
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 48 (1) (2019), 112 – 139

DOI : 10.15672/HJMS.20164512494

Multi-objective Sustainable Fuzzy Economic
Production Quantity (SFEPQ) Model with
Demand as Type-2 Fuzzy Number: A Fuzzy

Differential Equation Approach

B. K. Debnath∗, P. Majumder, U. K. Bera
Department of Mathematics, National Institution of Technology, Agartala, Tripura(west), India

Abstract
A sustainable fuzzy economic production quantity (SFEPQ) inventory model is formulated
by introducing the concept of fuzzy differential equation (FDE) due to dynamic behavior of
the production-demand system. Generalized Hukuhara (gH) differentiability proceedure
is applied to solve FDE. Since the demand parameter is taken as trapezoidal type-2 fuzzy
number, to get corresponding defuzzified values, first critical value (CV)-based reduction
method is applied on demand function to transfer into type-1 fuzzy variable which turns
to hexagonal fuzzy number in form. After that α-cut of a hexagonal fuzzy number is used
to find the upper and lower value of demand. To apply the α-cut operation on FDE, we
divided the interval [0,1] into two sub-intervals [0,0.5] and [0.5,1] and gH-differentiation
is applied on this sub-intervals. The objective of this paper is to maximize the profit
and simultaneously minimize the carbon emission cost occurring due to the process of
inventory management. Finally, the non-linear objective functions are solved by using of
multi-objective genetic algorithm and sensitivity analyses on various parameters are also
performed in numerically and graphically.
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1. Introduction
Nowadays, many countries have implemented various carbon emission taxes as a part of

damage to the environment caused by industry on the inventory process. Therefore, it is a
challenge for every manufacturing company or organizations to reduce the carbon emission
cost on waste management, excess energy use and obsolescence management by producing
sustainable products as well as maintain the profit which motivates the researchers to
apply carbon emission factors in their models.
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Due to the complex environment during the business management, some critical pa-
rameters in the inventory problem are always treated as uncertain variables to meet the
practical situations. For instance, if one needs to make a decision on inventory manage-
ment for the next month, the demand and other relevant costs related to inventory are
often required to be estimated by professional judgments or probability statistics because
of no precise prior information. But, representing demand parameter for an inventory
control problem by fuzzy set is considered difficult since it can be determined from many
expert’s opinion in different ways, and sometimes it is tough to determine the exact mem-
bership function. In these cases, each expert’s opinion is a membership function of type-1
fuzzy set and thus, this membership function again becomes fuzzy. The final opinion of
all experts is expressed by a type-2 fuzzy set (T2 FS).

Also, when the behavior of a dynamical system is not certain, i.e. when the production
and demand are fuzzy, the governing differential equation is called fuzzy differential equa-
tion (FDE) of instantaneous state of inventory level and the parameters are characterized
by a fuzzy number. Hence, we take the demand parameter as trapezoidal type-2 fuzzy
number. In case of a T2 FS, complete defuzzification process consists of two parts-type
reduction and defuzzification. Type reduction is a procedure by which a T2 FS is trans-
formed to the corresponding T1 FS, known as type reduced set (TRS). The TRS is then
easily defuzzified to a crisp value. Using CV-base reduction method we defuzzified the
type-2 fuzzy amount.

The major contribution of this research can be stated as follows:
(i) A profit maximization and carbon emission cost minimization multi-objective partially
backlogging fuzzy economic production quantity model is developed where the demand
function is taken as trapezoidal type-2 fuzzy variable.
(ii) Fuzzy differential equation proposed by Kandel and Byatt [13] is considered because
of the dynamic nature of the system.
(iii) Generalized Hukuhara (gH) derivative approach proposed by Stefanini and Bede [33]
is used to solve the fuzzy differential equation.
(iv) Critical value (CV) -based reduction method is used for trapezoidal type-2 fuzzy
variable which become hexagonal fuzzy number in form and α-cut of hexagonal fuzzy
number is used to get the corresponding crisp value of demand.
(v) Multi-objective genetic algorithm is used to get the corresponding lower and upper
bound of profit and carbon emission cost of the non-linear objective function.

2. Literature survey
In the literature, it is found that Stock et al. [34] showed that transport and warehouse

operations generate large amounts of carbon emission. Hovelaque and Bironneau [11]
formulated a carbon constrained integrated economic order quantity (EOQ) model which
maximizes a retailer’s profit and minimizes carbon emission cost. They investigated the
link between inventory policy, total carbon emission and both price and environmental
dependent demands. Kazemi et al. [14] formulated an economic order quantity models
for items with imperfect quality considering the effect of emission. Battini et al. [3]
constructed a new model on sustainable economic order quantity (SEOQ) considering
ordering and holding cost of inventory and obsolescence costs and also considered emissions
of obsolescence cost for transportation problem. Jonas et al. [12] discussed about the
uncertainty present in the greenhouse gas and formulated a fuzzy model in greenhouse gas
inventory. Recently, Aljazzar et al. [1] formulated a strategy to reduce carbon emissions
from supply chains.

One of the first economic production quantity (EPQ) models with fuzzy parameters was
developed by Lee and Yao [17]. In a similar paper, Chang [6] applied the methodology in
Lee and Yao [17] and analyzed a condition that the production quantity is a triangular
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fuzzy number (TFN). He deducted that fuzzy and crisp approaches lead to the same
result in the investigated model. Another identical research was treated by Lin and Yao
[18] who assumed that production quantity is a trapezoidal fuzzy number (TPFN). In
this direction, Shekarian et al. [27], [28],[30],[31] formulated different fuzzy EOQ/EPQ
models considering different holding costs for imperfect quality items with backorders and
rework for a single stage system. Soni et al. [32] formulated a fuzzy inventory model with
demand uncertainty and learning in a continuous process. Sadeghi et al. [25] proposed a
two-tuned metaheuristics approach for a fuzzy random EPQ problem with shortage and
redundancy allocation. The readers could read the extensive survey paper by Shekarian
et al. [29] on fuzzy inventory models. All the above investigations assumed the fuzzy
parameters/ variables to be of type-1 fuzzy set (T1 FS). T2 FSs are extensions of T1 FSs
was first introduced by Zadeh [38], [39]. The membership grade of a T2 FS is a fuzzy
number with a support bounded by the interval [0, 1]. The logical operations of T2 FS
were explored by Mizumoto and Tanaka [22] and Dubois and Prade [8]. Many authors e.g.,
[19], [26], [35] contributed a large number of theoretical research works on the property
of T2 FS and the applications of T2 FS on operations research e.g., [15], [16], [21]. There
are several method for type reduction. Qin et al. [23] introduced three kinds of reduction
methods called optimistic CV, pessimistic CV and CV reduction methods for T2 FVs
based on critical values (CVs) of regular FVs. α-cut and the extension principle forms
a methodology for extending mathematical concepts from crisp sets to fuzzy sets. These
have been applied to many operations and have also been extended to interval valued fuzzy
sets. Dubois and Prade [8] has defined fuzzy number as a fuzzy subset of the real line. So
far, fuzzy numbers like TFN, TPFN, Hexagonal fuzzy number [24] have been introduced
with its membership functions. These numbers have got many applications in practical
field and many operations were performed using fuzzy numbers.

The presence of fuzzy demand as well as fuzzy production rate leads to FDE of instan-
taneous state of inventory level. Till now, FDE is less used to solve fuzzy inventory models
though the topics on FDE have been rapidly growing in the recent years. The first impetus
on solving FDE was made by Kandel and Byatt [13]. Furthermore, different approaches
have been made by several authors to solve FDE [2], [9]. In the FDE, all derivatives are
deliberated as either Hukuhara or generalized derivatives. The Hukuhara differentiability
[5] has a deficiency that the solution turns fuzzifier as time goes on. Bede [4] exhibited
that a large class of Boundary Value Problems (BVPs) has no solution if the Hukuhara
derivative is applied. To remove this difficulty, the concept of a generalized derivative was
developed and fuzzy differential equations were smeared using this concept. Stefanini and
Bede [33] introduced the concept of generalization of the Hukuhara difference for compact
convex set, introduced generalized Hukuhara differentiability for fuzzy valued function and
they displayed that, this concept of differentiability have relationships with weakly gener-
alized differentiability and strongly generalized differentiability. Villamizar-Roa et al. [36]
studied the existence and uniqueness of solution for fuzzy differential equation problems
in the setting of a generalized Hukuhara derivative. Guchhait et al. [10] formulated a
fuzzy production inventory model using fuzzy differential equation and the corresponding
inventory costs and components are calculated using fuzzy Riemann integration. Trade
credit financing is one of the central features in supply chain management. In real life
situations retailer offers trade credit to his/her customers to boost the demand. This real
phenomenon is depicted in our present model. Also, Majumder et al. [20] formulated a
fuzzy production inventory model with partial trade credit and solve in fuzzy environment
via Generalized Hukuhara derivative approach.

Some papers of the above literature survey and our proposed model are summarized
and presented in Table 1.

The rest of the paper is organized as follows: In Section 3, we define all the preliminary
concepts relating to fuzzy sets. Section 4, discusses various notations and assumptions.
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Authors Crisp Fuzzy EOQ EPQ Carbon FDE T2FS gH-differentiability
emission

Hovelaque and Bironneau [11] X X X
Battini et al. [3] X X X
Jonas et al. [12] X X

Villamizar-Roa et al. [36] X X X
Guchhait et al. [10] X X X
Majumder et al. [20] X X X X
Shekarian et al. [30] X X X
Kazemi et al. [14] X X X
Proposed Model X X X X X X

Table 1. Contribution of Different Authors

section 5 is about mathematical formulation of the model. In section 6, we discuss about
the solution procedure for solving multi-objective non-linear problems. In Section 7 real
life numerical data and solutions are represented. Discussion on the solution are presented
in section 8. Finally brief conclusions and future research work are drawn in section 9.

3. Preliminaries
3.1. Type-1 Fuzzy set (T1FS) [38]:

A fuzzy set Ã is defined by Ã = {(x, µÃ(x)) : x ∈ A,µÃ(x) ∈ [0, 1]}. In the pair
(x,µÃ(x)) the first element x belong to the classical set A, the second element µÃ(x),
belong to the interval [0,1], called Membership function.

3.2. Type-2 Fuzzy Set (T2FS) [38]:
Type-2 fuzzy set Ã defined on a universe of discourse X, which is denoted as Ã ⊆ X, is

a set of pairs {x, µÃ(x)}, where x an element of a fuzzy set is, and its grade of membership
{µÃ(x)} in the fuzzy set Ã is a type-1 fuzzy set defined in the interval Jx ⊂ [0, 1], i.e. A
T2 FS Ã is defined as

Ã = {((x, u), µÃ(x, u)) : ∀x ∈ X, Jx ⊂ [0, 1]}, (3.1)
where 0 ≤ µÃ(x, u) ≤ 1 is the type-2 membership function.

3.3. Regular fuzzy variable (RFV) [8]:
For a possibility space (ϕ, p, Pos), a regular fuzzy variable ξ̃ is defined as a measurable

map from ϕ to [0, 1] in the sense that for every t ∈ [0, 1], one has {γ ∈ ϕ | ξ̃(γ) ≤ t} ∈ p. A

discrete RFV is represented as ξ̃ ∼
(

r1, r2 · · · rn
µ1, µ2 · · ·µn

)
where ri ∈ [0, 1] and µi > 0,∀i and

maxi(µi) = 1.
If ξ̃ = (r1, r2, r3, r4) with 0 ≤ r1 < r2 < r3 < r4 ≤ 1, then ξ̃ is called a trapezoidal RFV.

Example 3.1. Let us take Ã{(x, µÃ(x)) : x ∈ X} where X = 3, 6, 9 and the primary
memberships of the points 3, 6, 9 are given by J3 = 0.4, 0.8, 0.9, J6 = 0.3, 0.7, 0.8, 0.9 and
J9 = 0.2, 0.7, 1.0 respectively. Then the secondary grade of the point 3 is

µÃ(3) = µÃ(3, u) = (0.5/0.4) + (0.7/0.8) + (0.3/0.9) ∼
(

0.4 0.8 0.9
0.5 0.7 0.3

)
That means, µÃ(3, 0.4) = 0.5, µÃ(3, 0.8) = 0.7, µÃ(3, 0.9) = 0.3.
More specifically µÃ(3, 0.4) = 0.5 means that the membership grade which is named as
secondary membership grade that the point 3 has the primary membership 0.4 is 0.5.

So Ã considers on the value 3 with membership grade
(

0.4 0.8 0.9
0.5 0.7 0.3

)
, which is a RFV.
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3.4. Critical values (CVs) for RFVs [23]
Qin et al. [23] introduced three kinds of critical values (CVs). Let ξ̃ be a RFV. Then,

I. The optimistic CV of ξ̃, denoted by CV ∗[ξ̃] is given by,

CV ∗[ξ̃] = sup
α∈[0,1]

[α ∧ Pos(ξ̃ ≥ α)] (3.2)

II. The pessimistic CV of ξ̃, denoted by CV∗[ξ̃] is given by,

CV∗[ξ̃] = sup
α∈[0,1]

[α ∧Nec(ξ̃ ≥ α)] (3.3)

III. The CV of ξ̃, denoted by CV [ξ̃] is given by,

CV [ξ̃] = sup
α∈[0,1]

[α ∧ Cr(ξ̃ ≥ α)] (3.4)

Example 3.2. Let ξ̃ be a discrete RFV define as ξ ∼
(

0.3 0.5 0.8 0.9
0.1 0.9 0.6 0.3

)
Then we can find out that,

Pos(ξ̃ ≥ α) =


0, if α ≤ 0.2
0.9, if 0.2 < α ≤ 0.5
0.6, if 0.5 < α ≤ 0.8
0.3, if 0.8 < α ≤ 1.0

Nec(ξ̃ ≥ α) =


0.9, if α ≤ 0.3
0.1, if 0.3 < α ≤ 0.5
0.4, if 0.5 < α ≤ 0.8
0.7, if 0.8 < α ≤ 1.0

and

Cr(ξ̃ ≥ α) =


0.9, if α ≤ 0.3
0.5, if 0.3 < α ≤ 0.5
0.5, if 0.5 < α ≤ 0.8
0.5, if 0.8 < α ≤ 1.0

Then by the definitions of CVs, from (3.2)-(3.4), we have

CV ∗[ξ̃] = sup
α∈[0,1]

[α ∧ Pos(ξ̃ ≥ α)]

= sup
α∈[0,0.2]

[α ∧ 0] ∨ sup
α∈(0.2,0.5]

[α ∧ 0.9] ∨ sup
α∈(0.5,0.8]

[α ∧ 0.6] ∨ sup
α∈[0.8,1]

(α ∧ 0.3]

= 0 ∨ 0.5 ∨ 0.6 ∨ 0.3
= 0.6

CV∗[ξ̃] = sup
α∈[0,1]

[α ∧Nec(ξ̃ ≥ α)]

= sup
α∈[0,0.3]

[α ∧ 0.9] ∨ sup
α∈(0.3,0.5]

[α ∧ 0.1] ∨ sup
α∈(0.5,0.8]

[α ∧ 0.4] ∨ sup
α∈(0.8,1]

[α ∧ 0.7]

= 0 ∨ 0.1 ∨ 0.4 ∨ 0.7
= 0.7

and
CV [ξ̃] = sup

α∈[0,1]
[α ∧ Cr(ξ̃ ≥ α)]

= sup
α∈[0,0.3]

[α ∧ 0.9] ∨ sup
α∈(0.3,0.5]

[α ∧ 0.5] ∨ sup
α∈(0.5,0.8]

[α ∧ 0.5] ∨ sup
α∈(0.8,1]

[α ∧ 0.5]

= 0 ∨ 0.5 ∨ 0.5 ∨ 0.5
= 0.5
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3.5. Critical values (CVs) of trapezoidal RFVs [23]
The following theorems introduced the critical values (CVs) of trapezoidal RFVs.

Theorem 3.3. (Qin et al. [23]) Let ξ̃ = (r1, r2, r3, r4) be a trapezoidal RFV. Then we
have,

(1) The optimistic CV of ξ̃ is CV ∗[ξ̃] = r4
(1+r4−r3) .

(2) The pessimistic CV of ξ̃ is CV∗[ξ̃] = r2
(1+r2−r1) .

(3) The CV of ξ̃ is CV [ξ̃] =


2r2−r1

1+2(r2−r1) , if r2 ≥ 1
2

1
2 , if r2 ≤ 1

2 < r3
r4

1+2(r4−r3) , if r3 ≤ 1
2

Example 3.4. Let ξ̃ = (0.3, 0.4, 0.8, 0.9) be a trapezoidal RFV. Then according to the
theorem 3.3 we have,

CV ∗[ξ̃] = 9
11 , CV∗[ξ̃] = 4

11 , CV [ξ̃] = 1
2 .

3.6. Proposed CV based defuzification for trapezoidal type-2 fuzzy vari-
able

According to Chen et al. [7] for a trapezoidal type-2 fuzzy variable ξ̃ = (r1, r2, r3, r4; θl, θr),
where ri ∈ R,∀i and θl, θr ∈ [0, 1] are the two parameters that characterize the degree of
uncertainty that ξ̃ takes a value say x and the corresponding secondary possibility distri-
bution function µ̃ξ̃(x) is given by,
For any x ∈ [r1, r2],

µ̃ξ̃(x) =
(
x− r1
r2 − r1

−θlmin
{
x− r1
r2 − r1

,
r2 − x
r2 − r1

}
,
x− r1
r2 − r1

,
x− r1
r2 − r1

+θrmin
{
x− r1
r2 − r1

,
r2 − x
r2 − r1

})
for x ∈ (r2, r3), µ̃ξ̃(x) = 1̃ and

µ̃ξ̃(x) =
(
r4 − x
r4 − r3

−θlmin
{
r4 − x
r4 − r3

,
x− r3
r4 − r3

}
,
r4 − x
r4 − r3

,
r4 − x
r4 − r3

+θrmin
{
r4 − x
r4 − r3

,
x− r3
r4 − r3

})
For any x ∈ [r3, r4].

Theorem 3.5. Let ξ̃ = (r1, r2, r3, r4; θl, θr) be a type -2 trapezoidal fuzzy variable. Then
we have,

I. Using the optimistic CV reduction method, the reduction ξ1 of ξ̃ has the following
possibility distribution,

µξ1(x) =



(1+θr)(x−r1)
r2−r1+θr(x−r1) , if x ∈

[
r1,

r1+r2
2

]
(1−θr)x−r1+θrr2
r2−r1+θr(r2−x) , if x ∈

(
r1+r2

2 , r2

]
1̃, ifx ∈ (r2, r3)

(1+θr)(r4−x)
r4−r3+θr(r4−x) , if x ∈

(
r3,

r3+r4
2

]
(−1+θr)x−θrr3+r4
r4−r3+θr(x−r4) , if x ∈

(
r3+r4

2 , r4

]
.

(3.5)
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II. Using the pessimistic CV reduction method, the reduction ξ2 of ξ̃ has the following
possibility distribution,

µξ2(x) =



(x−r1)
r2−r1+θl(x−r1) , if x ∈

[
r1,

r1+r2
2

]
(x−r1)

r2−r1+θl(r1−x) , if x ∈
(
r1+r2

2 , r2

]
1̃, ifx ∈ (r2, r3)

(r4−x)
r4−r3+θl(x−r3) , if x ∈

(
r3,

r3+r4
2

]
(r4−x)

r4−r3+θl(r4−x) , if x ∈
(
r3+r4

2 , r4

]
.

(3.6)

III. Using the CV reduction method, the reduction ξ3 of ξ̃ has the following possibility
distribution,

µξ3(x) =



(1+θr)(x−r1)
r2−r1+2θr(x−r1) , if x ∈

[
r1,

r1+r2
2

]
(1−θl)x+θlr2−r1
r2−r1+2θl(r2−x) , if x ∈

(
r1+r2

2 , r2

]
1̃, ifx ∈ (r2, r3)
(−1+θl)x−θlr3+r4
r4−r3+2θl(x−r3) , if x ∈

(
r3,

r3+r4
2

]
(1+θr)(r4−x)

r4−r3+2θr(r4−x) , if x ∈
(
r3+r4

2 , r4

]
.

(3.7)

From the above theorem we can conclude that when the reduction of trapezoidal type-2
fuzzy variable is made by optimistic CV-reduction method, the possibility distribution
function is constructed by use of θr and similarly for construction of pessimistic CV-
reduction of trapezoidal type-2 fuzzy variable θl is use. But in case of CV-reduction of
trapezoidal type-2 fuzzy variable both θl and θr are used. Thus, CV-reduction gives more
accurate normal value rather than optimistic or pessimistic CV-reduction. Therefore, we
take CV-reduction method for our future calculation.

3.7. Fuzzy number [37]
A fuzzy number is an extension of a regular number in the sense that it does not refer to

one single value but rather than a connected set of possible values. Thus, a fuzzy number
is a fuzzy set like u : R −→ I = [0, 1] which satisfies

(1) u is upper semi-continuous.
(2) u(x) = 0 outside the interval [c, d].
(3) There are real numbers a,b such c ≤ a ≤ b ≤ d and

(i) u(x) is monotonic increasing on [c, a],
(ii)u(x) is monotonic decreasing on [b, d],
(iii)u(x) = 1 , a ≤ x ≤ b.

3.8. Hexagonal fuzzy number [24]
A fuzzy number Ãh is called a hexagonal fuzzy number, denoted by Ãh = (a1, a2, a3, a4, a5, a6)

where a1, a2, a3, a4, a5, a6 are real numbers and its membership function µÃh(x) is given
below
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µÃh(x) =



0, if x < a1
1
2 [ x−a1
a2−a1

], if a1 ≤ x ≤ a2
1
2 + 1

2 [ x−a2
a3−a2

], if a2 ≤ x ≤ a3
1, if a3 ≤ x ≤ a4
1− 1

2 [ x−a4
a5−a4

], if a4 ≤ x ≤ a5
1
2 [ a5−x
a5−a4

], if a5 ≤ x ≤ a6
0, if x > a6

Remark: In other words, a hexagonal fuzzy number Ãh is an ordered quadruple
(P1(u), Q1(v), Q2(v), P2(u)), for u ∈ [0, 0.5) and v ∈ [0.5, 1) where,

(1) P1(u) = 1
2 [ u−a1
a2−a1

] is a bounded continuous non-decreasing function over [0,0.5).
(2) Q1(v) = 1

2 + 1
2 [ v−a2
a3−a2

] is a bounded continuous non-decreasing function over [0.5,1].
(3) Q2(v) = 1− 1

2 [ v−a4
a5−a4

] is a bounded continuous non-decreasing function over [0.5,1].
(4) P2(u) = 1

2 [ a6−u
a6−a5

] is a bounded continuous non-decreasing function over [0,0.5).

3.9. α-cut of fuzzy set [37]
The α-level set (or interval of confidence at level α or α-cut) of the fuzzy set Ã of X

is a crisp set Aα that contains all the elements of X that have membership values greater
than or equal to α, i.e. Ã = {x : µÃ(x) ≥ α, x ∈ X,α ∈ [0, 1]}.
In case of hexagonal fuzzy number Ãh = (a1, a2, a3, a4, a5, a6), the α-cut of Ãh is defined
as
Aα = {x ∈ X : µÃh(x) ≥ x}

=
{

[P1(α), P2(α)] for α ∈ [0, 0.5]
[Q1(α), Q2(α)] for α ∈ [0.5, 1]

3.10. α-cut operations [37]:
If we get crisp interval by α-cut operations interval Aα shall be obtained as follows, for

all α ∈ [0, 1]
Consider, Q1(x) = α
1
2 + 1

2 [ x−a2
a3−a2

] = α

Hence, Q1(α) = 2α(a3 − a2) + 2a2 − a3
Similarly, Q2(x) = α, Q2(α) = 2a5 − a4 − 2α(a5 − a4), P1(α) = 2α(a2 − a1) + a1
P2(α) = a6 − 2α(a6 − a5)
Hence,

Aα =
{

[2α(a2 − a1) + a1, a6 − 2α(a6 − a5)] for α ∈ [0, 0.5]
[2α(a3 − a2) + 2a2 − a3, 2a5 − a4 − 2α(a5 − a4)] for α ∈ [0.5, 1]

3.11. α-cut operation on reduction of a trapezoidal type-2 fuzzy variable
A trapezoidal type-2 fuzzy fuzzy variable is defined as ξ̃ = (r1, r2, r3, r4; θl, θr), then we

have already discussed about reduction method of trapezoidal type-2 fuzzy variable by
optimistic CV , pessimistic CV and CV reduction.
Now according to the definition of α-cut [37], we have the following α-cuts of the reduc-
tions of ξ̃
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I. Using the optimistic CV reduction method,

ξ1L(α) =


(1+θr)r1+(r2−r1−θrr1)α

(1+θr)−θrα , if 0 ≤ α ≤ 0.5
(r1−θrr1)+(r2−r1−θrr2)α

(1−θr)+θrα , if 0.5 < α ≤ 1
(3.8)

ξ1R(α) =


(r4−θrr3)−(r4−r3−θrr3)α

(1−θr)−θrα , if 0.5 ≤ α ≤ 1
(1+θr)r4−(r4−r3+θrr4)α

(1+θr)−θrα , if 0 ≤ α ≤ 0.5
(3.9)

II. Using the pessimistic CV reduction method,

ξ2L(α) =
{

r1+(r2−r1−θrr1)α
1−θlα , if 0 ≤ α ≤ 0.5

r1+(r2−r1+θrr2)α
1+θlα , if 0.5 < α ≤ 1

(3.10)

ξ2R(α) =
{

r4−(r4−r3−θlr2)α
1+θlα , if 0.5 ≤ α ≤ 1

r4−(r4−r3+θlr4)α
1−θlα , if 0 ≤ α < 0.5

(3.11)

III. Using the CV reduction method,

ξ3L(α) =


(1+θr)r1+(r2−r1−2θrr1)α

(1+θr)−2θrα , if 0 ≤ α ≤ 0.5
(r1−θlr2)+(r2−r1−θlr2)α

(1−θl)+2θlα , if 0.5 < α ≤ 1
(3.12)

ξ3R(α) =


(r4−θlr3)+(r4−r3−2θlr3)α

(1−θl)+2θlα , if 0.5 ≤ α ≤ 1
(1+θr)r4−(r4−r3+2θrr4)α

(1+θr)−2θrα , if 0 ≤ α < 0.5
(3.13)

By CV reduction method, membership function of type two fuzzy variable ξ̃ = (r1, r2, r3, r4; θl, θr)
reduces to membership function of type one variable which is just like a hexagonal fuzzy
number. Therefore α-cut of ξ̃ is[
ξ̃
]
α

=
{

[P1(α), P2(α)] for α ∈ [0, 0.5]
[Q1(α), Q2(α)] for α ∈ [0.5, 1]

where,
P1(α) = (1+θr)r1+(r2−r1−2θrr1)α

(1+θr)−2θrα , P2(α) = (1+θr)r4−(r4−r3+2θrr4)α
(1+θr)−2θrα

Q1(α) = (r1−θlr2)+(r2−r1−θlr2)α
(1−θl)+2θlα , Q2(α) = (r4−θlr3)+(r4−r3−2θlr3)α

(1−θl)+2θlα

4. Notations and assumptions
To formulate the mathematical model for the proposed inventory system, the following

notations and assumptions are made.

4.1. Notation
Decision Variables:

M : Permissible delay period (time) for the retailer offered by the wholesaler, M > 0.
N : Permissible delay period (time) for the customer offered by the retailer, 0 < N < M .
T : Business period i.e., time period for the cycle of the system, T > 0.
Parameters:

C3 = Fixed set-up cost ($ /set up).
Cs = Unit selling price ($ /unit).
C
′
s = Scrap price per unit ($ /unit).

p = Unit production cost ($ /unit).
α
′ = Obsolescence rate of inventory (percent).
b
′ = Required space for each unit of product (m3/unit).
a
′ = The weight of the obsolescence product stored in the warehouse (ton/m3).
Cb = Backordering cost per unit quantity per unit of time ($ /unit/time).
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Cmc = The emission cost of carbon for manufacturing each unit ($ /m3).
Coc = Average disposal,waste collection and emission cost for inventory obsolescence ($
/m3).
Ch = Holding cost per unit item per unit time ($ /unit).
Chc = Average emission cost of carbon for holding inventory ($ /m3).
ip = Rate of interest per year per unit to be paid for the unsold inventory after the credit
period M, ip > 0 ($ /year/unit).
ie = Rate of interest per year per unit to be earned from the revenue sold till the time
horizon T ($ /year/unit) (ie < ip).

4.2. Assumptions
The model is developed with the following assumptions.
(1) Production system involves only one non-deteriorating item.
(2) Shortages are allowed with partial backordering.
(3) D, rate of demand depends on the production price and stock i.e.,

D(p, q) =
{
p−ε(ã+ bq) if q > 0
ãp−ε if q ≤ 0

Where ã = (r1, r2, r3, r4, θl, θr) is a trapezoidal type two fuzzy number and 0 <
ε < 1 , r1, r2, r3, r4 > 0 , 0 < θl, θr < 1 and b is any positive real number.

(4) K, rate of production is linearly demand dependent i.e., of the form K = µD and
µ > 1

(5) Rate of earning interest by the retailer is lesser than the rate of interest paid to
the wholesaler by the retailer, i.e. ie < ip.

(6) Credit period offered by the retailer is smaller than that offered by the wholesaler,
i.e. N < M .

(7) Customer maintains the trade credit policy offered by the retailer.

5. Mathematical formulation of the model
Let the retailer fails to fulfill the demand initially and hence shortages arise from time

t = 0 to the time t = t1 and maximum shortage level Qs occur at t = t1. After that
production process starts to backlog the shortage quantities with partial backordering
process and at time t = t2 the shortage level reaches to zero. In the mean time inventory
accumulates upto time t = t3 of amount Qm. At that time production process being stop
and the accumulated inventory declines to meet up the customers demand and reaches to
zero at time T .
The governing differential equations of the stock level at any instant t for this model is
given by

dq

dt
=


−D 0 ≤ t ≤ t1
K −D t1 ≤ t ≤ t2
K −D t2 ≤ t ≤ t3
−D t3 ≤ t ≤ T

With the boundary conditions, q(0) = q(t2) = q(T ) = 0
Bede and Gal [4] applied fuzzy number valued function in fuzzy differential equation and
hence, the above equation can be rewritten in fuzzy form

dq̃

dt
=


−ã� p−ε 0 ≤ t ≤ t1
(µ− 1)� ã� p−ε t1 ≤ t ≤ t2
(µ− 1)� p−ε � (ã+ b� q̃) t2 ≤ t ≤ t3
−p−ε � (ã+ b� q̃) t3 ≤ t ≤ T

For using CV based reduction method for trapezoidal type-2 fuzzy number, we divided the
interval for α ∈ [0, 1] into two sub-intervals like α ∈ [0, 0.5] and α ∈ [0.5, 1] as discussed
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in preliminaries. Also Stefanini and Bede [33] shows that any general interval differential
equation can be formulated via generalized Hukuhara (gH) derivative in terms of system
of ordinary differential equations.
Now, the Generalized Hukuhara derivative [33] of a fuzzy valued function f : [a, b] 7−→ R
at t0 is defined as

f
′(t0) = lim

h→0

f(t0 + h)ΘgHf(t0)
h

In parametric form we say that f(t) is gH-(i) differentiable at t0 if

[f ′(t0)]α = [f ′L(t0, α), f ′R(t0, α)] (5.1)
Also, f(t) is gH-(ii) differentiable at t0 if

[f ′(t0)]α = [f ′R(t0, α), f ′L(t0, α)] (5.2)
Depending upon the value of α two possibility aries
(i) α ∈ [0, 0.5]
(ii) α ∈ [0.5, 1]

If α ∈ [0,0.5], then the above equation takes the form

[dqL
dt

,
dqR
dt

] =


−[aL, aR]� p−ε 0 ≤ t ≤ t1
(µ− 1)� [aL, aR]� p−ε t1 ≤ t ≤ t2
(µ− 1)� p−ε([aL, aR] + b� [qL, qR]) t2 ≤ t ≤ t3
−p−ε([aL, aR] + b� [qL, qR]) t3 ≤ t ≤ T

(5.3)

Therefore two cases arise
Case 1: gH-(i) differentiable
Case 2: gH-(ii) differentiable

Case-1: Therefore, solving the above system via gH-(i) differentiable is equivalent to
solve the corresponding simultaneous system (see [33])

dqL
dt

=


−aRp−ε 0 ≤ t ≤ t1
(µ− 1)aLp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aL + bqL) t2 ≤ t ≤ t3
−p−ε(aR + bqR) t3 ≤ t ≤ T

dqR
dt

=


−aLp−ε 0 ≤ t ≤ t1
(µ− 1)aRp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aR + bqR) t2 ≤ t ≤ t3
−p−ε(aL + bqL) t3 ≤ t ≤ T

After solving using the boundary conditions, q(0) = q(t2) = q(T ) = 0, we get

qL(t) =


−aRp−εt 0 ≤ t ≤ t1
(µ− 1)aLp−ε(t− t2) t1 ≤ t ≤ t2
aL
b [ex(t−t2) − 1] t2 ≤ t ≤ t3
−aR

b [ey(T−t) − 1] t3 ≤ t ≤ T

(5.4)

qR(t) =


−aLp−εt 0 ≤ t ≤ t1
(µ− 1)aRp−ε(t− t2) t1 ≤ t ≤ t2
aR
b [ex(t−t2) − 1] t2 ≤ t ≤ t3
−aL

b [ey(T−t) − 1] t3 ≤ t ≤ T

(5.5)

where, x = b(µ− 1)p−ε and y = bp−ε
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aL(α) = (1 + θr)r1 + (r2 − r1 − 2θrr1)α
(1 + θr)− 2θrα

aR(α) = (1 + θr)r4 − (r4 − r3 + 2θrr4)α
(1 + θr)− 2θrα

Similarly, to find the lower and upper limit of inventory accumulated upto time t = t3 is
given by the condition
(Qm)L = aL

b [ex(t3−t2) − 1] = −aR
b [ey(T−t3) − 1]

(Qm)U = aR
b [ex(t3−t2) − 1] = −aL

b [ey(T−t3) − 1]
Now, the inventory related costs are as follows
Total obsolescence cost of inventory
TOCL = α

′(Cs −C
′
s)
[ ∫ t3

t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= α

′(Cs −C
′
s)
[
aL
b {

1
x(ex(t3−t2) − 1)− (t3 −

t2)}+ aR
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
TOCR = α

′(Cs−C
′
s)
[ ∫ t3

t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= α

′(Cs−C
′
s)
[
aR
b {

1
x(ex(t3−t2)− 1)− (t3−

t2)}+ aL
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
Total cost of emission of inventory obsolescence
TEOL = α

′
a
′
Coc

[ ∫ t3
t2
qL(t)dt +

∫ T
t3
qL(t)dt

]
= α

′
a
′
Coc

[
aL
b {

1
x(ex(t3−t2) − 1) − (t3 − t2)} +

aR
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
TEOR = α

′
a
′
Coc

[ ∫ t3
t2
qR(t)dt +

∫ T
t3
qR(t)dt

]
= α

′
a
′
Coc

[
aR
b {

1
x(ex(t3−t2) − 1) − (t3 − t2)} +

aL
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
Total backordering cost
TBCL = Cb

[ ∫ t1
0 qL(t)dt+

∫ t2
t1
qL(t)dt

]
= −Cb

2

[
aRp

−εt21 + (µ− 1)aLp−ε(t1 − t2)2
]

TBCR = Cb
[ ∫ t1

0 qR(t)dt+
∫ t2
t1
qR(t)dt

]
= −Cb

2

[
aLp

−εt21 + (µ− 1)aRp−ε(t1 − t2)2
]

Total goodwill loss for back-order is
TGCL = Cg

[ ∫ t1
0 qL(t)dt+

∫ t2
t1
qL(t)dt

]
= −Cg

2

[
aRp

−εt21 + (µ− 1)aLp−ε(t1 − t2)2
]

TGCR = Cg
[ ∫ t1

0 qL(t)dt+
∫ t2
t1
qL(t)dt

]
= −Cg

2

[
aLp

−εt21 + (µ− 1)aRp−ε(t1 − t2)2
]

Total holding cost
THCL =

∫ t3
t2
ChqL(t)dt+

∫ T
t3
ChqL(t)dt = Ch

[
aL
b {

1
x(ex(t3−t2) − 1)− (t3 − t2)}+ aR

b {
1
y (1−

ey(T−t3)) + (T − t3)}
]

THCR =
∫ t3
t2
ChqR(t)dt+

∫ T
t3
ChqR(t)dt = Ch

[
aR
b {

1
x(ex(t3−t2) − 1)− (t3 − t2)}+ aL

b {
1
y (1−

ey(T−t3)) + (T − t3)}
]

Total emission cost of carbon for holding inventory
TEHL = Chcb

′
[ ∫ t3

t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= Chcb

′
[
aL
b {

1
x(ex(t3−t2)−1)−(t3−t2)}+ aR

b {
1
y (1−

ey(T−t3)) + (T − t3)}
]

TEHR = Chcb
′
[ ∫ t3

t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= Chcb

′
[
aR
b {

1
x(ex(t3−t2)−1)−(t3−t2)}+ aL

b {
1
y (1−

ey(T−t3)) + (T − t3)}
]

Total set-up cost= C3
Total revenue earned
TREL = cS

[
µaLp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aL+bqL)dt

]
= cS

[
µaLp

−ε(t2−t1)+µp−εaLe−xt2
∫ t3
t2
extdt

]
= cSµaLp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]
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TRER = cS
[
µaRp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aR+bqR)dt

]
= cS

[
µaRp

−ε(t2−t1)+µp−εaRe−xt2
∫ t3
t2
extdt

]
= cSµaRp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

Total Production cost
TPCL = p

[
µaLp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aL+bqL)dt

]
= p

[
µaLp

−ε(t2−t1)+µp−εaLe−xt2
∫ t3
t2
extdt

]
= pµaLp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

TPCR = p
[
µaRp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aR+bqR)dt

]
= p

[
µaRp

−ε(t2−t1)+µp−εaRe−xt2
∫ t3
t2
extdt

]
= pµaRp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

The emission cost of carbon for manufacturing total units
TEPL = cmc

[
µaLp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aL+bqL)dt

]
= cmc

[
µaLp

−ε(t2−t1)+µp−εaLe−xt2
∫ t3
t2
extdt

]
= cmcµaLp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

TEPR = cmc
[
µaRp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aR+bqR)dt

]
= cmc

[
µaRp

−ε(t2−t1)+µp−εaRe−xt2
∫ t3
t2
extdt

]
= cmcµaRp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

Therefore three sub-cases arise depending upon the values of changing time periods.

Sub-case 1.1: 0 ≤ t1 ≤ N ≤M ≤ t2 ≤ t3 ≤ T
In this case if the amount is paid within M by the retailer, then there is no interest
payable. Otherwise, the retailer will pay for the rest of the inventory. Hence, the total
amount of interest paid and interest earned by the retailer is calculated.

Hence, total interest paid
TIPL = pip

[ ∫ t2
M (1 + T − t2)qL(t)dt+

∫ t3
t2

(1 + T − t3)qL(t)dt+
∫ T
t3
qL(t)dt

]
= pip

[
1
2(1 + T − t2)(µ− 1)aLp−ε(t2 −M)2 + (1 + T − t3)aLb {

1
x(ex(t3−t2) − 1)− (t3 − t2)}+

aR
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
TIPR = pip

[ ∫ t2
M (1 + T − t2)qR(t)dt+

∫ t3
t2

(1 + T − t3)qR(t)dt+
∫ T
t3
qR(t)dt

]
TIPR = Cpip

[
1
2(1 +T − t2)(µ− 1)aRp−ε(t2−M)2 + (1 +T − t3)aRb {

1
x(ex(t3−t2)− 1)− (t3−

t2)}+ aL
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
And, total interest earned

TIEL = Csie
[
(T − N)

∫N
t1
DL(p, q)dt + (1 + T − M)

∫M
N DL(p, q)(M − t)dt + (1 + T −

t2)
∫ t2
M DL(p, q)(t2 − t)dt+ (1 + T − t3)

∫ t3
t2
DL(p, q)(t3 − t)dt+

∫ T
t3
DL(p, q)(T − t)dt

]
= CsieaLp

−ε
[
(T −N)(N−t1)+ 1

2(1+T −M)(M−N)2 + 1
2(1+T −t2)(t2−M)2 +p−ε{aL−

aR(ey(T−t3) − 1)}
]

TIER = Csie
[
(T − N)

∫N
t1
DR(p, q)dt + (1 + T −M)

∫M
N DR(p, q)(M − t)dt + (1 + T −

t2)
∫ t2
M DR(p, q)(t2 − t)dt+ (1 + T − t3)

∫ t3
t2
DR(p, q)(t3 − t)dt+

∫ T
t3
DR(p, q)(T − t)dt

]
= CsieaLp

−ε
[
(T −N)(N−t1)+ 1

2(1+T −M)(M−N)2 + 1
2(1+T −t2)(t2−M)2 +p−ε{aL−

aR(ey(T−t3) − 1)}
]
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Sub-case 1.2: 0 ≤ t1 ≤ t2 ≤ N ≤M ≤ t3 ≤ T
In this case the total amount of interest paid and interest earned by the retailer is calcu-
lated.

Hence, total interest paid
TIPL = pip

[ ∫ t3
M (1 + T − t3)qL(t)dt+

∫ T
t3
qL(t)dt

]
= pip

[
(1 + T − t3)aLb {

1
x(ex(t3−M) − 1)− (t3 −M)}+ aR

b {
1
y (1− ey(T−t3)) + (T − t3)}

]
TIPL = pip

[ ∫ t3
M (1 + T − t3)qR(t)dt+

∫ T
t3
qR(t)dt

]
= pip

[
(1 + T − t3)aRb {

1
x(ex(t3−M) − 1)− (t3 −M)}+ aL

b {
1
y (1− ey(T−t3)) + (T − t3)}

]
Total interest earned

TIEL = Csie
[
(T−t2)

∫ t2
t1
DL(p, q)dt+(T−N)

∫N
t2
DL(p, q)dt+(1+T−t3)

∫ t3
N DL(p, q)(t3−

t)dt+ (1 + T −M)
∫M
t3
DL(p, q)(M − t)dt+

∫ T
M DL(p, q)(T − t)dt

]
= CsieaLp

−ε
[
(T − t2)(t2− t1) + (T −N)aLx (ex(N−t2)− 1) + 1

2(1 +T − t3)(t3−N)2 + 1
2(1 +

T −M)(M − t3)2 + p−ε{aL − aR(ey(T−t3) − 1)}
]

TIER = Csie
[
(T−t2)

∫ t2
t1
DR(p, q)dt+(T−N)

∫N
t2
DR(p, q)dt+(1+T−t3)

∫ t3
N DR(p, q)(t3−

t)dt+ (1 + T −M)
∫M
t3
DR(p, q)(M − t)dt+

∫ T
M DR(p, q)(T − t)dt

]
= CsieaRp

−ε
[
(T − t2)(t2− t1) + (T −N)aLx (ex(N−t2)− 1) + 1

2(1 +T − t3)(t3−N)2 + 1
2(1 +

T −M)(M − t3)2 + p−ε{aR − aL(ey(T−t3) − 1)}
]

Sub-case 1.3: 0 ≤ t1 ≤ t2 ≤ N ≤ t3 ≤ T ≤M
In this case interest payable by the retailer is zero, i.e., TIPL = TIPR = 0
But, interest earned by the retailer is given by
TIEL = Csie

[
(M−t2)

∫ t2
t1
DL(p, q)dt+(M−N)

∫N
t2
DL(p, q)dt+(1+M−t3)

∫ t3
N DL(p, q)(t3−

t)dt+ (1 +M − T )
∫ T
t3
DL(p, q)(T − t)dt

]
= CsieaLp

−ε
[
(M − t2)(t2− t1) + (M −N)(N − t1) + 1

2(1 +M − t3)(t3−N)2 + 1
2(1 +M −

T )(T − t3)2 + {aL − aR(ey(T−t3) − 1)}
]

TIER = Csie
[
(M−t2)

∫ t2
t1
DR(p, q)dt+(M−N)

∫N
t2
DR(p, q)dt+(1+M−t3)

∫ t3
N DR(p, q)(t3−

t)dt+ (1 +M − T )
∫ T
t3
DR(p, q)(T − t)dt

]
= CsieaRp

−ε
[
(M − t2)(t2− t1) + (M −N)(N − t1) + 1

2(1 +M − t3)(t3−N)2 + 1
2(1 +M −

T )(T − t3)2 + {aR − aL(ey(T−t3) − 1)}
]

Here, a carbon emissions integrated fuzzy EPQ model with type-2 fuzzy variable is
considered, where the objectives are maximizing the profit and minimizing various carbon
emission costs associated with inventory management. By using gH-differentiability, we
get a range for profit and a range of emission rather than an exact value of profit and
emission, which is more realistic in practical value. Hence, the objective functions are
defined as follows:
Max Profit (TP ) = 1

T [TRE + TIE − TPC − THC − TOC − TIP − TBC − TGC −C3](19)

Min Carbon Emission Cost (TE) = TEO + TEH + TEP (20)
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On taking α-cut over the total profit and emission per unit time is a interval crisp set and
is defined by
TP = [TPL, TPR] where, (21)
TPL = 1

T [TREL + TIEL − TPCL − THCL − TOCL − TIPL − TBCL − TGCL − C3]
TPR = 1

T [TRER + TIER − TPCR − THCR − TOCR − TIPR − TBCR − TGCR − C3]
And, TE = [TEL, TER] where, (22)
TEL = TEOL + TEHL + TEPL
TER = TEOR + TEHR + TEPR, when 0 ≤ α ≤ 0.5

Case-2: If α ∈ [0, 0.5], then on taking the α-cut of fuzzy differential equation reduces
to interval fuzzy differential equation via gH-(ii) differentiability

[dqL
dt

,
dqR
dt

] =


−[aL, aR]� p−ε 0 ≤ t ≤ t1
(µ− 1)� [aL, aR]� p−ε t1 ≤ t ≤ t2
(µ− 1)� p−ε([aL, aR] + b� [qL, qR]) t2 ≤ t ≤ t3
−p−ε([aL, aR] + b� [qL, qR]) t3 ≤ t ≤ T (23)

Thus the above system is equivalent to

dqL
dt

=


−aLp−ε 0 ≤ t ≤ t1
(µ− 1)aRp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aR + bqR) t2 ≤ t ≤ t3
−p−ε(aL + bqL) t3 ≤ t ≤ T

dqR
dt

=


−aRp−ε 0 ≤ t ≤ t1
(µ− 1)aLp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aL + bqL) t2 ≤ t ≤ t3
−p−ε(aR + bqR) t3 ≤ t ≤ T

After solving using the boundary conditions, q(0) = q(t2) = q(T ) = 0 and q(t2) = Qm, we
get

qL(t) =


−aLp−εt 0 ≤ t ≤ t1
(µ− 1)aRp−ε(t− t2) t1 ≤ t ≤ t2
c1e

bkt + c2e
−bkt − aL

b t2 ≤ t ≤ t3
k1e

r2t + k2e
−r2t + aL

b t3 ≤ t ≤ T (24)

qR(t) =


−aRp−εt 0 ≤ t ≤ t1
(µ− 1)aLp−ε(t− t2) t1 ≤ t ≤ t2
c1e

bkt − c2e
−bkt − aR

b t2 ≤ t ≤ t3
−k1e

r2t + k2e
−r2t + aR

b t3 ≤ t ≤ T (25)
Where k = (µ− 1)p−ε, r2 = −bp−ε

c1 = 1
e2bkt3 − e2bkt2 [(Qm + aL

b
)ebkt3 − aL

b
ebkt2 ]

c2 = aL
b
ebkt2 − 1

e2bk(t3−t2) [(Qm + aL
b

)ebkt3 − aL
b
ebkt2 ]

k1 = aR − aL
2b e−c2T

k2 = −aL + aR
2b ec2T

aL(α) = (1 + θr)r1 + (r2 − r1 − 2θrr1)α
(1 + θr)− 2θrα

aR(α) = (1 + θr)r4 − (r4 − r3 + 2θrr4)α
(1 + θr)− 2θrα

Various costs related to the above system are
Total obsolescence cost of inventory



Multi-objective Sustainable Fuzzy Economic Production Quantity (SFEPQ) ... 127

TOCL = α
′(Cs − C

′
s)
[ ∫ t3

t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= α

′(Cs − C
′
s)
[ ∫ t3

t2
[c1e

bkt + c2e
−bkt − aL

b ]dt+
∫ T
t3

[k1e
r2t + k2e

−r2t + aL
b ]dt

]
= α

′(Cs − C
′
s)
[
c1
bk (ebkt3 − ebkt2) − c2

bk (e−bkt3 − e−bkt2) − aL
b (t3 − t2) + k1

r2
(er2T − er2t3) −

k2
r2

(e−r2T − e−r2t3) + aL
b (T − t3)

]
TOCR = α

′(Cs − C
′
s)
[ ∫ t3

t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= α

′(Cs − C
′
s)
[ ∫ t3

t2
[c1e

bkt − c2e
−bkt − aR

b ]dt+
∫ T
t3

[−k1e
r2t + k2e

−r2t + aR
b ]dt

]
= α

′(Cs − C
′
s)
[
c1
bk (ebkt3 − ebkt2) + c2

bk (e−bkt3 − e−bkt2) − aR
b (t3 − t2) − k1

r2
(er2T − er2t3) −

k2
r2

(e−r2T − e−r2t3) + aR
b (T − t3)

]
Total cost of emission of inventory obsolescence
TEOL = α

′
a
′
Coc

[ ∫ t3
t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= α

′
a
′
Coc

[ ∫ t3
t2

[c1e
bkt + c2e

−bkt − aL
b ]dt+

∫ T
t3

[k1e
r2t + k2e

−r2t + aL
b ]dt

]
= α

′
a
′
Coc

[
c1
bk (ebkt3−ebkt2)− c2

bk (e−bkt3−e−bkt2)− aL
b (t3− t2)+ k1

r2
(er2T −er2t3)− k2

r2
(e−r2T −

e−r2t3) + aL
b (T − t3)

]
TEOR = α

′
a
′
Coc

[ ∫ t3
t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= α

′
a
′
Coc

[ ∫ t3
t2

[c1e
bkt − c2e

−bkt − aR
b ]dt+

∫ T
t3

[−k1e
r2t + k2e

−r2t + aR
b ]dt

]
= α

′
a
′
Coc

[
c1
bk (ebkt3−ebkt2)+ c2

bk (e−bkt3−e−bkt2)− aR
b (t3− t2)− k1

r2
(er2T −er2t3)− k2

r2
(e−r2T −

e−r2t3) + aR
b (T − t3)

]
Total backordering cost
TBCL = Cb

[ ∫ t1
0 qL(t)dt+

∫ t2
t1
qL(t)dt

]
= cb[−1

2aLp
−εt21 − 1

2(µ− 1)aRp−ε(t2 − t1)2]

TBCR = Cb
[ ∫ t1

0 qR(t)dt+
∫ t2
t1
qR(t)dt

]
= cb[−1

2aRp
−εt21 − 1

2(µ− 1)aLp−ε(t2 − t1)2]
Total goodwill loss for back-order is
TGCL = Cg

[ ∫ t1
0 qL(t)dt+

∫ t2
t1
qL(t)dt

]
= cg[−1

2aLp
−εt21 − 1

2(µ− 1)aRp−ε(t2 − t1)2]

TGCR = Cg
[ ∫ t1

0 qR(t)dt+
∫ t2
t1
qR(t)dt

]
= cg[−1

2aRp
−εt21 − 1

2(µ− 1)aLp−ε(t2 − t1)2]
Total holding cost
THCL =

∫ t3
t2
ChqL(t)dt+

∫ T
t3
ChqL(t)dt

= Ch
[
c1
bk (ebkt3 − ebkt2) − c2

bk (e−bkt3 − e−bkt2) − aL
b (t3 − t2) + k1

r2
(er2T − er2t3) − k2

r2
(e−r2T −

e−r2t3) + aL
b (T − t3)

]
THCR =

∫ t3
t2
ChqR(t)dt+

∫ T
t3
ChqR(t)dt

= Ch
[
c1
bk (ebkt3 − ebkt2) + c2

bk (e−bkt3 − e−bkt2) − aR
b (t3 − t2) − k1

r2
(er2T − er2t3) − k2

r2
(e−r2T −

e−r2t3) + aR
b (T − t3)

]
Total emission cost of carbon for holding inventory
TEHL = Chcb

′
[ ∫ t3

t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= Chcb

′
[
c1
bk (ebkt3 − ebkt2)− c2

bk (e−bkt3 − e−bkt2)− aL
b (t3− t2) + k1

r2
(er2T − er2t3)− k2

r2
(e−r2T −

e−r2t3) + aL
b (T − t3)

]
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TEHR = Chcb
′
[ ∫ t3

t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= Chcb

′
[
c1
bk (ebkt3 − ebkt2) + c2

bk (e−bkt3 − e−bkt2)− aR
b (t3− t2)− k1

r2
(er2T − er2t3)− k2

r2
(e−r2T −

e−r2t3) + aR
b (T − t3)

]
Total set-up cost= C3
Total revenue earned
TREL = cS [µaLp−ε(t2 − t1) + µ

∫ t3
t2
p−ε(aL + bqL)dt]

= cS [µaLp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2)− c2(e−bkt3 − e−bkt2)}]

TRER = cS [µaRp−ε(t2 − t1) + µ
∫ t3
t2
p−ε(aR + bqR)dt]

= cS [µaRp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2) + c2(e−bkt3 − e−bkt2)}]
Total Production cost
TPCL = p[µaLp−ε(t2 − t1) + µ

∫ t3
t2
p−ε(aL + bqL)dt]

= p[µaLp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2)− c2(e−bkt3 − e−bkt2)}]

TPCR = p[µaRp−ε(t2 − t1) + µ
∫ t3
t2
p−ε(aR + bqR)dt]

= p[µaRp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2) + c2(e−bkt3 − e−bkt2)}]
The emission cost of carbon for manufacturing total units
TEPL = cmc[µaLp−ε(t2 − t1) + µ

∫ t3
t2
p−ε(aL + bqL)dt]

= cmc[µaLp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2)− c2(e−bkt3 − e−bkt2)}]

TEPR = cmc[µaRp−ε(t2 − t1) + µ
∫ t3
t2
p−ε(aR + bqR)dt]

= cmc[µaRp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2) + c2(e−bkt3 − e−bkt2)}]
Therefore three sub-cases may arise depending upon the values of changing time periods.

Sub-case 2.1: 0 ≤ t1 ≤ N ≤M ≤ t2 ≤ t3 ≤ T
In this case if the amount is paid within M by the retailer, then there is no interest
payable. Otherwise, the retailer will pay for the rest of the inventory. In this case the
total amount of interest paid and interest earned by the retailer is calculated.
Hence, total interest paid
TIPL = pip[

∫ t2
M (1 + T − t2)qL(t)dt+

∫ t3
t2

(1 + T − t3)qL(t)dt+
∫ T
t3
qL(t)dt]

= pip
[

1
2(1 + T − t2)(µ − 1)aLp−ε(t2 −M)2 + (1 + T − t3){ c1

bk (ebkt3 − ebkt2) − c2
bk (e−bkt3 −

e−bkt2)− aL
b (t3 − t2)}+ k1

r2
(er2T − er2t3)− k2

r2
(e−r2T − e−r2t3) + aL

b (T − t3)
]

TIPR = pip[
∫ t2
M (1 + T − t2)qR(t)dt+

∫ t3
t2

(1 + T − t3)qR(t)dt+
∫ T
t3
qR(t)dt]

TIPR = pip
[

1
2(1+T −t2)(µ−1)aRp−ε(t2−M)2 +(1+T −t3){ c1

bk (ebkt3−ebkt2)+ c2
bk (e−bkt3−

e−bkt2)− aR
b (t3 − t2)} − k1

r2
(er2T − er2t3)− k2

r2
(e−r2T − e−r2t3) + aR

b (T − t3)]

And, total interest earned
TIEL = Csie[(T − N)

∫N
t1
DL(p, q)dt + (1 + T −M)

∫M
N DL(p, q)(M − t)dt + (1 + T −

t2)
∫ t2
M DL(p, q)(t2 − t)dt+ (1 + T − t3)

∫ t3
t2
DL(p, q)(t3 − t)dt+

∫ T
t3
DL(p, q)(T − t)dt]

= Csie
[
(T −N)aLp−ε(N − t1) + 1

2(1 +T −M)aLp−ε(M −N)2 + 1
2(1 +T − t2)aLp−ε(t2−

M)2+p−εt3b(1+T−t3){ c1
bk (ebkt3−ebkt2)− c2

bk (e−bkt3−e−bkt2)}−p−εb(1+T−t3){ 1
bk (t3ebkt3−

t2e
bkt2)− 1

b2k2 (ebkt3 − ebkt2)}+ T{ bk1
r2

(er2T − er2t3)− bk2
r2

(e−r2T − e−r2t3) + 2aL(T − t3)} −
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bk1{ 1
r2

(Ter2T − t3e
r2t3) − 1

r2
2
(er2T − er2t3)} − bk2{− 1

r2
(Te−r2T − t3e

−r2t3) − 1
r2

2
(e−r2T −

e−r2t3)} − 2aL(T − t3)
]

TIER = Csie[(T −N)
∫N
t1
DR(p, q)dt + (1 + T −M)

∫M
N DR(p, q)(M − t)dt + (1 + T −

t2)
∫ t2
M DR(p, q)(t2 − t)dt+ (1 + T − t3)

∫ t3
t2
DR(p, q)(t3 − t)dt+

∫ T
t3
DR(p, q)(T − t)dt]

= Csie
[
(T −N)aRp−ε(N − t1)+ 1

2(1+T −M)aRp−ε(M −N)2 + 1
2(1+T − t2)aRp−ε(t2−

M)2+p−εt3b(1+T−t3){ c1
bk (ebkt3−ebkt2)+ c2

bk (e−bkt3−e−bkt2)}−p−εb(1+T−t3){ 1
bk (t3ebkt3−

t2e
bkt2)− 1

b2k2 (ebkt3 − ebkt2)}+T{ bk1
r2

(er2T − er2t3)− bk2
r2

(e−r2T − e−r2t3) + 2aR(T − t3)}}+
bk1{ 1

r2
(Ter2T − t3e

r2t3) − 1
r2

2
(er2T − er2t3)} − bk2{− 1

r2
(Te−r2T − t3e

−r2t3) − 1
r2

2
(e−r2T −

e−r2t3)} − 2aL(T − t3)
]

Sub-case 2.2: 0 ≤ t1 ≤ t2 ≤ N ≤M ≤ t3 ≤ T
In this case the total amount of interest paid and interest earned by the retailer is calcu-
lated.

Hence, total interest paid
TIPL = pip[

∫ t3
M (1 + T − t3)qL(t)dt+

∫ T
t3
qL(t)dt]

= pip
[
(1+T − t3){ c1

bk (ebkt3−ebkM )− c2
bk (e−bkt3−e−bkM )− aL

b (t3−M)}+ k1
r2

(er2T −er2t3)−
k2
r2

(e−r2T − e−r2t3) + aL
b (T − t3)

]
TIPR = pip[

∫ t3
M (1 + T − t3)qR(t)dt+

∫ T
t3
qR(t)dt]

= pip
[
(1+T − t3){ c1

bk (ebkt3−ebkM )+ c2
bk (e−bkt3−e−bkM )− aR

b (t3−M)}− k1
r2

(er2T −er2t3)−
k2
r2

(e−r2T − e−r2t3) + aR
b (T − t3)

]
Total interest earned

TIEL = Csie[(T−t2)
∫ t2
t1
DL(p, q)dt+(1+T−t3)

∫ t3
t2
DL(p, q)(t3−t)dt+

∫ T
t3
DL(p, q)(T−t)dt]

= Csie
[
aLp

−ε(T − t2)(t2 − t1) + (1 + T − t3)p−εbt3{ c1
k (ebkt3 − ebkt2) − c2

k (e−bkt3 −
e−bkt2)}−p−ε(1+T − t3)[c1b{ 1

bk (t3ebkt3− t2ebkt2)− 1
b2k2 (ebkt3−ebkt2)}−c2b{− 1

bk (t3e−bkt3−
t2e
−bkt2) − 1

b2k2 (e−bkt3 − e−bkt2)}] + T{−k1
r2

(er2T − er2t3) − k2
r2

(e−r2T − e−r2t3) + 2aR
b (T −

t3)}−k1{− 1
r2

(Ter2T − t3er2t3)+ 1
r2

2
(er2T −er2t3)}−k2{− 1

r2
(Te−r2T − t3e−r2t3)− 1

r2
2
(e−r2T −

e−r2t3)− aR
b (T 2 − t23)}

]
TIER = Csie[(T−t2)

∫ t2
t1
DR(p, q)dt+(1+T−t3)

∫ t3
t2
DR(p, q)(t3−t)dt+

∫ T
t3
DR(p, q)(T−

t)dt]

= Csie
[
aRp

−ε(T − t2)(t2 − t1) + (1 + T − t3)p−εbt3{ c1
k (ebkt3 − ebkt2) + c2

k (e−bkt3 −
e−bkt2)}−p−ε(1+T − t3)[c1b{ 1

bk (t3ebkt3− t2ebkt2)− 1
b2k2 (ebkt3−ebkt2)}+c2b{− 1

bk (t3e−bkt3−
t2e
−bkt2) − 1

b2k2 (e−bkt3 − e−bkt2)}] + T{k1
r2

(er2T − er2t3) − k2
r2

(e−r2T − e−r2t3) + 2aR
b (T −

t3)}+k1{− 1
r2

(Ter2T − t3er2t3)+ 1
r2

2
(er2T −er2t3)}−k2{− 1

r2
(Te−r2T − t3e−r2t3)− 1

r2
2
(e−r2T −

e−r2t3)− aR
b (T 2 − t23)}

]
Sub-case 2.3: 0 ≤ t1 ≤ t2 ≤ N ≤ t3 ≤ T ≤M

In this case interest payable by the retailer is zero, i.e., TIPL = TIPR = 0
But, interest earned by the retailer is given by
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TIEL = Csie
[
(M − t2)

∫ t2
t1
DL(p, q)dt+ (M −N)

∫N
t2
DL(p, q)dt

+(1 +M − t3)
∫ t3
N DL(p, q)(t3 − t)dt+ (1 +M − T )

∫ T
t3
DL(p, q)(T − t)dt

]
= Csiep

−ε
[
aL(M − t2)(t2− t1) + b(M −N){ c1

bk (ebkN −ebkt2)− c2
bk (e−bkN −e−bkt2)}+ (1+

M − t3)t3{ c1
bk (ebkt3 − ebkN )− c2

bk (e−bkt3 − e−bkN )}+ (1 +M − t3)[c1{ 1
bk (t3ebkt3 −NebkN )−

1
b2k2 (ebkt3 − ebkN )} + c2{− 1

bk (t3e−bkt3 − Ne−bkN ) − 1
b2k2 (e−bkt3 − e−bkN )}] + (1 + M −

T )T{ bk1
r2

(er2T − er2t3)− bk2
r2

(e−r2T − e−r2t3) + 2aL(T − t3)} − (1 +M − T )[bk1{ 1
r2

(Ter2T −
t3e

r2t3)− 1
r2

2
(er2T−er2t3)}+bk2{− 1

r2
(Te−r2T−t3e−r2t3)− 1

r2
2
(e−r2T−e−r2t3)}+aL(T 2−t23)]

]
TIER = Csie

[
(M − t2)

∫ t2
t1
DR(p, q)dt+ (M −N)

∫N
t2
DR(p, q)dt

+(1 +M − t3)
∫ t3
N DR(p, q)(t3 − t)dt+ (1 +M − T )

∫ T
t3
DR(p, q)(T − t)dt

]
= Csiep

−ε
[
aR(M − t2)(t2− t1)+ b(M −N){ c1

bk (ebkN −ebkt2)+ c2
bk (e−bkN −e−bkt2)}+(1+

M − t3)t3{ c1
bk (ebkt3 − ebkN ) + c2

bk (e−bkt3 − e−bkN )}+ (1 +M − t3)[c1{ 1
bk (t3ebkt3 −NebkN )−

1
b2k2 (ebkt3 − ebkN )} − c2{− 1

bk (t3e−bkt3 − Ne−bkN ) − 1
b2k2 (e−bkt3 − e−bkN )}] + (1 + M −

T )T{− bk1
r2

(er2T −er2t3)− bk2
r2

(e−r2T −e−r2t3)+2aR(T −t3)}−(1+M−T )[−bk1{ 1
r2

(Ter2T −
t3e

r2t3)− 1
r2

2
(er2T−er2t3)}+bk2{− 1

r2
(Te−r2T−t3e−r2t3)− 1

r2
2
(e−r2T−e−r2t3)}+aR(T 2−t23)]

]
In this case also the objective functions are defined as follows:

Max Profit

(TP ) = 1
T

[TRE + TIE − TPC − THC − TOC − TIP − TBC − TGC − C3] (26)

Min Emission (TE) = TEO + TEH + TEP (27)
On taking α-cut over the total profit and emission per unit time is a crisp interval and is
defined by
TP = [TPL, TPR] where, (28)
TPL = 1

T [TREL + TIEL − TPCL − THCL − TOCL − TIPL − TBCL − TGCL − C3]
TPR = 1

T [TRER + TIER − TPCR − THCR − TOCR − TIPR − TBCR − TGCR − C3]
And, TE = [TEL, TER] where, (29)
TEL = TEOL + TEHL + TEPL
TER = TEOR + TEHR + TEPR, when 0 ≤ α ≤ 0.5
Again, if α ∈ [0.5, 1], then the system of interval fuzzy differential equation is given by

[dqL
dt

,
dqR
dt

] =


−[aL, aR]� p−ε 0 ≤ t ≤ t1
(µ− 1)� [aL, aR]� p−ε t1 ≤ t ≤ t2
(µ− 1)� p−ε([aL, aR] + b� [qL, qR]) t2 ≤ t ≤ t3
−p−ε([aL, aR] + b� [qL, qR]) t3 ≤ t ≤ T (30)

Therefore two cases arise
Case 1: gH-(i) differentiability
Case 2: gH-(ii) differentiability
In case 1: gH-(i) differentiability, the above system reduces to

dqL
dt

=


−aRp−ε 0 ≤ t ≤ t1
(µ− 1)aLp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aL + bqL) t2 ≤ t ≤ t3
−p−ε(aR + bqR) t3 ≤ t ≤ T
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dqR
dt

=


−aLp−ε 0 ≤ t ≤ t1
(µ− 1)aRp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aR + bqR) t2 ≤ t ≤ t3
−p−ε(aL + bqL) t3 ≤ t ≤ T

After solving using the boundary conditions, q(0) = q(t2) = q(T ) = 0, we get

qL(t) =


−aRp−εt 0 ≤ t ≤ t1
(µ− 1)aLp−ε(t− t2) t1 ≤ t ≤ t2
aL
b [ex(t−t2) − 1] t2 ≤ t ≤ t3
−aR

b [ey(T−t) − 1] t3 ≤ t ≤ T (31)

qR(t) =


−aLp−εt 0 ≤ t ≤ t1
(µ− 1)aRp−ε(t− t2) t1 ≤ t ≤ t2
aR
b [ex(t−t2) − 1] t2 ≤ t ≤ t3
−aL

b [ey(T−t) − 1] t3 ≤ t ≤ T (32)
where, x = b(µ− 1)p−ε and y = bp−ε

aL(α) = (r1 − θlr2) + (r2 − r1 − θlr2)α
(1− θl) + 2θlα

,

aR(α) = (r4 − θlr3) + (r4 − r3 − 2θlr3)α
(1− θl) + 2θlα

In this case all the relevant costs and total interest earned and payable are same as the
previous case 1 when α ∈ [0, 0.5] but the values of aL(α) and aR(α) are different from the
previous case 1. In this case

aL(α) = (r1 − θlr2) + (r2 − r1 − θlr2)α
(1− θl) + 2θlα

,

aR(α) = (r4 − θlr3) + (r4 − r3 − 2θlr3)α
(1− θl) + 2θlα

Here the objective function for α ∈ [0.5, 1] have the same expression as previous Case
1 where α ∈ [0, 0.5] with different values of aL(α) and aR(α)
In case 2: gH-(ii) differentiability, the above system reduces to

dqL
dt

=


−aLp−ε 0 ≤ t ≤ t1
(µ− 1)aRp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aR + bqR) t2 ≤ t ≤ t3
−p−ε(aL + bqL) t3 ≤ t ≤ T

dqR
dt

=


−aRp−ε 0 ≤ t ≤ t1
(µ− 1)aLp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aL + bqL) t2 ≤ t ≤ t3
−p−ε(aR + bqR) t3 ≤ t ≤ T

After solving using the boundary conditions, q(0) = q(t2) = q(T ) = 0 and q(t2) = Qm,
we get

qL(t) =


−aLp−εt 0 ≤ t ≤ t1
(µ− 1)aRp−ε(t− t2) t1 ≤ t ≤ t2
c1e

bkt + c2e
−bkt − aL

b t2 ≤ t ≤ t3
k1e

r2t + k2e
−r2t + aL

b t3 ≤ t ≤ T (33)
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qR(t) =


−aRp−εt 0 ≤ t ≤ t1
(µ− 1)aLp−ε(t− t2) t1 ≤ t ≤ t2
c1e

bkt − c2e
−bkt − aR

b t2 ≤ t ≤ t3
−k1e

r2t + k2e
−r2t + aR

b t3 ≤ t ≤ T (34)
Where k = (µ− 1)p−ε r2 = −bp−ε

c1 = 1
e2bkt3 − e2bkt2 [(Qm + aL

b
)ebkt3 − aL

b
ebkt2 ]

c2 = aL
b
ebkt2 − 1

e2bk(t3−t2) [(Qm + aL
b

)ebkt3 − aL
b
ebkt2 ]

k1 = aR − aL
2b e−c2T

k2 = −aL + aR
2b ec2T

aL(α) = (r1 − θlr2) + (r2 − r1 − θlr2)α
(1− θl) + 2θlα

,

aR(α) = (r4 − θlr3) + (r4 − r3 − 2θlr3)α
(1− θl) + 2θlα

In this case also all the relevant costs and total interest earned and payable are same as
the previous case 2 when α ∈ [0, 0.5] but the values of aL(α) and aR(α) are different from
the previous case 2. In this case

Z aL(α) = (r1 − θlr2) + (r2 − r1 − θlr2)α
(1− θl) + 2θlα

,

aR(α) = (r4 − θlr3) + (r4 − r3 − 2θlr3)α
(1− θl) + 2θlα

Here the objective function for α ∈ [0.5, 1] have the same expression as previous Case
2 where α ∈ [0, 0.5] with different values of aL(α) and aR(α)

6. Solution procedure for solving multi-objective non-linear problem
The foregoing discussion provides a methodology for converting interval valued fuzzy

differential equation into system of ordinary differential equation via generalized Hukuhara
derivative approach. The α-cut on the profit function and the emission function leads to a
system of objective functions which have been solved by multi-objective genetic algorithm.
As the developed problem arise so many parameters and handle this problem with classical
methods will be very critical. Hence we applied the meta-heuristic multi-objective genetic
algorithm method.

Multi-objective genetic algorithm
Genetic algorithm (GA) is a heuristic search algorithm used in computing to find true or
approximate solutions in optimization which mimics the process of natural genetics i.e.,
survival of the fittest. It has five phases i.e., initial population, fitness function, selection,
crossover, mutation. Parents are selected according to their fitness values. The better
chromosomes have more chances to be selected. In this method, a few good chromosomes
are used for creating new offspring in every iteration. Then some bad chromosomes are
removed and the new offspring is placed in their places. The rest of population migrates
to the next generation without going through the selection process. A multi-objective
optimization problem involves a number of objective functions which are to be either min-
imized or maximized. As in a single-objective optimization problem, the multi-objective
optimization problem may contain a number of constraints which have feasible solution
(including all optimal solutions) to be satisfy. Since objectives can be either minimized or
maximized, the multi-objective optimization problem in its general form can be written
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as

Minimize/Maximize f(x) = {f1(x), f2(x), f3(x), ......., fk(x)}
x = {x1, x2, x3, ....., xz}
subject to:
g(x) ≥ 0
h(x) = 0
xl ≤ x ≤ xu
Where f is a vector comprising of k objective functions and x is a vector comprising of
z solutions. g and h are vectors corresponding to inequality and equality constraints re-
spectively. The lower bound and upper bound of the vector x is xl and xu. The solutions
of a multi-objective optimization problem are known as pareto optimal solutions.

Figure 1. Graphical representation of procedure of GA

7. Real life numerical data and estimation to type-2 fuzzy data
“TATA Motors Limited" a well famous Indian multinational automotive manufactur-

ing company manufactures passengers cars, trucks, vans, buses, sports car, construction
equipment etc. The demands of these items from the suppliers are not fixed in every
month. A group of managements decisions over the demand of these items are fuzzy in
nature and the final decisions by chief production manager over the expert’s decision is
taken as type-2 fuzzy variable, more precisely trapezoidal type-2 fuzzy variable. Also, the
company have to pay carbon emission cost due to the emission creates for obsolescence
products, production units and to hold the manufacturing products. We have collected
the data for January, 2017 and the corresponding input values in reduced and approximate
form are given values.
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Let Cs = 45 $/unit, µ = 1.8, p = $30 Chc = 7 $/m3, b
′ = 0.5m3/unit, α

′ =
0.05, C

′
s = 20 $/unit, C3 = 25 $/unit, Coc = 5 $/ton, ip = 0.61, ie = 1.75, α =

0.3 (when α ∈ [0, 0.5]), α = 0.7 (when α ∈ [0.5, 1]), b = 0.8 ε = 0.7 Cmc = 3 $/unit, Ch =
6 $/m3, Cb = 1.02 $/m3 a

′ = 0.8 ton/unit, (r1, r2, r3, r4, θl, θr) = (10, 12, 14, 16, 0.5, 0.3)

Table-2: Optimization results for different sub cases for type-2 fuzzy demand
by using Multi-objective Genetic algorithm

Different cases sub cases T M N [TPL, TPR] [TEL, TER]
α ∈ [0, 0.5] Case 1 1.1 1.2567 0.8257 0.6758 [213.91, 368.08] [106.82, 171.12]

1.2 1.3459 0.9256 0.7584 [433.67, 597.31] [213.56, 297.65]
1.3 1.1346 1.5682 0.8496 [609.68, 779.84] [305.57, 387.69]

Case 2 2.1 1.1438 0.8391 0.7143 [232.58, 378.37] [118.64, 185.97]
2.2 1.2337 0.9123 0.7852 [445.72, 605.38] [221.37, 307.82]
2.3 1.3258 1.7235 1.1324 [618.67, 796.57] [312.67, 396.78]

α ∈ (0.5, 1] Case 1 1.1 1.3457 0.8472 0.7523 [198.78, 275.86] [118.23, 185.79]
1.2 1.5676 0.8472 0.7523 [412.37, 576.28] [227.52, 307.64]
1.3 1.1256 1.4328 0.9726 [582.57, 680.19] [331.24, 415.28]

Case 2 2.1 1.058 0.7581 0.7058 [223.81, 353.57] [127.64, 196.67]
2.2 1.123 0.7638 0.7253 [432.35, 575.83] [231.58, 316.97]
2.3 1.321 1.873 1.0357 [608.67, 721.64] [327.67, 409.61]

Table-3: Effects of unit selling price Cs on profit function via gH-(i)
differentiability of different sub cases of Case 1 for type-2 fuzzy demand

when α ∈ (0, 0.5]
Cs($) Sub-case 1.1 Sub-case 1.2 Sub-case 1.3

[TPL, TPR] [TPL, TPR] [TPL, TPR]
45 [213.91,368.08] [433.67,597.31] [609.68,779.84]
47 [237.81,381.15] [457.28,605.35] [602.13,797.23]
49 [251.26,398.57] [478.63,621.46] [641.25,809.15]
51 [273.43,418.93] [493.54,639.56] [657.81,822.21]
53 [287.19,429.35] [506.23,652.21] [662.23,832.32]
55 [293.25,444.61] [517.41,667.82] [671.82,843.67]
57 [302.61,459.82] [529.35,679.81] [682.56,857.67]

Table-4: Effects of unit purchasing cost p on profit function via gH-(ii)
differentiabi- lity of different sub cases of Case 2 for type-2 fuzzy demand

when α ∈ (0, 0.5]
p($) Sub-case 2.1 Sub-case 2.2 Sub-case 2.3

[TPL, TPR] [TPL, TPR] [TPL, TPR]
30 [232.58,378.37] [445.72,605.38] [618.67,796.57]
32 [227.64,369.87] [438.79,591.25] [611.52,787.23]
34 [221.23,362.51] [432.81,583.71] [603.15,779.14]
36 [218.21,356.10] [426.75,575.23] [596.45,769.23]
38 [211.37,349.58] [420.12,562.14] [589.64,761.42]
40 [202.51,341.78] [413.25,557.69] [581.23,756.21]
42 [196.25,335.62] [402.72,551.13] [571.51,749.17]
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Table-5: Effects of unit obsolescence rate α′ on emission function via gH-(i)
differentiability of different sub cases of Case 1 for type-2 fuzzy demand

when α ∈ (0.5, 1]
α
′ Sub-case 1.1 Sub-case 1.2 Sub-case 1.3

[TEL, TER] [TEL, TER] [TEL, TER]
0.05 [118.23,185.97] [227.52,307.64] [331.24,415.28]
0.10 [123.19,192.25] [233.67,315.19] [338.75,423.18]
0.15 [129.20,198.75] [237.15,322.50] [343.16,429.11]
0.20 [136.49,207.26] [242.62,329.23] [349.21,436.07]
0.25 [142.15,211.27] [249.13,337.19] [356.16,442.18]
0.30 [149.35,220.05] [256.27,342.56] [361.23,451.95]
0.35 [156.07,227.18] [261.81,347.25] [369.09,459.67]

Table-6: Effects of weight of obsolescence product a′ on emission function via
gH-(ii) differentiability of different sub cases of Case 2 for type-2 fuzzy

demand when α ∈ (0.5, 1]
a
′ Sub-case 2.1 Sub-case 2.2 Sub-case 2.3

[TEL, TER] [TEL, TER] [TEL, TER]
0.8 [127.64,196.67] [231.58,316.97] [327.67,409.61]
1.0 [131.25,201.25] [237.05,321.84] [334.25,416.87]
1.2 [136.71,212.08] [239.17,329.15] [339.51,421.75]
1.4 [141.81,216.25] [244.23,336.91] [343.61,429.82]
1.6 [146.34,218.31] [249.71,341.28] [349.71,437.71]
1.8 [153.81,225.83] [255.82,346.17] [356.82,442.82]
2.0 [157.35,231.19] [261.09,351.25] [360.08,446.72]

Figure 2. Effect of set-up cost on profit function for sub-case 2.3 when α ∈ [0, 0.5]
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Figure 3. Effect of emission cost of carbon on emission function for sub-case 1.1
when α ∈ [0, 0.5]

8. Discussion
Table 2 describes the optimal results for the profit function and the emission function

in interval form and concluded that when the credit period of retailer is greater than
total cycle time T via gH-(i) differentiability, the profit is maximum, i.e. [609.68, 779.84]
and minimum emission is calculated as [106.82, 171.12] for sub-case 1.1 when α ∈ [0, 0.5].
When the profit and emission is calculated via gH-(ii) differentiability, we also observe that
as the credit period of retailer is greater than total cycle time T, the profit is maximum,
i.e. [618.67, 796.57] and minimum emission is calculated as [118.64, 185.97] for sub-case
2.1 when α ∈ [0, 0.5]. As one can easily observed from Table 2 that the same scenario is
depicted for α ∈ [0.5, 1]. In this case sub-case 2.3 gives the maximum profit, i.e. [608.67,
721.64]. We can also conclude that in case of sub-case 1.1, the emission cost is minimum,
i.e. [106.82, 171.12] when α ∈ [0, 0.5]. We observe the effect of unit selling price (Cs)
on profit function and can conclude that with the increase of unit selling price, the profit
function is also increasing as depicted in Table 3. Table 4 analyses the effect of unit
purchasing cost (p) on profit function via gH-(ii) differentiability when α ∈ [0, 0.5] and
observe that with the increase of unit purchasing cost the total profit of each sub-case is
decrease. Table 5 shows that if the unit obsolescence rate α′ is increase for type 2 fuzzy
demand over time for α ∈ [0.5, 1] corresponding cost of emission is also increase. From
Table 6 it observed that with the increasing values of weight of obsolescence product a′,
total emission cost for each sub-cases are also increased. With the increase of set-up cost,
the profit function is decreasing as depicted in Figure 2 when α ∈ [0, 0.5]. We can observe
from Figure 3 that the total emission cost is increasing as the emission cost of carbon is
increasing.

9. Conclusions and future research work:
The present analyses of the model specifically introduce the concept of type-2 fuzzy

variable can be taken as a key factor for a decision maker (DM) engaged with the demand
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unit. Demand of an item in market is always fluctuating and in this present model this
fluctuation is measured by trapezoidal type-2 fuzzy variable. The present model illustrated
a new direction in the field of inventory modeling applying the adventure of Mathematics.
The DM is able to take more appropriate precise decisions with the help of present analyses.

In this paper, some useful ideas are presented to deal with inventory control problem
with type-2 fuzzy parameters. Along with the main contributions discussed in introduc-
tion some more aspects are as follows.
1. CV based reduction method proposed by Qin et al. [23] is discussed and successfully
applied to the proposed model to find the total profit function and emission function.
2. According to literature survey for the first time in a single mathematical formulation,
we introduced an economic production quantity model with demand depends on the pro-
duction price and stock in fuzzy environment where demand is taken as trapezoidal type-2
fuzzy number. With the use of CV based reduction method and α-cut of hexagonal fuzzy
number the proposed model is solved to find maximum profit and minimum cost of emis-
sion of carbon.
3. Some new real life based important facts are provided and discussed in this paper,
which will help in developing the business management.
As a future work the presented models can be extended to different types of inventory
problems including price discounts, quantity discounts, taking selling price, ordering cost
as triangular fuzzy number, intuitonistic number, triangular type-2 fuzzy number, gamma
type-2 fuzzy number, Gaussian type-2 fuzzy number etc .

As it is assumed that the unit selling price is greater than the unit purchasing price, the
retailer must have sufficient amounts before the end of business period and to pay the dues
to the wholesaler some time before the end of the total cycle and in this situation, he will
have to pay less interest to the wholesaler. Moreover, the retailer can earn more interest
after that time up to the end of the business period. This new approach to calculate
the interest earned by the retailer may also apply in this model and the result can be
compared with the conventional approach also. The concept of immediate part payment
and the delay-payment for the rest can also allowed by the wholesaler for an item over
a finite planning horizon or random planning horizon In addition, against an immediate
part payment (variable) to the wholesaler, there is a provision for (i) borrowing money
from a money lending source and (ii) earning some relaxation on credit period from the
wholesaler. The models can also be developed with respect to the retailer for maximum
profit. We can also extend the current model for partial trade credit i.e. supplier offers
partial trade credit to retailer and retailer offers full trade credit to customers.
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