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Abstract
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tinuous distributions with two additional shape parameters called the
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1. Introduction

The statistics literature is �lled with hundreds of continuous univariate distributions:
see Johnson et al. (1994, 1995). Recent developments have been focused to de�ne new
families by adding shape parameters to control skewness, kurtosis and tail weights thus
providing great �exibility in modeling skewed data in practice, including the two-piece
approach introduced by Hansen (1994) and the generators pioneered by Eugene et al.

(2002), Cordeiro and de Castro (2011), Alexander et al. (2012) and Cordeiro et al.

(2013). Many subsequent articles apply these techniques to induce skewness into well-
known symmetric distributions such as the symmetric Student t. For a review, see Aas
and Ha� (2006).

We study several mathematical properties of a new family of distributions called the
Zografos-Balakrishnan odd log-logistic-G (�ZBOLL-G� for short) family with two addi-
tional shape parameters. These parameters can provide great �exibility to model the
skewness and kurtosis of the generated distribution. Indeed, for any baseline G distri-
bution, the new family can extend several common models such as the normal, Weibull
and Gumbel distributions by adding these parameters to a parent G. The proposed fam-
ily is an extension of that one introduced recently by Zografos and Balakrishnan (�ZB�)
(2009) and Ristic and Balakrishnan (2012), although both are based on the same gamma
generator.

Let W be any continuous distribution de�ned on a �nite or an in�nite interval. The
ZB family is de�ned from the cumulative distribution function (cdf) (for β > 0)

F (x) =
γ (β,− log[1−W (x)])

Γ(β)
, x ∈ R,(1.1)

where Γ(α) =
∫∞

0
ta−1 e−tdt and γ(β, z) =

∫ z
0
tβ−1 e−tdt are the gamma function and

lower incomplete gamma function, respectively.
Further, we de�ne W (x) from any baseline cdf G(x; τ ) (x ∈ R), where τ denotes the

parameters in the parent G, as

W (x) =
Gα(x; τ )

Gα(x; τ ) + Ḡα(x; τ )
,(1.2)

where α > 0 and Ḡ(x; τ ) = 1 − G(x; τ ) is the baseline survival function. According
to Marshall and Olkin (2007, equation (21)), the function W (x) in (1.2) is the odd
log-logistic-G (OLL-G) cdf. By inserting (1.2) in equation (1.1), we have

F (x) =
1

Γ(β)
γ

{
β,− log

[
1− Gα(x; τ )

Gα(x; τ ) + Ḡα(x; τ )

]}
.(1.3)

The model (1.3) is called the ZBOLL-G distribution with parameters α and β. Let
g(x; τ ) = dG(x; τ )/dx be the baseline probability density function (pdf). The density
function corresponding to (1.3) is given by

f(x) =
αg(x; τ )Gα−1(x; τ ) Ḡα−1(x; τ )

Γ(β)[Gα(x; τ ) + Ḡα(x; τ )]2

{
− log

[
Ḡα(x; τ )

Gα(x; τ ) + Ḡα(x; τ )

]}β−1

.

(1.4)

Henceforth, a random variableX with density function (1.4) is denoted byX ∼ZBOLL-
G(α, β, τ ). The ZBOLL-G family has the same parameters of the parent G plus the
parameters α and β. For α = β = 1, it reduces to the baseline G distribution. For α = 1,
we obtain the gamma-G (G-G) family and, for β = 1, we have the OLL-G family. The
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hazard rate function (hrf) of X is given by

h(x) =
αg(x; τ )Gα−1(x; τ ) Ḡα−1(x; τ )

[Gα(x; τ ) + Ḡα(x; τ )]2

×

{
− log

[
Ḡα(x;τ)

Gα(x;τ)+Ḡα(x;τ)

]}β−1

Γ(β)− γ
{
β,− log

[
1− Gα(x;τ)

Gα(x;τ)+Ḡα(x;τ)

]} .(1.5)

Each new ZBOLL-G distribution can be de�ned from a speci�ed G distribution. The
ZBOLL family is easily simulated by inverting (1.3) as follows: if V has the γ(β, 1)
distribution, then the solution of the nonlinear equation

(1.6) X = G−1


(
1− e−V

) 1
α

(1− e−V )
1
α + e

−V
α


has density (1.4).

The parameters α and β have a clear interpretation. Following the key idea of Zo-
grafos and Balakrishnan (2009) and Ristic and Balakrishnan (2012), we can also interpret
(1.4) in this way: if XU(1), XU(2), . . . , XU(n) are upper record values from a sequence of
independent random variables with common pdf

w(x) = W ′(x) =
αg(x; τ ){G(x; τ )[1−G(x; τ )]}α−1

{Gα(x; τ ) + Ḡα(x; τ )}2
,

then the pdf of the nth upper record value has the pdf (1.4).
It is important to mention that the results presented in this paper follow similar lines of

those developed by Nadarajah et al. (2015), although their model is completely di�erent
from that one discussed in this paper.

The rest of the paper is organized as follows. In Section 2, we present some new
distributions. In Section 3, we introduce the asymptotic properties of equations (1.3),
(1.4) and (1.5). Section 4 deals with two useful representations for (1.3) and (1.4). In
Section 5, we derive a power series for the quantile function (qf) of X. In Sections 6
and 7, we obtain the entropies and order statistics. Estimation of the model parameters
by maximum likelihood and the observed information matrix are presented in Section
8. Two applications to real data prove empirically the importance of the new family in
Section 9. Finally, some conclusions and future work are noted in Section 10.

2. Special ZOBLL-G distributions

The ZOBLL-G family of density functions (1.4) allows for greater �exibility of its tails
and can be widely applied in many areas of engineering and biology. In this section, we
present and study some special cases of this family because it extends several widely-
known distributions in the literature. The density function (1.4) will be most tractable
when G(x; τ ) and g(x; τ ) have simple analytic expressions.

2.1. Zografos-Balakrishnan odd log-logistic Weibull (ZBOLL-W) model. If
G(x; τ ) is the Weibull cdf with scale parameter κ > 0 and shape parameter λ > 0,
where τ = (λ, κ)T , say G(x; τ ) = 1 − exp{−(x/λ)κ}, the ZOBBLL-W density function
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(for x > 0) is given by

fZBOLL-W(x) =
ακλ−κxκ−1 exp[−(x/λ)κ]{1− exp[−(x/λ)κ]}α−1

Γ(β){{1− exp[−(x/λ)κ]}α + exp[−α(x/λ)κ]}2

× exp[−(α− 1)(x/λ)κ]

{
− log

[
exp[−α(x/λ)κ]

{1− exp[−(x/λ)κ]}α + exp[−α(x/λ)κ]

]}β−1

.

(2.1)

Figure 1 displays some possible shapes of the ZBOLL-W density function.

2.2. Zografos-Balakrishnan odd log-logistic normal (ZBOLL-N) model. The
ZBOLL-N distribution is de�ned from (1.4) by taking G(x; τ ) = Φ(x−µ

σ
) and g(x; τ ) =

σ−1 φ(x−µ
σ

) to be the cdf and pdf of the normal N(µ, σ2) distribution, where τ = (µ, σ)T .
Its density function is given by

fZBOLL-N(x) =
αφ(z)Φα−1(z)[1− Φ(z)]α−1

σΓ(β){Φα(z) + [1− Φ(z)]α}2

×
{
− log

[
[1− Φ(z)]α

Φα(z) + [1− Φ(z)]α

]}β−1

,(2.2)

where z = (x− µ)/σ, x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter,
α and β are shape and scale parameters, and φ(·) and Φ(·) are the pdf and cdf of the
standard normal distribution, respectively. For µ = 0 and σ = 1, we obtain the ZBOLL-
standard normal (ZBOLL-SN) distribution. Plots of the ZBOLL-N density function for
selected parameter values are displayed in Figure 2.

2.3. Zografos-Balakrishnan odd log-logistic Gumbel (ZBOLL-Gu) model. Con-
sider the Gumbel distribution with location parameter µ ∈ R and scale parameter σ > 0,
τ = (µ, σ)T , and the pdf and cdf (for x ∈ R) given by

g(x; τ ) =
1

σ
exp

[(x− µ
σ

)
− exp

(x− µ
σ

)]
and

G(x; τ ) = 1− exp
[
− exp

(x− µ
σ

)]
,

respectively. The mean and variance are equal to µ−γσ and π2σ2/6, respectively, where
γ is the Euler's constant (γ ≈ 0.57722). Inserting these expressions in (1.4) gives the
ZBOLL-Gu density function

fZBOLL−Gu(x) =
α exp[z − exp(z)]{1− exp[− exp(z)]}α−1 exp[−(α− 1) exp(z)]

σΓ(β){{1− exp[− exp(z)]}α + exp[−α exp(z)]}2

×
{
− log

(
exp[−α(exp(z))]

{1− exp[− exp(z)]}α + exp[−α exp(z)]

)}β−1

,(2.3)

where z = (x−µ)/σ,x, µ ∈ R and α, β, σ > 0. Plots of (2.3) for selected parameter values
are displayed in Figure 3.
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Figure 1. Plots of the ZBOLL-W density function for some parameter
values. (a) For di�erent values of β, with α = 0.3, κ = 3.5 and λ = 1.4.
(b) For di�erent values of β with α = 0.3, κ = 3.5 and λ = 1.4. (c) For
di�erent values of α with β = 1.5, κ = 3.5 and λ = 1.4.

3. Asymptotics

Let c = inf{x|G(x) > 0}, then the asymptotics of equations (1.3), (1.4) and (1.5)
when x→ c are given by

F (x) ∼ G(x)αβ

Γ(β + 1)
as x→ c,

f(x) ∼ αg(x)G(x)αβ−1

Γ(β)
as x→ c,

h(x) ∼ αg(x)G(x)αβ−1

Γ(β)
as x→ c.
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Figure 2. Plots of the ZBOLL-N density function for some parameter
values. (a) For di�erent values of α with β = 0.2, µ = 0 and σ = 1.
(b) For di�erent values of β with α = 0.3, µ = 0 and σ = 1.0. (c) For
di�erent values of β with α = 0.3, µ = 0 and σ = 0.1.

The asymptotics of equations (1.3), (1.4) and (1.5) when x→∞ are given by

1− F (x) ∼ 1

Γ(β)

{
−α log

[
Ḡ(x)

]}β−1
Ḡ(x)α as x→∞,

f(x) ∼
αg(x) Ḡ(x)α−1

{
−α log

[
Ḡ(x)

]}β−1

Γ(β)
as x→∞,

h(x) ∼ αg(x)

Ḡ(x)
as x→∞.
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Figure 3. Plots of the ZBOLL-Gu density function for some param-
eter values. (a) For di�erent values of α with β = 0.2, µ = 0 σ = 1.
(b) For di�erent values of α and β with µ = 0 and σ = 1.0. (c) For
di�erent values of β with α = 0.3, µ = 0 and σ = 0.

4. Two useful representations

Two useful linear representations for (1.3) and (1.4) can be derived using the concept
of exponentiated distributions. For an arbitrary baseline cdf G(x), a random variable
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is said to have the exponentiated-G (exp-G) distribution with power parameter a > 0,
say Z ∼exp-G(a), if its pdf and cdf are ha(x) = aGa−1(x)g(x) and Ha(x) = Ga(x),
respectively. The properties of exponentiated distributions have been studied by many
authors in recent years, see Mudholkar and Srivastava (1993) for exponentiated Weibull,
Gupta et al. (1998) for exponentiated Pareto, Gupta and Kundu (1999) for exponentiated
exponential, Nadarajah (2005) for exponentiated Gumbel, Kakde and Shirke (2006) for
exponentiated lognormal, and Nadarajah and Gupta (2007) for exponentiated gamma.

The generalized binomial coe�cient for real arguments is given by
(
x
y

)
= Γ(x +

1)/[Γ(y + 1)Γ(x − y + 1)]. By using the incomplete gamma function expansion, we
can write

F (x) =
1

Γ(β)

∞∑
i=0

(−1)i

i!(β + i)

{
− log

[
1− G(x)α

G(x)α + Ḡ(x)α

]}β+i

.

For any real positive power parameter, the formula below holds
(http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/)

{
− log

[
1− G(x)α

G(x)α + Ḡ(x)α

]}β+i

= (β + i)

∞∑
k=0

k∑
j=0

(−1)j+k
(
k − β − i

k

)(
k

j

)
(β + i− j)

× pj,k

[
G(x)α

G(x)α + Ḡ(x)α

]β+i+k

,

(4.1)

where the constants pj,k can be determined recursively by

pj,k = k−1
k∑

m=1

[k −m(j + 1)] cm pj,k−m(4.2)

for k = 1, 2, . . ., ck = (−1)k+1/(k + 1) and pj,0 = 1.
Further, [

G(x)α

G(x)α + Ḡ(x)α

]β+i+k

=

∑∞
r=0 λr G(x)r∑∞
r=0 ρr G(x)r

=

∞∑
r=0

ar G(x)r,

where

λr =

∞∑
l=r

(−1)l+r
(
α(β + i+ k)

l

)(
l

r

)
, ρr = hr(α, β + i+ k),

and (for r ≥ 1)

ar = ar(α, β, i, k) =
1

ρ0

(
ρr −

1

ρ0

r∑
s=1

ρs ar−s

)
,

a0 = λ0/ρ0 and hr(α, β + i+ k) is de�ned in Appendix A.
Then, equation (1.3) can be expressed as

F (x) =

∞∑
r=0

brHr(x),(4.3)

where

br =
1

Γ(β)

∞∑
i,k=0

k∑
j=0

(−1)i+j+k pj,k ar(α, β, i, k)

(β + i− j) i!

(
k − β − i

k

)(
k

j

)
,
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and Hr(x) denotes the cdf of the exp-G(r) distribution. The pdf (1.4) reduces to

f(x) =

∞∑
r=0

br+1 hr+1(x),(4.4)

where hr+1(x) denotes the pdf of the exp-G(r + 1) distribution. So, several mathema-
tical properties of the proposed family can be obtained by knowing those of the exp-G
distribution, see, for example, Mudholkar et al. (1996), Gupta and Kundu (2001) and
Nadarajah and Kotz (2006), among others.

5. Quantile function

The gamma regularized function is de�ned by Q(β, z) =
∫∞
z
xβ−1 e−x/Γ(β). The

inverse gamma regularized function Q−1(β, u) admits a power series expansion given by (
http://functions.wolfram.com/GammaBetaErf/InverseGammaRegulari zed/06/01/03/)

Q−1(β, u) = u

∞∑
i=0

mi u
i,

where w = [Γ(β+1) (1−u)]1/β , m0 = 1, m1 = 1/(β+1), m2 = (3β+5)/[2(β+1)2 (β+2)],
m3 = [β(8β + 3) + 31]/[2(β + 1)3 (β + 2)(β + 3)], etc.

First,

B =
(1− e−v)

1
β

(1− e−v)
1
β + e

−v
β

=
1

1 + e
−v
β (1− e−v)

−1
β

By using Taylor expansion and generalized binomial expansion, we have obtain

e
−v
β (1− e−v)

−1
β =

∞∑
k=0

b∗k vk,

where b∗0 = 1 and, for k ≥ 1, b∗k = (−1)j+k (j+β−1)k

k!

(
−1/β

j

)
.

Then,

B =
1∑∞

k=0 b
∗
k v

k
=

∞∑
k=0

c∗k v
k

where c∗0 = 1/b∗0 and c∗k (for k ≥ 1) is obtained from the last equation as

c∗k = − 1

b∗0

k∑
r=1

b∗r c
∗
k−r.

Further, we can write

A =
(1− e−Q−1(β,u))

1
β

(1− e−Q−1(β,u))
1
β + e

−Q−1(β,u)
β

=

∞∑
k=0

c∗k
[
Q−1(β, u)

]k
=

∞∑
k=0

c∗k

(
u

∞∑
i=0

mi u
i

)k
.(5.1)

We use an equation by Gradshteyn and Ryzhik (2000, Section 0.314) for a power series
raised to a positive integer j(

∞∑
i=0

ai u
i

)j
=

∞∑
i=0

cj,i u
i.(5.2)
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Here, for j ≥ 0, cj,0 = aj0, and the coe�cients cj,i (for i = 1, 2, . . .) are determined from
the recurrence equation

(5.3) cj,i = (i a0)−1
i∑

p=1

[p (j + 1)− i] ap cj,i−p,

So, the coe�cient cj,i follows from cj,0, . . . , cj,i−1 and then from a0, . . . , ai.
Based on equations (5.2) and (5.3), we can rewrite (5.1) as

A =

∞∑
i,k=0

c∗k vk,i u
i+k =

∞∑
l=0

d∗l u
l,

where, for k ≥ 0, the coe�cients vk,i (for i = 1, 2, . . .) are determined from the recurrence
equation

vk,i = (im0)−1
i∑

p=1

[p (j + 1)− i]mp vk,i−p,

with vk,0 = mk
0 and d∗l =

∑
(i,k)∈Il

c∗k vk,i and Il = {(i, k)|i+ k = l; i, k = 0, 1, 2, . . .}.
Then, the qf of X reduces to

Q(u) = QG

(
∞∑
l=0

d∗l u
l

)
.(5.4)

In general, even when QG(u) does not have a closed-form expression, this function
can usually be expressed in terms of a power series

QG(u) =

∞∑
i=0

si u
i,(5.5)

where the coe�cients si's are suitably chosen real numbers. For several important distri-
butions, such as the normal, Student t, gamma and beta distributions, QG(u) does not
have a closed-form expression but it can be expanded as in equation (5.5).

By combining (5.4) and (5.5) and using again (5.2) and (5.3), we obtain

Q(u) =

∞∑
l=0

hl u
l,(5.6)

where hl =
∑∞
i=0 si hi,l (for i ≥ 0 and l ≥ 0), hi,l = (l d∗0)−1 ∑l

p=1 [p (i+ 1)− l] d∗p hi,l−p,
for l ≥ 1, and hl,0 = d∗0.

Hence, equation (5.6) reveals that the qf of the ZBOLL-G distribution can be expressed
as a power series. For practical purposes, we can adopt ten terms in this power series.

Let W (·) be any integrable function in the positive real line. We can write∫ ∞
−∞

W (x) f(x)dx =

∫ 1

0

W

(
∞∑
l=0

hl u
l

)
du.(5.7)

Equations (5.6) and (5.7) are the main results of this section. We can obtain from them
various ZBOLL-G mathematical properties using integrals over (0, 1), which are usually
more simple than if they are based on the left integral. For example, an alternative
formula for the nth ordinary moment of X follows from (5.7) combined with (5.2) and
(5.3) as

µ′n =

∫ 1

0

(
∞∑
l=0

hl u
l

)n
du =

∞∑
l=0

fn,l
(l + 1)

,

where (for n ≥ 0) fn,0 = hn0 and, for n ≥ 1,
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fn,l = (l h0)−1 ∑l
r=1 [r (n+ 1)− l]hr fn,l−r.

6. Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two
popular entropy measures are the Rényi and Shannon entropies. The Rényi entropy of a
random variable with pdf f(·) is de�ned by

IR(γ) =
1

1− γ log

(∫ ∞
0

fγ(x)

)
dx,

for γ > 0 and γ 6= 1. The Shannon entropy of a random variable X is de�ned by
E{− log[f(X)]}. It is a special case of the Rényi entropy when γ ↑ 1.

Here, we derive expressions for the Rényi and Shannon entropies of the ZBOLL-G
family. By using (4.1), we can write{
− log[1− G(x)α

G(x)α + Ḡ(x)α
]

}γβ−γ
= (γβ − γ)

∞∑
k=0

k∑
j=0

(−1)j+k
(
k−γβ+γ

k

)(
k
j

)
pj,k

[γ(β − 1)− j]

×
[

G(x)α

G(x)α + Ḡ(x)α

][γ(β−1)+k]

.

Hence, {
− log[1− G(x)α

G(x)α + Ḡ(x)α
]

}γβ−γ [
αg(x)G(x)α−1Ḡ(x)α−1

Γ(β)
[
G(x)α + Ḡ(x)α

]2
]γ

=

αγ(γβ − γ)

∞∑
k,s=0

k∑
j=0

(−1)j+k
(
k−γβ+γ

k

)(
k
j

)(γ(α− 1)

s

)
pj,k

Γ(β)−γ [γ(β − 1)− j]

× G(x)αγ(β−1)+k α+γ(α−1)+s[
G(x)α + Ḡ(x)α

]γ(β−1)+k+2γ
.

Further,

G(x)αγ(β−1)+k α+γ(α−1)+s[
G(x)α + Ḡ(x)α

]γ(β−1)+k+2γ
=

∑∞
r=0 λ

′
r G(x)r∑∞

r=0 ρ
′
r G(x)r

=

∞∑
r=0

a′r G(x)r,

where

λ′r =

∞∑
l=r

(−1)l+r
(
αγ(β − 1) + k α+ γ(α− 1) + s

l

)(
l

r

)
ρ′r = hr(α, γ(β − 1) + k + 2γ)

a′r = a′r(α, β, i, k) =
1

ρ′0

(
ρ′r −

1

ρ′0

r∑
s=1

ρ′s a
′
r−s

)
, for r ≥ 1,

a0 = λ′0/ρ
′
0 and hr(α, β + i+ k) is de�ned in the Appendix. Then,∫ ∞

0

gγ(x)dx =
1

Γ(β)γ

∫ ∞
0

{
− log

[
1− G(x)α

G(x)α + Ḡ(x; )α

]}γa−γ
×{

αg(x)G(x)α−1Ḡ(x)α−1[
G(x)α + Ḡ(x)α

]2
}γ

dx

=
αγ(γβ − γ)

Γ(β)γ

∞∑
k,r,s=0

k∑
j=0

(−1)j+k
(
k−γβ+γ

k

)(
k
j

)(
γ(α−1)

s

)
pj,ka

′
r

[γ(β − 1)− j] Sr,
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where Sr can be evaluated from the baseline distribution as

Sr =

∫ ∞
0

G(x)r gγ(x)dx.

Hence, the Rényi entropy of X is given by

IR(γ) =
γ

1− γ log (α)− γ

1− γ log [Γ(β)] +
1

1− γ log (γβ − γ)

+
1

1− γ log


∞∑

k,r,s=0

k∑
j=0

(−1)j+k
(
k−γβ+γ

k

)(
k
j

)(
γ(α−1)

s

)
pj,k a

′
r

[γ(β − 1)− j] Ir

 .

The Shannon entropy can be obtained by limiting γ ↑ 1 in IR(γ). However, it is easier
to derive an expression for it from �rst principles. Using the power series for log(1− z),
we can write

E{− log[f(X)]} = − log(α) + log[Γ(β)]− E{log[g(X)]}+ (1− α)E{log[G(X)]}
+(1− α)E{log[Ḡ(X)]}+ 2E{log[Gα(X) + Ḡα(X)]}

+(1− β)E

{
− log

[
1− Gα(X)

Gα(X) + Ḡα(X)

]}
.

First, we de�ne and compute

A(a1, a2, a3, a4;α) =

∫ 1

0

ua1(1− u)a2

[uα + (1− u)α]a3

{
− log

[
1− uα

uα + (1− u)α

]}a4
du.

Along the same lines of the derivation of the Rényi entropy, we obtain

A(a1, a2, a3, a4;α) = a4

∞∑
k,s=0

k∑
j=0

(−1)j+k+s

(
k − a4

k

)(
k

j

)(
a2

s

)
pj,k

a4 − j

×
∫ 1

0

uα(a4+k)+a1+s

[uα + (1− u)α]a4+k+a3
du.

Also,

uα(a4+k)+a1+s

[uα + (1− u)α]a4+k+a3
=

∑∞
r=0 λ

′′
r u

r∑∞
r=0 ρ

′′
r ur

=

∞∑
r=0

a′′r u
r,

where (for r ≥ 1)

λ′′r =

∞∑
l=r

(−1)l+r
(
α(a4 + k) + a1 + s

l

)(
l

r

)
,

ρ′′r = hr(α, a4 + k + a3),

a′′r = a′′r (α, β, i, k) =
1

ρ′′0

(
ρ′r −

1

ρ′′0

r∑
s=1

ρ′′s a
′′
r−s

)
,

a′′0 = λ′′0/ρ
′′
0 and hr(α, a4 + k + a3) is de�ned in the Appendix. Then,

A(a1, a2, a3, a4;α) =

a4

∞∑
k,s,r=0

k∑
j=0

(−1)j+k+s

(
k − a4

k

)(
k

j

)(
α− 1

s

)
(a4 − j)(r + 1)

pj,ka
′′
r (α, β, i, k).
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Hence,

E {log [G(X)]} =
α

Γ(β)

∂

∂t
A(α+ t− 1, α− 1, 2, β − 1;α)

∣∣∣∣
t=0

,

E
{

log
[
Ḡ(X)

]}
=

α

Γ(β)

∂

∂t
A(α− 1, α+ t− 1, 2, β − 1;α)

∣∣∣∣
t=0

,

E
{

log
[
G(X)α + Ḡ(X)α

]}
=

α

Γ(β)

∂

∂t
A(α− 1, α− 1, 2− t, β − 1;α)

∣∣∣∣
t=0

and

E

{
− log

[
1− Gα(X)

Gα(X) + Ḡα(X)

]}
=

α

Γ(β)

∂

∂t
A(α− 1, α− 1, 2, β + t− 1;α)

∣∣∣∣
t=0

.

The simplest formula for the Shannon entropy of X is given by

E {− log[f(X)]} = − log(α) + log [Γ(β)]− E {log [g(X; τ )]}

+
α(1− α)

Γ(β)

∂

∂t
A(α+ t− 1, α− 1, 2, β − 1;α)

∣∣∣∣
t=0

+
α(1− α)

Γ(β)

∂

∂t
A(α− 1, α+ t− 1, 2, β − 1;α)

∣∣∣∣
t=0

+
2α

Γ(β)

∂

∂t
A(α− 1, α− 1, 2− t, β − 1;α)

∣∣∣∣
t=0

+
α(1− β)

Γ(β)

∂

∂t
A(α− 1, α− 1, 2, β + t− 1;α)

∣∣∣∣
t=0

.

We provide in Figures 4a-b a numerical investigation to identify how the parameter
values change the shapes of the Rényi entropy of X for some parameter ranges. To
evaluate the values of IR(γ) we consider the random variable X having the ZBOLL-W
distribution given in equation (2.1).

7. Order statistics

Suppose X1, . . . , Xn is a random sample from the ZBOLL-G family. Denote the
random variables in ascending order as X1:n ≤ . . . ≤ Xn:n. The pdf of Xi:n is given by
(David and Nagarajah, 2003)

fi:n(x) = K f(x)F i−1(x) {1− F (x)}n−i = K

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1

=

∞∑
r,k=0

n−i∑
j=0

mj,r,k hr+k+1(x),(7.1)

where K = n!/[(i−1)! (n−i)!], hr+k+1(x) denotes the exp-G density function with power
parameter r + k + 1 and

mj,r,k =
(−1)j n!

(i− 1)! (n− i− j)! j!
(r + 1) br+1 fj+i−1,k

(r + k + 1)
,

where bk is de�ned by (4.3). Here, the quantities fj+i−1,k are obtained recursively by

fj+i−1,0 = bj+i−1
0 and (for k ≥ 1)

fj+i−1,k = (k b0)−1
k∑

m=1

[m(j + i)− k] bm fj+i−1,k−m.



1794

(a) (b)

0.0 0.5 1.0 1.5 2.0

−
1

0
−

5
0

5
1

0

γ

IR
(γ

)

β=0.2
β=0.5
β=1.0
β=1.2

0.0 0.5 1.0 1.5 2.0

−
2

0
2

4

γ

IR
(γ

)

α=0.2
α=0.5
α=0.8
α=1.5

Figure 4. The Rényi entropy ofX as function of γ for λ = 1.5, κ = 3.5
and: (a) α = 0.2 for some values of β; (b) β = 1.5 for some values of
α.

Thus, one can easily obtain ordinary and incomplete moments and generating function
of ZBOLL-G order statistics from (7.1) for any parent G.

8. Maximum likelihood estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the model
parameters of the new family from complete samples only. Let x1, . . . , xn be observed
values from the ZBOLL-G family with parameters α, β and τ . Let θ = (α, β, τ>)> be
the r × 1 parameter vector. The total log-likelihood function for θ is given by

`n(θ) = `n = n log(α)− n log[Γ(β)] +

n∑
i=1

log[g(xi; τ )]

+ (α− 1)

n∑
i=1

log[G(xi; τ )] + +(α− 1)
n∑
i=1

log[1−G(xi; τ )]

− 2
n∑
i=1

log{Gα(xi; τ ) + [1−G(xi; τ )]α}

+ (β − 1)

n∑
i=1

log

{
− log

[
[1−G(xi; τ )]α

Gα(xi; τ ) + [1−G(xi; τ )]α

]}
.(8.1)

The log-likelihood function can be maximized either directly by using the SAS (PROC
NLMIXED) or by solving the nonlinear likelihood equations obtained by di�erentiating
(8.1). The components of the score function
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Un(Θ) = (∂`n/∂α, ∂`n/∂β, ∂`n/∂τ )> are given by

∂`n
∂α

=
n

α
+

n∑
i=1

log[G(xi; τ )] +

n∑
i=1

log[1−G(xi; τ )]

− 2

n∑
i=1

Gα(xi; τ ) log[G(xi; τ )] + [1−G(xi; τ )]α log[1−G(xi; τ )]

Gα(xi; τ ) + [1−G(xi; τ )]α

+ (β − 1)

n∑
i=1

Gα(xi; τ ) log
{

[1−G(xi;τ)]
G(xi;τ)

}
[Gα(xi; τ ) + [1−G(xi; τ )]α] log

{
[1−G(xi;τ)]α

Gα(xi;τ)+[1−G(xi;τ)]α

} ,
∂`n
∂β

= −nψ(β) +

n∑
i=1

log

{
− log

[
[1−G(xi; τ )]α

Gα(xi; τ ) + [1−G(xi; τ )]α

]}
,

∂`n
∂τ

=

n∑
i=1

[ġ(xi; τ )]τ
g(xi; τ )

− (α− 1)

n∑
i=1

[Ġ(xi; τ )]τ
G(xi; τ )

− 2α

n∑
i=1

[Ġ(xi; τ )]τ{Gα(xi; τ )− [1−G(xi; τ )]α−1}
Gα(xi; τ ) + [1−G(xi; τ )]α

+ α(β − 1)

n∑
i=1

[Ġ(xi; τ )]τ [Gα(xi; τ ) +Gα−1(xi; τ )]

[Gα(xi; τ ) + [1−G(xi; τ )]α] log
{

[1−G(xi;τ)]α

Gα(xi;τ)+[1−G(xi;τ)]α

} ,
where

[ġ(xi; τ )]α =
dg(xi; τ )

dα
, [Ġ(xi; τ )]α =

dG(xi; τ )

dα
,

[ġ(xi; τ )]β =
dg(xi; τ )

dβ
, [Ġ(xi; τ )]β =

dG(xi; τ )

dβ
,

[ġ(xi; τ )]τ =
dg(xi; τ )

dτ
, [Ġ(xi; τ )]τ =

dG(xi; τ )

dτ
,

and the functions g(·) and G(·) are de�ned in Section 1 and ψ(·) is the digamma function.

The MLE θ̂ of θ is obtained by solving the nonlinear likelihood equations Uα(θ) = 0,
Uβ(θ) = 0 and Uτ (θ) = 0. These equations cannot be solved analytically and statistical
software can be used to solve them numerically. We can use iterative techniques such as

a Newton-Raphson type algorithm to obtain the estimate θ̂. We employ the numerical
procedure NLMixed in SAS.

For interval estimation of (α, β, τ ) and hypothesis tests on these parameters, we obtain
the observed information matrix since the expected information matrix is very compli-
cated and requires numerical integration. The (p + 2) × (p + 2) observed information
matrix J(θ), where p is the dimension of the vector τ , becomes

J(θ) = −

 Lαα Lαβ Lατ
. Lββ Lβτ
. . Lττ

 ,

whose elements are given in Appendix B.
Under conditions that are ful�lled for parameters in the interior of the parameter space

but not on the boundary, the asymptotic distribution of (θ̂−θ) is Np+2(0, I(θ)−1), where

I(θ) is the expected information matrix. The multivariate normal Np+2(0, J(θ̂)−1) dis-

tribution, where I(θ) is replaced by J(θ̂), i.e., the observed information matrix evaluated

at θ̂, can be used to construct approximate con�dence intervals for the individual pa-
rameters.
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We can compute the maximum values of the unrestricted and restricted log-likelihoods
to obtain likelihood ratio (LR) statistics for testing some special models of the proposed
family. Tests of the hypotheses of the type H0 : ψ = ψ0 versus H : ψ 6= ψ0, where ψ
is a subset of parameters of θ, can be performed through LR statistics in the usual way.

9. Applications

In this section, we use two real data sets to compare the �ts of the ZBOLL-G family
with others commonly used lifetime models. In each case, the parameters are estimated
by maximum likelihood (Section 8) using the subroutine NLMixed in SAS. First, we
describe the data sets and give the MLEs (the corresponding standard errors and 95%
con�dence intervals) of the model parameters and the values of the Akaike Information
Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information
Criterion (BIC) and Kolmogorov-Smirnov (K-S) statistics. The lower the values of these
criteria, the better the �t. Note that over-parametrization is penalized in these criteria,
so that the two additional parameters in the proposed family do not necessarily lead to
smaller values of these statistics. Next, we perform LR tests for testing some special
models. Finally, we provide the histograms of the data sets to have a visual comparison
of the �tted density functions.

9.1. Application 1: Zootechnics data. The data come from the zootechnics records
of a Brazilian company engaged in raising beef cattle, where the farms stocked with the
Nelore breed are located in the States of Bahia and São Paulo. In the analysis, only
data on females born in 2000 were used and the age at �rst calving was the reproductive
characteristic analyzed. In this case, the response variable is the logarithm of the age
of the cows at �rst calving (measured in days). The �rst calving age is an important
characteristic for beef cattle breeders because the faster cows reach reproductive maturity,
the more calves they will produce during their breeding cycle and the greater the breeder's
return on investment will be. Further, this trait is easy and inexpensive to measure. The
sample size in this study is n = 897.

First, we describe the descriptive statistics of the data in Table 1. They suggest neg-
atively skewed distributions with di�erent degrees of variability, skewness and kurtosis.
Then, we report the MLEs (and the corresponding standard errors in parentheses) of the

Table 1. Descriptive statistics.

Mean Median Mode Variance Skewness Kurtosis Min. Max. n

1004.32 1053.0 1074.0 13838.9 -0.405 -0.139 722 1453 897

parameters in Table 2. Additionally, we compare the models using the AIC, CAIC, BIC
and K-S statistics (see Table 3). The �gures in this table indicate that the ZBOLL-W
model gives the best �t among the �tted models.

A comparison of the proposed distribution with some of its sub-models using LR
statistics is performed in Table 4. The �gures in this table, specially the p-values, reveal
that the ZBOLL-Wmodel gives a better �t to these data than the other three sub-models.

More information is provided by a visual comparison of the histogram of the data with
the �tted density functions. The plots of the �tted ZBOLL-W, OLL-W, gamma-W and
Weibull density functions are displayed in Figure 5. We also conclude that the ZBOLL-W
distribution provides an adequate �t to these data.
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Table 2. Estimates of the parameters, standard errors in [·] and 95%
con�dence intervals in (·) for the zootechnics data.

Model α β κ λ

ZBOLL-W 86.8186 0.1612 0.4420 2582.45
[4.4833] [0.0136] [0.035] [168.38]

(78.0196, 95.6175) (0.1346, 0.1879) (0.3735, 0.5106) (2251.98, 2912.91)
OLL-W 1.3982 1 7.5136 1068.10

[0.1074] - [0.4975] [5.1663]
(1.1874, 1.6089) - (6.5372, 8.4899) (1057.97, 1078.24)

Gamma-W 1 2.0976 6.4239 924.76
- [0.3808] [0.6520] [40.0309]
- (1.3503, 2.8449) (5.1443, 7.7035) (846.20, 1003.33)

Weibull 1 1 9.4418 1054.36 3
- - [0.2198] [3.9260]
- - (9.0104, 9.8732) (1046.07, 1062.07)

Table 3. The AIC, CAIC, BIC and K-S statistics for the zootechnics data.

Model AIC CAIC BIC K-S p-value

ZBOLL-W 10838 10839 10857 0.1381 <0.001
OLL-W 11081 11082 11095 0.1519 <0.001

Gamma-W 11078 11079 11092 0.1717 <0.001
Weibull 11103 11104 11113 0.1595 <0.001

Table 4. LR statistics for the zootechnics data.

Model Hypotheses Statistic w p-value

ZBOLL-W vs OLL-W H0 : β = 1 vs H1 : H0 is false 244.0 <0.00001
ZBOLL-W vs Gamma-W H0 : α = 1 vs H1 : H0 is false 241.0 <0.00001
ZBOLL-W vs Weibull H0 : α = β = 1 vs H1 : H0 is false 268.0 <0.00001

9.2. Application 2: Temperature data. The variable temperature (oC) correspond-
ing to daily data for the period from January 1 to December 31, 2011, obtained from
the weather station of the Department of Biosystem Engineering of the Luiz de Queiroz
School of Agriculture (ESALQ) of the University of São Paulo (USP), located in the City
of Piracicaba, at latitude 22�42�30�S, longitude 47�38�30�W and altitude of 546 meters.
First, we describe the data set in Table 5.

Table 5. Descriptive statistics.

Mean Median Mode Variance Skewness Kurtosis Min. Max. n

22.32 22.90 19.25 8.71 -0.50 -0.73 14.68 27.25 365



1798

x

f(
x
)

600 800 1000 1200 1400

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

ZBOLL−W
OLL−W
Gamma−W
Weibull

Figure 5. (a) Fitted ZBOLL-W, OLL-W, gamma-W andWeibull den-
sities for the zootechnics data.

For these data, we compare the �tted ZBOLL-N, OLL-N, gamma-N and normal distri-
butions. The MLEs of µ and σ for the normal distribution are taking as starting values
for the iterative procedure to �t the ZBOLL-N, OLL-N and gamma-N models. The
MLEs of the parameters, standard errors and 95% con�dence intervals for the parame-
ters are given in Table 6. Additionally, we compare the models using the AIC, CAIC,
BIC and K-S statistics (see Table 7). Since the values of these statistics are smaller
for the ZBOLL-N distribution compared to those values of the other models (see Table
6), the new distribution produces a �t to the current data quite better than its special
models.

A comparison of the proposed distribution with some of its sub-models using LR
statistics is performed in Table 8. The �gures in this table, specially the p-values, indicate
that the ZBOLL-N model gives a better �t to these data than the other three sub-models.
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Table 6. Estimates of the parameters, standard errors in [·] and 95%
con�dence intervals in (·) for the ZBOLL-N model and its special mod-
els and three criteria for the temperature data.

Model α β µ σ

ZBOLL-N 0.1783 1.3744 21.0200 0.9293
[0.0262] [0.1355] [0.3640] [0.0729]

(0.1183, 0.2382) (1.1579, 1.5907) (20.4648, 21.5757) (0.7422, 1.1163)
OLL-N 0.1861 1 21.9071 0.8915

[0.0448] - [0.1220] [0.1281]
(0.0958, 0.2763) - (21.6668, 22.1474) (0.6332, 1.1498)

Gamma-N 1 0.1246 26.698 1.4409
- [0.0069] [0.1910] [0.0319]
- (0.1109, 0.1383) (26.1933, 26.9446) (1.3782, 1.5037)

Normal 1 1 22.3271 2.9463
- - [0.1542] [0.1090]
- - () ()

Table 7. AIC, CAIC, BIC and K-S statistics for the temperature data.

Model AIC CAIC BIC K-S p-values

ZBOLL-N 1777.9 1778.1 1793.5 0.0617 0.0731
OLL-N 1790.4 1791.4 1802.1 0.1108 0.0002

Gamma-N 1797.6 1797.7 1809.3 0.0818 0.0151
Normal 1828.7 1829.7 1836.5 0.1029 0.0005

Table 8. LR statistics for the temperature data.

Model Hypotheses Statistic w p-value

ZBOLL-N vs OLL-N H0 : β = 1 vs H1 : H0 is false 14.5 0.00014
ZBOLL-N vs Gamma-N H0 : α = 1 vs H1 : H0 is false 22.0 <0.00001
ZBOLL-N vs Normal H0 : α = β = 1 vs H1 : H0 is false 54.8 <0.00001

More information is provided by a visual comparison of the histogram of the data and
the �tted density functions. The plots of the �tted ZBOLL-N, OLL-N, gamma-N and
normal densities are displayed in Figure 6. We conclude that the ZBOLL-N distribution
provides the best �t to these data.

10. Conclusions

In this paper, we propose a new family of distributions with two extra generator
parameters, which includes as special cases all classical continuous distributions. For
any parent continuous distribution G, we de�ne the so-called Zografos-Balakrishnan odd

log-logistic-G family with two extra positive parameters. The new family extends several
widely known distributions and some of its special models are discussed. We demonstrate
that the new family density function is a linear mixture of exponentiated-G densities.
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Figure 6. (a) Fitted ZBOLL-N, OLL-N, gamma-N and normal den-
sities for the zootechnics data.

We obtain some of its mathematical properties, which include ordinary and incomplete
moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz
curves, two types of entropies and order statistics. The application of the new family is
straightforward. The model parameters are estimated by maximum likelihood. Two real
examples are used for illustration, where the new family does �t well both data sets.

Appendix A: Three useful power series

We present three power series required for the algebraic developments in Section 3
and 6. First, for b > 0 real non-integer and −1 < u < 1, we have the binomial expansion

(10.1) (1− u)a =

∞∑
j=0

(−1)j
(
a

j

)
uj ,
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where the binomial coe�cient is de�ned for any real.
Second, expanding zλ in Taylor series, we can write

(10.2) zλ =

∞∑
k=0

(λ)k (z − 1)k/k! =

∞∑
i=0

fi z
i

where

(10.3) fi = fi(λ) =

∞∑
k=i

(−1)k−i

k!

(
k

i

)
(λ)k

and (λ)k = λ(λ− 1) . . . (λ− k + 1) denotes the descending factorial.
Third, we obtain an expansion for [G(x)a + Ḡ(x)a]c. We can write from equation

(10.2) and (10.1)

(10.4) [G(x)a + Ḡ(x)a] =

∞∑
j=0

tj G(x)j ,

where tj = tj(a) = aj(a) + (−1)j
(
a
j

)
and aj(a) is de�ned by (10.2). Then, using (10.2),

we have

[G(x)a + Ḡ(x)a]c =

∞∑
i=0

fi

(
∞∑
j=0

tj G(x)j
)i
,

where fi = fi(c).
Finally, using again equations (10.3) and (10.4), we have

[G(x)a + Ḡ(x)a]c =

∞∑
j=0

hj(a, c)G(x)j ,(10.5)

where hj(a, c) =
∑∞
i=0 fimi,j and (for i ≥ 0)mi,j = (j t0)−1∑j

m=1[m(j+1)−j] tmmi,j−m

(for j ≥ 1) and mi,0 = ti0.

Appendix B

The elements of the observed information matrix J(θ) for the parameters (α, β, τ ) are
given by

Jαα =
−n
α2

− 2

n∑
i=1

Gα(xi; τ )[1−G(xi; τ )]α
{

log[G(xi; τ )] log[ G(xi;τ)
1−G(xi;τ)

]
}

[Gα(xi; τ ) + [1−G(xi; τ )]α]2

− 2

n∑
i=1

Gα(xi; τ )[1−G(xi; τ )]α
{

log[1−G(xi; τ ] log[ 1−G(xi;τ)
G(xi;τ)

]
}

[Gα(xi; τ ) + [1−G(xi; τ )]α]2
,

Jαβ = −
n∑
i=1

Gα(xi; τ ) log
[
G(xi;τ)

Ḡ(xi;τ)

]
[Gα(xi; τ ) + [1−G(xi; τ )]α] log

[
1− Gα(xi;τ)

Gα(xi;τ)+[1−G(xi;τ)]α

] ,
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Jα τ =

n∑
i=1

[Ġ(xi; τ )]τ
G(xi; τ )

−
n∑
i=1

[Ġ(xi; τ )]τ
1−G(xi; τ )

− 2

n∑
i=1

[Ġ(xi; τ )]τ
[
Gα−1(xi; τ )− [1−G(xi; τ )]α−1

]
Gα(xi; τ ) + [1−G(xi; τ )]α

− 2α

n∑
i=1

[Ġ(xi; τ )]τ G
α(xi; τ ) [1−G(xi; τ )]α log

[
G(xi;τ)

1−G(xi;τ)

]
[Gα(xi; τ ) + [1−G(xi; τ )]α]2

Jββ = −nψ′(β)

Jβ τ = −α
n∑
i=1

[Ġ(xi; τ )]τ Gα−1(xi; τ )

[1−G(xi; τ )] [Gα(xi; τ ) + [1−G(xi; τ )]α] log
[
1− Gα(xi;τ)

Gα(xi;τ)+[1−G(xi;τ)]α

]
Jττ = (α− 1)

n∑
i=1

{
[G̈(xi; τ )]ττ

G(xi; τ )
− [Ġ(xi; τ )]2τ

[G(xi; τ )]2

}

+(α− 1)

n∑
i=1

{
[G̈(xi; τ )]ττ

[1−G(xi; τ )]
+

[Ġ(xi; τ )]2τ
[1−G(xi; τ )]2

}

−β
n∑
i=1

{
[G̈(xi; τ )]ττ

[1−G(xi; τ )]2
+

2[Ġ(xi; τ )]2τ
[1−G(xi; τ )]3

}
+

n∑
i=1

{
[g̈(xi; τ )]ττ

g(xi; τ )
− [ġ(xi; τ )]2τ

[g(xi; τ )]2

}
,

where

[ġ(xi; τ )]τ =
dg(xi; τ )

dτ
, [Ġ(xi; τ )]τ =

dG(xi; τ )

dτ
, [G(xi; τ )]2 =

dG(xi; τ )

dτ

(
dG(xi; τ )

dτ

)T
,

[g̈(xi; τ )]ττ =
d2g(xi; τ )

dττT
, [G̈(xi; τ )]ττ =

d2G(xi; τ )

dττ 2
,

and g(·) and G(·) are de�ned in Section 1.
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