]). Let an odd order group A act on a CS(p, 2)-group P .
Then P is centralized by Op(A∗p2).

Lemma 2.11. Let G be a group and let p be a prime of |G|. If G∗p2 is p-nilpotent, then
G is p-solvable with lp(G) ≤ 1 and rp(G) ≤ 2.

Proof. Since G∗p2 is p-nilpotent, G is p-solvable of lp(G) ≤ 1. We see G has a chief series

1 = K0 < · · · < H0 = Op(G∗p2) < H1 < · · · < Hn = G∗p2 < · · · < G

Noticing that Op(G∗p2) ≤ CG(Hi+1/Hi) (0 ≤ i ≤ n − 1), we have AG(Hi+1/Hi) '
G/CG(Hi+1/Hi) ∈ DpUp2−1, where Dp is the formation consisting of all p-groups and
Up2−1 is the formation consisting of all abelian groups with exponent dividing p2 − 1.
Since Op(AG(Hi+1/Hi)) = 1 by [5, A, Lemma 13.6], it follows that AG(Hi+1/Hi) ∈ Up2−1,
and so AG(Hi+1/Hi) is abelian with exponent dividing p2 − 1.

Write |Hi+1/Hi| = pm. By the faithful and irreducible action of the abelian group
AG(Hi+1/Hi) onHi+1/Hi, we see that AG(Hi+1/Hi) is cyclic andm is the smallest positive
integer such that |AG(Hi+1/Hi)| divides pm − 1 by [9, II, Lemma 3.10], and thus m ≤ 2
since the exponent of AG(Hi+1/Hi) divides p2 − 1. Then rp(G) ≤ 2. �

3. Proof of Theorem 1.4
Lemma 3.1. Let p be a prime, and let P ∈ Sylp(G), where G is a group. If P is a cyclic
group, then either G is p-supersolvable or else P ∩Op(G∗p) = P .

Proof. Without loss of generality, we assume P ∩Op(G∗p) < P . If P ∩Op(G∗p) = 1, then
G∗p is a p-nilpotent, and thus G is p-supersolvable. So 1 < P ∩Op(G∗p) < P , then it follows
from [11, Theorem 2.1] that G is p-supersolvable. �

Proof of Theorem 1.4. Note that G is p-supersolvable if and only if G∗p is p-nilpotent,
and so we only need to prove the sufficient. Now assume that G is a counterexample of
minimal order. Then G is not p-supersolvable. In particular, G∗p is not p-nilpotent, and
therefore N = P ∩Op(G∗p) > 1. For convenience, we write

H = {H � P | H is a non-cyclic subgroup with |H| = d}
and

Y = {Y < ·P | N 6≤ Y }.
It is easy to see that H ∩Op(G∗p) �G for all H ∈ H. We proceed in a number of steps to
derive a contradiction.

Step 1. P is not cyclic, dihedral, semidihedral or generalized quaternion.
If P is cyclic, then, by Lemma 3.1, G is p-supersolvable, a contradiction. Now assume

that P is dihedral, semidihedral or generalized quaternion. If N is a cyclic subgroup, then
it follows from Burnside’s theorem [9, IV, 2.8] and p = 2 that Op(G∗p) is 2-nilpotent, and
thus G∗p is 2-nilpotent, a contradiction. Thus, by Lemma 2.5, we may assume that N is a
non-cyclic maximal subgroup of P and |N | = d. In this case P = D2n(n ≥ 3), Q2n(n ≥ 4)
or SD2n , and thus there exists a non-cyclic maximal subgroup N1 of P such that N 6≤ N1.
For convenience, we write M1 = N ∩N1 and have

M1 = N ∩Op(G∗p) ∩N1 ∩Op(G∗p) �G.
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Since |P : M1| = 22, M1 is cyclic by Lemma 2.5. It follows that Op(G∗p) is 2-supersolvable
and therefore Op(G∗p) is 2-nilpotent. Hence G∗p is 2-nilpotent, a contradiction.

Step 2. H 6= φ.
Suppose not, that is , all normal subgroups of P with order d are cyclic. Now by Lemma

2.2, P is cyclic, dihedral, semidihedral or generalized quaternion, in contradiction to Step
1.

Step 3. Op′(G∗p) = 1.
Write D = Op′(G∗p) and G = G/D, and note that Op(G∗p) = Op(G∗p) by [13, Lemma

2.9]. It follows from Dedekind’s lemma that Op(G∗p)∩DH = D(Op(G∗p)∩H) for H ∈ H. In
addition, both D and Op(G∗p)∩H are normalized by Op(G), we see that Op(G) normalizes
Op(G∗p)∩DH, or equivalently, Op(G) normalizes Op(G∗p)∩H. Since PD∩Op(G∗p) = D(P ∩
U) = DN and |N | ≤ d, we see that |P ∩ Op(G∗p)| ≤ d. Then G satisfies the hypotheses,
and therefore G is p-supersolvable. It is clear that the subgroups of G corresponding to
the members of H are exactly the subgroups H for H ∈ H. Hence G is p-supersolvable.
Futhermore, we see that G is p-supersolvable, which is a contradiction. So we conclude
that D = 1.

Step 4. N is normal in G. In fact, G is p-solvable and P �G.
Since H ∩Op(G∗p)�Op(G) for H ∈ H and Op(G∗p) ≤ Op(G), we see that H ∩Op(G∗p)�

Op(G∗p) for H ∈ H. Then G∗p satisfies the hypotheses of [8, Theorem 3.2], and thus G∗p is p-
supersolvable. Hence G is p-solvable. Noticing that Op′(G∗p) = 1 and G∗p is p-supersolvable,
we have P �G∗p by [9, VI, 6.6]. Then it follows from P ∈ Sylp(G∗p) and G∗p �G that P is
normal in G. So N = P ∩Op(G∗p) is normal in G by Op(G∗p) �G.

Step 5. There exists a maximal subgroup Y ∈ Y with L = N ∩ Y is not normal in G
and L is cyclic.

If N ≤ Φ(P ), then it follows from Tate’s theorem [9, IV, 4.7] that Op(G∗p) is p-nilpotent,
and therefore G∗p is p-nilpotent, a contradiction. Thus there exists a maximal subgroup Y
of P with N 6≤ Y .

Next we prove that there exists Y ∈ Y such that L = N ∩Y is not normal in G. If not,
then L = N∩Y is normal in G and |N : L| = p for all Y ∈ Y. So G∗p ≤ CG(N/L). Noticing
that N/L is a normal Sylow p-subgroup of Op(G∗p)/L, we see N/L ≤ Z(Op(G∗p)/L), and
therefore Op(G∗p)/L is p-nilpotent by Burnside’s theorem [9, IV, 2.6]. Hence Op(Op(G∗p)) <
Op(G∗p), a contradiction.

Finally, we prove that L is cyclic. If L is non-cyclic, then there exists H ∈ H such that
L < H ≤ Y . So

L = H ∩ L = H ∩ Y ∩N = H ∩N = H ∩ P ∩Op(G∗p) = H ∩Op(G∗p) �G,

which is a contradiction.
Step 6. Y is a cyclic, dihedral, semidihedral or generalized quaternion group.
Let Y and L be as in Step 5. If there exists a subgroup S in Y such that S ∈ H, then,

since |L| < |N | ≤ d = |S|, there exists H ∈ H such that L < H ≤ LS ≤ Y by Lemma 2.3.
In this case, we have

L = H ∩ L = H ∩ Y ∩N = H ∩N = H ∩ P ∩Op(G∗p) = H ∩Op(G∗p) �G,

in contradiction to Step 5. So every normal subgroup of P that has order d and is contained
in Y is cyclic. By Lemma 2.2, the Step 6 is true.

Step 7. The final contradictions.
If Y is a cyclic maximal subgroup of P , then it follows from [2, Lemma 2.1(b)] and Step

1 that Op(G∗p) acts trivially on P , and therefore G∗p is p-nilpotent, a contradiction. Now
assume that Y is a dihedral, semidihedral or generalized quaternion group. If |Y | = d,
then Y ∈ H, and therefore L = N ∩ Y = P ∩Op(G∗p) ∩ Y is normal in G, in contradiction
to Step 5. The remaining case is |Y | > d. In this case, since Y is of maximal class, we see
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that |Y : Y ′| = 22. Furthermore, by |Y | > d ≥ |N | and |N : L| = 2, we see that L ≤ Y ′

by Lemma 2.5. It follows from Lemma 2.4 that P ′ is cyclic, and therefore L ≤ Y ′ ≤ P ′ is
normal in G by P �G, in contradiction to Step 5, which is the final contradiction. So the
proof is complete. �

Now we present some application of Theorem 1.4.

Lemma 3.2. Let P ∈ Sylp(G) with |P | > p3. If P has exactly one non-cyclic maximal
subgroup M and M �G∗p, then G is p-supersolvable.

Proof. It is easy to see that the hypotheses are inherited by G/Op′(G∗p) and PG∗p , so we
can assume that Op′(G∗p) = 1. If PG∗p < G, then PG∗p is p-supersolvable by induction. It
follows from Op′(G∗p) = 1 and [9, VI, 6.6] that P is normal in PG∗p , and thus P = PG∗p .
And since G∗p � G and P ∈ Sylp(G∗), we see that P � G. Noticing that there exists a
cyclic maximal subgroup in P , we see, by [2, Lemma 2.1], that Op(G∗p) acts trivially on
P . Thus G∗p is p-nilpotent, and therefore G is p-supersolvable. Now we can assume that
PG∗p = G, and in particular, G∗p = G. Then it follows from [8, Lemma 4.1] that G is
p-supersolvable. �

Lemma 3.3. Let a Sylow p-subgroup P of G be a non-cyclic subgroup with |P | > p3. If
every non-cyclic maximal subgroup of P is normal in G∗p, then G is p-supersolvable.

Proof. By Lemma 3.2, we can assume that P has two distinct non-cyclic maximal sub-
groups. Then P is normal in G∗p. In addition, G∗p is normal in G and P ∈ Sylp(G∗p). Thus
P is normal in G. Since |P | > p3, we see, by [2, Theorem A], that Op(G∗p) acts trivially
on P . Then G∗p is p-nilpotent, and therefore G is p-supersolvable. �

Corollary 3.4. Let P be a non-cyclic Sylow p-subgroup of G with |P | > p3, and suppose
for every non-cyclic maximal subgroup H of P that H ∩ Op(G∗p) � Op(G). Then G is
p-supersolvable.

Proof. Assume that G is not p-supersolvable. Applying Theorem 1.4 with d = |P |/p, we
deduce that Op(G∗p) = G∗p, and thus every non-cyclic maximal subgroup of P is normal in
G∗p. It follows from Lemma 3.3 that G is p-supersolvable, a contradiction. �

Corollary 3.5. Let p be an odd prime and P ∈ Sylp(G), where P is non-cyclic. Let d
be a power of p such that p2 ≤ d < |P |, and let H be the set of all non-cyclic normal
subgroups H of P with |H| = d. Assume that H ∩ Op(G∗p) � Op(G) for all H ∈ H. If
NG(H) is p-supersolvable for all H ∈ H, then G is p-supersolvable.

Proof. If |P ∩ Op(G∗p)| ≤ d, then G is p-supersolvable by Theorem 1.4. Now we can
assume that |P ∩Op(G∗p)| > d. In this case, if there exists H ∈ H such that H ≤ Op(G∗p),
then H �Op(G), and thus H �POp(G) = G. Hence G = NG(H) is p-supersolvable. Now
we may assume that N = P ∩ Op(G∗p) is cyclic by Lemma 2.2. Let L be a subgroup of
N with order d/p. Since P is non-cyclic, there exists H ∈ H such that L ≤ H by Lemma
2.2 and [8, Lemma 2.4], and thus L = N ∩H. Noticing that L = N ∩H = H ∩Op(G∗p) is
normal in Op(G), we have that L is normal in G. It follows from [11, Theorem 2.1] that
Op(G∗p) is p-supersolvable, and therefore N �Op(G∗p). In addition, Op(G∗p) is normal in G
and N ∈ Sylp(Op(G∗p)). Then N is normal in G. Hence, by [2, lemma 2.1] , Op(G∗p) acts
trivially on N . Furthermore, we see that G∗p is p-nilpotent and G is p-supersolvable. The
proof of the corollary is complete. �

4. Proof of Theorem 1.5
Lemma 4.1. Let G be a group of odd order and P be a Sylow p-subgroup of G. If P is a
meta-cyclic group or 3-group of maximal class, then lp(G) ≤ 1 and rp(G) ≤ 2.
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Proof. we proceed by induction on |G|. It is easy to see that the hypotheses are inherited
by G/Op′(G). So we assume that Op′(G) = 1. Then Op(G) 6= 1 since G is p-solvable. By
Lemma 2.7, we see that Op(G) is a 3-group of maximal class or Ω1(Op(G)) . Cp ×Cp. If
Op(G) is of maximal class, then Op(G) is a CS(p, 2)-group. Hence Op(G∗p2) acts trivially
on Op(G) by Lemma 2.10. It follows from Hall-Higman lemma [10, Theorem 3.21] that
Op(G∗p2) ≤ CG(Op(G)) ≤ Op(G), and thus G∗p2 is p-group. Furthermore, by Lemma 2.11,
lp(G) ≤ 1 and rp(G) ≤ 2. Now we assume that Ω1(Op(G)) . Cp × Cp. It follows from
Lemma 2.10 that Op(G∗p2) act trivially on Ω1(Op(G)), and thus Op(G∗p2) act trivial on
Op(G) by [9, IV, 5.12]. So lp(G) ≤ 1 and rp(G) ≤ 2 by using the arguments above. �

Proof of Theorem 1.5. Suppose that G is a counterexample of minimal order. Then
|P ∩ Op(G∗p2)| ≤ d and lp(G) 6≤ 1 or rp(G) 6≤ 2. By Lemma 2.11, we see that G∗p2 is not
p-nilpotent, and N = P ∩Op(G∗p2) > 1. For convenience, we write

H1 = {H � P | H is a non-meta-cyclic subgroup with |H| = d}
and

Y = {Y < ·P | N 6≤ Y }.
It is easy to see H ∩ Op(G∗p2) � G for all H ∈ H1. We proceed in a number of steps to
derive a contradiction.

Step 1. Op′(G) = 1.
Write D = Op′(G) and G = G/D. We argue that G satisfies the hypotheses of the the-

orem. The subgroups of G corresponding to the members of H1 are exactly the subgroups
H for H ∈ H1, and since Op(G) = Op(G) and Op(G∗p2) = Op(G∗p2), we must show that
Op(G) normalizes Op(G∗p2) ∩H. On the other hand, Op(G∗p2) ∩H = (Op(G∗p2 ∩H)D/D
by [13, Lemma 2.8]. Then Op(G) normalizes Op(G∗p2)∩H. Since D and Op(G∗p2)∩H are
normalized by Op(G), this shows that G satisfies the hypotheses, as claimed.

If D > 1, then lp(G) 6≤ 1 or rp(G) 6≤ 2, and thus |P ∩ Op(G∗p2)| > d by the minimality
of G. Hence |PD ∩ Op(G∗p2)| > d|D|. Since PD ∩ U = D(P ∩ Op(G∗p2)) = DN , we see
that | N |> d, which is a contradiction with |N | ≤ d. So we conclude that D = 1.

Step 2. d ≥ p3.
If d ≤ p2, then |N | ≤ p2. Since G is an odd order group, we see that G is p-solvable.

Then it follows from [9, VI, 6.6] that lp(Op(G∗p2)) ≤ 1. In addition, Op′(G∗p2) = 1 since
Op′(G) = 1. Thus N�Op(G∗p2), and therefore N�G. It follows that Op(G∗p2) acts trivially
on N by Lemma 2.10, and so Op(G∗p2) is p-nilpotent by Burnside’s theorem [9, IV, 2.6].
Hence G∗p2 is p-nilpotent, a contradiction.

Step 3. H1 6= ∅.
Suppose not, that is, all subgroups of P with order d are meta-cyclic. Now by Lemma

2.6, P is a meta-cyclic group or a 3-group of maximal class. Then it follows form Step 2
and Lemma 4.1 that lp(G) ≤ 1 and rp(G) ≤ 2, a contradiction.

Step 4. N is non-meta-cyclic and is normal in G.
Suppose that N is meta-cyclic, that is, N is a cyclic group or a meta-cyclic group

with d(N) = 2, where d(N) is a minimal number of generators of N . If N is cyclic,
and let A be a subgroup of N with order p, then A is normal in P by N � P , and
therefore there exists H ∈ H1 such that A ≤ H by Lemma 2.8 and H ∩ N 6= 1. Hence,
by H ∩ N = H ∩ P ∩ Op(G∗p2) � G and [11, Theorem 2.1], Op(G∗p2) is p-supersovable.
Furthermore, it follows from Op′(G) = 1 and [9, VI, 6.6] that N is normal in Op(G∗p2). By
Lemma 2.9 and 2.10, we see that Op(G∗p2) centralizes N , and thus Op(G∗p2) is p-nilpotent
and G∗p2 is p-nilpotent, a contradiction. Now we assume that N is a metacyclic subgroup
of P with d(G) = 2. Then Ω1(N) ' Cp×Cp, and thus, by Lemma 2.8, there exists H ∈ H1

such that Ω1(N) ⊆ H and H∩N 6= 1. Hence T = H∩N = H∩P ∩Op(G∗p2)�G. Noticing
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that Ω1(N) = Ω1(T ) char T , we have that Ω1(N) is normal in G, and therefore Op(G∗p2)
centralizes Ω1(N) by Lemma 2.10. Since p is odd, we see that Op(G∗p2) centralizes N by
[9, IV, 5.12]. Then Op(G∗p2) is p-nilpotent by Burnside’s Theorem [9, IV, 2.6], and thus
G∗p2 is p-nilpotent, a contradiction.

Hence N is non-meta-cyclic, and thus there exists H ∈ H1 such that N ⊆ H. We see
N = N ∩H = Op(G∗p2) ∩ P ∩H �G.

Step 5. There exists a maximal subgroup Y ∈ Y such that N 6≤ Y .
If N ≤ Φ(P ), then it follows from Tate’s theorem [9, IV, 4.7] that Op(G∗p2) is p-nilpotent,

and therefore G∗p2 is p-nilpotent, a contradiction. Thus there exists a maximal subgroup
Y of P with N 6≤ Y .

Step 6. For any Y ∈ Y, L = N ∩ Y is not normal in G and L is meta-cyclic.
First, we prove that L = N ∩ Y is not normal in G for any Y ∈ Y. If not, then

there exists Y ∈ Y such that L = N ∩ Y � G. Since |N : L| = p for all Y ∈ Y,
G∗p2 ≤ CG(N/L). In addition, N/L is a normal Sylow p-subgroup of Op(G∗p2)/L, then
N/L ≤ Z(Op(G∗p2)/L), and therefore Op(G∗p2)/L is p-nilpotent by Burnside’s theorem
[9, IV, 2.6]. Hence Op(Op(G∗p2)) < Op(G∗p2), a contradiction.

Next, we prove that L is meta-cyclic. If L is non-meta-cyclic, then there exists H ∈ H1

such that L < H ≤ Y . So
L = H ∩ L = H ∩ Y ∩N = H ∩N = H ∩ P ∩Op(G∗p2) = H ∩Op(G∗p2) �G,

which is a contradiction.
Step 7. N ' Cp × Cp × Cp.
If not, then, since L is a meta-cyclic maximal subgroup of N , we see that N is a

CS(p, 2)-group by Lemma 2.9, and thus N is centralized by Op(G∗p2) by Lemma 2.10.
Hence G∗p2 is p-nilpotent, a contradiction.

Step 8. The final contradiction.
It is easy to see that G∗p2/N is p-nilpotent. If N ≤ Φ(G), then G∗p2 is p-nilpotent, a

contradiction. Hence there exists a maximal subgroup M of G such that N 6≤ M . It is
easy to see that N is a minimal normal subgroup of G. If not, there is nothing to be
proved. Then G = NM and N ∩M = 1. It follows that P = N(P ∩M) by Dedekind’s
lemma. For convenience, write S = P ∩M . Noticing that there exists a maximal subgroup
P1 of P such that S ≤ P1 and N 6≤ P1. Write K = N ∩P1 is normal in P and K ' Cp×Cp

by Step 7. If there exists H1 ∈ H1 such that H1 ≤ P1, then, by Lemma 2.8, there exists
H ∈ H1 such that K ≤ H ≤ P1, and thus K = N ∩P1∩H = H ∩Op(G∗p2)�G, which con-
tradicts Step 6. Then it follows from Lemma 2.6 and Lemma 4.1 that P1 is a meta-cyclic
group of d(P1) = 2 or a 3-group of maximal class. If P1 is meta-cyclic of d(P1) = 2, then
Ω1(P1) ' Cp × Cp, and therefore Ω1(S) ≤ Ω1(P1) = K ≤ N . In addition, we know that
Ω1(S) ≤ S ≤M and N ∩M = 1. Then Ω1(S) = 1, and thus S = 1. Hence N = P , which
is a contradiction with |N | ≤ d < |P |. Now we assume that P1 is a 3-group of maximal
class. Since p3 = |N | ≤ d < |P |, we see that |P1| ≥ p3. If |P1| ≥ 34, then K ≤ Φ(P1) by
[3, Exercise 9.1.]. It follows from Dedekind’s lemma that P1 = (P1 ∩ N)S and P1 = S,
which is a contradiction with P = NS > P . Now we assume that |P1| = 33 and |P | = 34.
Then it follows from p3 = |N | ≤ d < |P | = p4 that d = p3. Hence P1 ∈ H1. Furthermore,
we see that K = N ∩ P1 = P1 ∩Op(G∗p2) �G, which is a contradiction with Step 6. This
final contradiction completes the proof. �

Now we may present some applications of Theorem 1.5.

Lemma 4.2. Let G be a group of odd order and P ∈ Sylp(G) with |P | > p4. If P
has exactly one non-meta-cyclic maximal subgroup M and M � G, then lp(G) ≤ 1 and
rp(G) ≤ 2.
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Proof. We proceed by induction on |G|. It is clear that the hypotheses are inherited by
G/Op′(G) and PG, so we can assume that Op′(G) = 1. If PG < G, then lp(PG) = 1
by induction. In addition, Op′(G) = 1, then P is normal in PG. Since PG � G and
P ∈ Sylp(PG), we see P = PG � G. Notice that P has a meta-cyclic maximal subgroup
and |P | > p4. Then P is a CS(p, 2)-group by Lemma 2.11, and thus P is centralized
by Op(G∗p2) by Lemma 2.10. Then it follows from Burnside’s theorem [9, IV, 2.6] that
Op(G∗p2) is p-nilpotent. Hence G∗p2 is p-nilpotent, and therefore lp(G) ≤ 1 and rp(G) ≤ 2
by Lemma 2.11.

Now we can assume that PG = G, and in particular, G∗p2 = G. Applying Theorem 1.5,
we may assume that d = |P |/p and |P ∩Op(G∗p2)| > d, and therefore Op(G∗p2) = G∗p2 . Since
M is the unique non-meta-cyclic maximal subgroup of P , we see thatM has a meta-cyclic
maximal subgroup by [7, Lemma 2.3]. On the other hand, M is a CS(p, 2)-group since
|M | > p3. Then, by Lemma 2.10, Op(G∗p2) = G acts trivially on M . Thus P is abelian
and P ' Cpm × Cp × Cp(m ≥ 3). Let N = NG(P ). We see that N/P acts on the P and
centralizes M . It follows from Fitting’s lemma[10, Lemma 4.28] and P ' Cpm × Cp × Cp

that the action of N/P on P is trivial, and therefore P ≤ Z(N). So G is p-nilpotent by
Burnside’s theorem [9, IV, 2.6], and thus lp(G) ≤ 1 and rp(G) ≤ 2 by Lemma 2.11. �

Lemma 4.3. Let G be a group of odd order, and let P be a Sylow p-subgroup of G with
|P | > p4. If every non-meta-cyclic maximal subgroup of P is normal in G, then lp(G) ≤ 1
and rp(G) ≤ 2.

Proof. We proceed by induction on |G|. It is easy to see that the hypotheses are inherited
by G/Op′(G). so we can assume that Op′(G) = 1. It follows from Lemma 2.6 and 4.1 that
P has a non-meta-cyclic maximal subgroup. By Lemma 4.2, we can assume that P has
two distinct non-meta-cyclic maximal subgroups, and therefore P is normal in G. Since
|P | > p4, Op(G∗p2) acts trivially on P by [7, Theorem A]. Hence G∗p2 is p-nilpotent, and
thus lp(G) ≤ 1 and rp(G) ≤ 2. �

Corollary 4.4. Let G be an odd order group and P be a Sylow p-subgroup of G with
|P | > p4, and suppose for every non-cyclic maximal subgroup H of P that H ∩ U � U ,
where U = Op(G). Then lp(G) ≤ 1 and rp(G) ≤ 2.

Proof. Applying Theorem 1.5 with d = |P |/p, we deduce that Op(G∗p2) = G∗p2 , and thus
every non-cyclic maximal subgroup of P is normal in G. It follows from Lemma 4.3 that
lp(G) ≤ 1 and rp(G) ≤ 2, a contradiction. �
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