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Analysis of covariance by assuming a skew normal
distribution for response variable
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Abstract

The traditional theory of analysis of covariance (ANCOVA) is based on
normality assumption, while in many real world applications the data
violate normality and this theory is not adequate. In this paper, we
expand a model for analysis of covariance with a skew normal response
variable. The maximum likelihood estimates of the model parameters
are provided via an EM algorithm. We also developed asymptotic con-
�dence intervals for parameters. A simulation study is performed to
assess the performance of the proposed model. The methodology is
illustrated using a real data set.
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1. Introduction

Analysis of covariance is a widely used technique for exploring possible relation be-
tween a usually continuous response variable and a set of covariates and treatments. This
methodology is a combination of regression and analysis of variance (ANOVA) that prof-
its the bene�ts of both of these two e�cient modeling methods. The ANCOVA can be
employed for a wide range of di�erent purposes. It can be used to �lter out error variance,
to explore pre-test vs. post-test e�ects, to control the variables, to �nding signi�cant dif-
ference between groups by reducing the within-groups variations etc. It also provides a
useful approach to treat the potentially confounding variables. In many practical situ-
ations, one cannot provide the ideal homogenous experimental units for all treatments,
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even after blocking, which is an essential requirement for comparative experiments an-
alyzed by ANOVA. Thus one has to appeal to ANCOVA. In this context, adjusting
treatment e�ects for nuisance covariates e�ects on the response variable is of paramount
importance for the researcher. This practice allows �nding the net e�ect of treatments
under speci�ed collection of covariates and provides a clear guidance for users of the
results. This concept is foreign to proper regression analysis which does not discriminate
between treatment and covariate. ANCOVA was �rstly motivated by Fisher [14]. During
the years many researchers have investigated di�erent theoretical and applied aspects of
ANCOVA in di�erent sciences. Cochran [10] and Cox and McCullagh [11] and references
therein are good sources for more information about ANCOVA. As it is pointed out by
[19] the traditional theory of normal ANCOVA is not adequate when the data violate the
normality assumption. This creates a strong motivation for considering ANCOVA under
other distributions that are more �exible than normal distribution. Many researches
have been recently focused to develop suitable methods for dealing with non-normality.
These considerations are not limited to ANCOVA and other modeling techniques such
as regression, ANOVA, discriminant analysis etc. have investigated repeatedly for use in
situations that the normality assumption does not hold. In particular, the skew normal
family of distributions as a generalization of the normal family has attracted consider-
able attentions in literature. Though the earlier appearance of skew normal distribution
returns to Roberts [21] and O'Hagan and Leonard [20] and Aigner et al. [1], but the
�rst formal de�nition of this family of distributions was provided by Azzalini [3]. The
multivariate form of the skew normal distribution is expanded in [4] and [5]. During the
three past decades many skew normal distribution have been introduced and discussed in
literature. References [22, 15, 16, 4] are excellent sources of information about the skew
normal family of distributions and their properties. Di�erent modeling approaches such
as regression analysis (Sahu et al. [22], Ferreira and Steel [13] and Cancho [9]), Bayesian
nonlinear regression (De la Cruz and Branco [12]), linear mixed models (Arellano-Valle
[2]) and analyzing longitudinal data (Baghfalaki et al. [7] and Lin and Lee [18]) have
been developed under the assumption of skew normal distribution. This paper investi-
gates ANCOVA under the assumption of skew normal distribution for response variable.
We show that the skew normal ANCOVA model leads to the more e�cient estimations
of the model parameters than the traditional models.

The rest of paper is structured as follows. In section 2, we give some brief preliminaries
and necessary background about the concept of ANCOVA and its formulation. The skew
normal ANCOVA model is developed in section 3. We provide the ML estimates of the
model parameters and their adjusted counterparts via EM algorithm. In section 4, we
construct the asymptotic con�dence intervals for the model parameters. A simulation
study is performed to assess the performance of the proposed model, in section 5. In
section 6, a real data set is analyzed to explain the proposed methodology.

2. Preliminaries and Notations

The aim of ANCOVA is to explore possible relation between a response variable and a
set of treatments and covariates. Consider a balanced complete randomized design with t
treatments and r replications. We treat the balanced design to avoid cluttered notations,
but the problem can be cast in general unbalanced design, as it is explained by Meshkani
et. al. [19]. In the simplest case, an ANCOVA model with a covariate and a two-level
factor is given by

E[Yij |x,z] = β0 + βi + γ(zij − z̄i) i = 1, . . . , t, j = 1, . . . , r,(2.1)
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where β0 shows the intercept term and βi, i = 1, . . . , t denote the factor e�ects which
satisfy the constraint

∑t
i=1 βi = 0. The vector of model parameters is

θ = (β′,γ′)′ = (β0, β1, . . . , βt−1, γ)′.

In model (2.1) the regression equation of Y on Z has a �xed slope γ for all treatments. If
the slopes of the regression model for di�erent treatments is not the same, the ANCOVA
model would be of the form

E[Yij |x,z] = β0 + βi + γi(zij − z̄i) i = 1, . . . , t, j = 1, . . . , r,

therefore there is a vector of slopes γ = (γ1, . . . , γt)
′. In general case, an ANCOVA

model can be written as

E(Y11, . . . , Ytr) = Xβ +Zγ = Wθ,(2.2)

whereX denotes the design matrix, Z includes the observed covariates,W = [X,Z] and
θ = (β′,γ′)′ with β = (β0, β1, . . . , βt−1)′, γ = (γ1, . . . , γq)

′ and p = t+ q. For example,
in model (2.1) we have

W =


1r 1r 0r . . . 0r z̃1

1r 0r 0r . . . 0r z̃2

...
...

...
. . .

...
...

1r 0r 0r . . . 1r z̃t−1

1r −1r −1r . . . −1r z̃t

 = [X|Z](2.3)

where 1r = (1, . . . , 1)′, 0r = (0, . . . , 0)′ and z̃i = ((zi1− z̄i), . . . , (zij − z̄i), . . . , (zir − z̄i)).
As it can be clearly seen, in an ANCOVA model the relationship between the mean
of a response variable and treatments and covariates is determined by the structure of
design matrix X and covariate matrix Z. For model (2.2) the design matrix, X, and the
vector of treatments e�ects, β, are the same as model (2.1), but the matrix of observed
covariates is given by

Z =


z̃1 0r . . . 0r 0r
0r z̃2 . . . 0r 0r
...

...
...

. . .
...

0r 0r . . . z̃t−1 0r
0r 0r . . . 0r z̃t

 .

The unbalanced form of ANCOVA models can also be represented by the general form
given in equation (2.2). Considering the constraint

∑t
i=1 riβi = 0, it would su�ce to

replace the − 1
rt

(r1, . . . , rt−1) for −1r in the last row of the matrix W where ri, , i =

1, . . . , t, denotes the number of replications for i-th treatment. For Other common designs
such as split-plot, Latin squares, Greco-Latin etc., the modeling method is similar, i.e.,
the design matrix and the covariate matrix can be written in the general form of W =
[X,Z]. It should be noted that the constraint

∑t
i=1 βi = 0 has been absorbed into the

design matrixW . More details and examples about other common designs can be found
in [19]

Considering the general formulation of an ANCOVA model given in equation (2.2),
the main goal of ANOCVA is to estimate the vector of parameters θ, β and γ using the
vector of responses y = (y11, . . . , ytr) and the matrix of observations W . In what follows
we follow the notations of [19].
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3. The model and parameter estimation

In this section, we develop an ANCOVA model under the assumption of skew normal
distribution for response variable. Consider the general form of an ANCOVA model given
in equation (2.2). Let the skew normal ANCOVA model be

Yij |wij ∼ SSN(wijθ −
√

2

π
λ, σ2, λ) i = 1, ..., s; j = 1, ..., r,(3.1)

where s is the number of treatments, r is the number of replications, wij = (xi, zij)
denotes the ij-th row of matrix W and SSN(µ, σ2, λ) denotes the Sahu skew normal
distribution with location parameter µ, scale parameter σ2 and skewness parameter λ,
given by

fYij (y|µ, σ
2, λ) = 2φ(y;µ−

√
2

π
λ, σ2 + λ2)Φ(

λ

σ

(y − µ)

(σ2 + λ2)
1
2

),(3.2)

where φ(·) and Φ(·) denote, respectively, the density and cumulative distribution function
of the normal distribution. The likelihood function of the model (3.1) is

L(θ, λ, σ2|y,W ) =

s∏
i=1

r∏
j=1

fYij (yij |θ, λ, σ
2)

=

s∏
i=1

r∏
j=1

2φ(yij ;wijθ −
√

2

π
λ, σ2 + λ2)Φ(

λ

σ

(yij −wijθ)

(σ2 + λ2)
1
2

).(3.3)

Due to the complexity of likelihood function (3.3) there are no explicit form for the
ML estimators of the model parameters. Therefore, we provide an EM algorithm to
compute the numerical values of the ML estimates. For this, it is necessary to formulate
the problem in terms of a missing data problem. The skew normal ANCOVA model
(3.1) can be written in a hierarchical structure as a mixture of normal and halfnormal
distributions given by{

Yij |Tij = tij ∼ N(wijθ + λ(tij −
√

2
π

), σ2)

Tij ∼ HN(0, 1) i = 1, ..., s; j = 1, ..., r.

Therefore, considering {Tij ; i = 1, . . . , s; j = 1, . . . , r} and {yij ; i = 1, .., s; j = 1, ..., r},
respectively, as missing and incomplete data, the joint density of the complete data
(yij , Tij) is given by

f(Yij ,Tij)(yij , tij) = fYij |Tij=tij (yij)× gTij (tij)

=
1√

2πσ2
exp

{
− 1

2σ2
(yij −wijθ − λ(tij −

√
2

π
))2

}

×
√

2

π
exp

{
−
t2ij
2

}
.

Hence, the complete data likelihood and log-likelihood functions are obtained to be

Lc(θ, σ
2, λ|y,W , t) =

s∏
i=1

r∏
j=1

f(Yij ,Tij)(yij , tij)

= exp

{
− 1

2σ2

s∑
i=1

r∑
j=1

[
(yij −wijθ)2 − 2λ(yij −wijθ

+ λ

√
2

π
)tij + (λ2 + σ2)t2ij + 2λ

√
2

π
(yij −wijθ) + λ2 2

π

]}
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× (π)−sr(σ2)
−
sr

2

and

`c(θ, σ
2, λ|y,W , t) = − 1

2σ2

[
(y −Wθ)′(y −Wθ)− 2λ(y −Wθ + λ

√
2

π
1)′ttt

+ (λ2 + σ2)(ttt2)′1 + 2λ

√
2

π
(Y −Wθ)′1 +

2srλ2

π

]
− sr log π − sr

2
log σ2,

respectively, where t = (t11, ..., tsr)
′, t2 = (t211, ..., t

2
sr) and 1sr denotes a sr × 1 unit

vector. To proceeds the EM algorithm, the conditional expectation of the complete data
log-likelihood given incomplete data is obtained to be

E(`c(θ, σ
2, λ|y,W )) = −sr log π − sr

2
log σ2 − 1

2σ2

[
(y −Wθ)′(y −Wθ)

− 2λ(y −Wθ + λ

√
2

π
1sr)

′t̂tt+ (λ2 + σ2)(t̂tt2)′1sr

+ 2λ

√
2

π
(Y −Wθ)′1sr +

2srλ2

π

]
,(3.4)

where t̂ and t̂2 denote the �rst and second order conditional moments of random variable
Tij |yij , respectively. Using the equations of the truncated normal moments (see for
example, Barr et al. 1999), these moments are given by

t̂ij = E(tij |θ̂, yij) = ηij + τδij ,

t̂2ij = E(t2ij |θ̂, yij) = η2
ij + τ2 + τδijηij ,

where ηij = λ
σ2+λ2 (yij−wijθ+

√
2
π
λ), τ2 = σ2

σ2+λ2 and δij =
φ(
η̂ij
τ̂

)

Φ(
η̂ij
τ̂

)
. The M-step of EM

algorithm searches the parameter space to maximize the conditional expectation (3.4).
Given the values of the parameters in k-th iteration of algorithm, the ML estimates of
the parameters in (k+1)-th iteration are obtained as,

θ̂
(k+1)

= (W ′W )−1W ′
(
y + λ̂(k)(

√
2

π
1sr − t̂tt

(k)
)
)
,

σ̂2
(k+1)

=
1

sr

[
(y −Wθ̂

(k)
)′(y −Wθ̂

(k)
)

− 2λ̂(k)(y −Wθ̂
(k)

+ λ̂(k)

√
2

π
1sr)

′t̂tt
(k)

+ λ̂2
(k)

(ttt2)′1

+ 2λ

√
2

π
(Y −Wθ)′1 +

2srλ2

π

]
,

λ̂(k+1) =
(√ 2

π
1′sr(y −Wθ̂

(k)
)− (y −Wθ̂

(k)
)′t̂tt

(k)
)

×
(
1′sr(2

√
2

π
t̂tt
(k) − t̂tt2

(k)
)− sr 2

π

)−1

.

The E and M steps are repeated alternately until a convergence rule holds.

3.1. Adjusted e�ects. As it can be clearly seen, from equation (2.2), there are two
types of parameters in an ANCOVA model. The �rst type, denoted by β, corresponds to
the treatment e�ects. Whereas the second type, denoted by γ, corresponds to covariate
e�ects. The EM algorithm expounded in previous section, provides the ML estimator
for the vector of parameters, θ, without separating these two types of parameters. We
may be interested in estimating either the e�ects of treatments adjusted for the e�ects of
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covariates or the e�ects of covariates adjusted for the e�ects of treatments. In this section,
we provide the adjusted estimators for both covariates and treatments e�ects. For this
purpose, we rewrite the equation (3.4) by using the equality of wijθ = xiβ + zijγ, as:

E(`c(θ, σ
2, λ|β,γ)) ∝

s∑
i=1

r∑
j=1

(
yij − (xiβ + zzzijγ)

)2

− 2λ

s∑
i=1

r∑
j=1

(
yij − xiβ − zzzijγ

)
t̂ij − 2λ2

√
2

π

s∑
i=1

r∑
j=1

t̂ij ,

+ λ2
s∑
i=1

r∑
j=1

t̂2ij + 2λ

√
2

π

s∑
i=1

r∑
j=1

(
yij − xxxiβ − zzzijγ

)
+ srλ2 2

π

∝ y′y − 2y′(Xβ +Zγ) + (Xβ)′(Xβ) + 2(Xβ)′(Zγ)

− 2λ2

√
2

π
1′srt̂tt+ λ21′srt̂tt2 + 2λ

√
2

π
1′sr(y −Xβ −Zγ)

+ (Zγ)′(Zγ) + srλ2 2

π
.(3.5)

Equating the �rst order derivations of (3.5) with respect to the model parameters β and
γ to zero, leads to the following system of equations:

∂(E(`c(θ, σ
2, λ|β,γ))

∂β
= −2X ′y + 2X ′Xβ + 2X ′Zγ − 2λ

√
2
π
X ′1sr = 0

∂(E(`c(θ, σ
2, λ|β,γ))

∂γ
= −2Z′y + 2Z′Xβ + 2Z′Zγ − 2λ

√
2
π
Z′1sr = 0.

Therefore, the adjusted ML estimators of treatments and covariates e�ects in k − th
iteration of the EM algorithm are obtained to be:

β̂
(k+1)

ML.z = (X ′X)−1X ′(y −Zγ(k)
ML + λ(k)

√
2

π
1sr),

γ̂
(k+1)
ML.x = (Z′Z)−1Z′(y −X ˆ

β
(k)
ML + λ(k)

√
2

π
1sr).

Note that, as it is well known, in the proper regression analysis each regression coe�cient
shows the e�ect of corresponding explanatory variable on the response variable, given
all other explanatory variables (qualitative and quantitative) are kept �xed. But in
ANCOVA, one needs the treatment e�ects for the situation that only the whole set of
quantitative variables, i.e., covariates are kept �xed. Moreover, the partition used in
ANCOVA is dictated by the context of each special experiment. For example, some
experiments may have no covariate thus no partition is considered and some may have
one or more covariates whose e�ects should be removed from the treatment e�ects. Thus,
there is a natural partition of treatments and covariates correspond to each problem.

4. Asymptotic Con�dence Intervals

To construct exact con�dence intervals for the model parameters requires exact knowl-
edge of the sampling distribution of the ML estimators. Due to the complexity of these
estimators, derivation of their exact distributions is a challenging problem, if it be feasible
at all. Therefore, in this section we use the asymptotic distributions of these estimators
to construct asymptotic con�dence intervals for the model parameters. The results of
this section are valid when r or equivalently n(= tr) goes to in�nity.
Consider the skew normal ANCOVA model (3.1). Let

`ij(θ, σ
2, λ|y,W ) = log 2− 1

2
log 2π − 1

2
log a− bij

2
+ log Φ(kij),
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with a = σ2 + λ2 and

bij =

(
yij −wijθ +

√
2
π
λ
)2

σ2 + λ2
,

kij =
λ

σ
1
2

(
yij −wijθ +

√
2

π
λ
)
.

Then, the log-likelihood function of the model is given by

`(θ, σ2, λ|y,W ) =

s∑
i=1

r∑
j=1

`ij(θ, σ
2, λ|y,W ).

The �rst order partial derivations of the log-likelihood function with respect to the model
parameters θ, σ2 and λ are given by

∂`(θ, σ2, λ|y,W )

∂θ
=

s∑
i=1

r∑
j=1

∂`ij(θ, σ
2, λ|y,W )

∂θ
,

∂`(θ, σ2, λ|y,W )

∂σ2
=

s∑
i=1

r∑
j=1

∂`ij(θ, σ
2, λ|y,W )

∂σ2
,

∂`(θ, σ2, λ|y,W )

∂λ
=

s∑
i=1

r∑
j=1

∂`ij(θ, σ
2, λ|y,W )

∂λ
,

respectively, where

∂`ij(θ, σ
2, λ|y,W )

∂θ
=

yij −wijθ +

√
2

π
a

w′ij − δΦ(kij)
λ

σ
√
a
w′ij ,

∂`ij(θ, σ
2, λ|y,W )

∂σ2
= − 1

2a
+
bij
2a
− δΦ(kij)

kij(2σ
2 + λ2)

σ2a
,

∂`ij(θ, σ
2, λ|y,W )

∂λ
= −λ

a
− 1

a2
{a
√

2

π
(yij −wijθ +

√
2

π
λ)− λbij}

+ δΦ(kij)kij(1−
λ2

a
) +

λ

σ
√
a

√
2

π
,

and δΦ(u) =
φ(u)

Φ(u)
. The second order derivations of the log-likelihood function with

respect to the parameters are similarly given by

∂2`ij
∂ν∂ξ′

= −1

2

∂2 log a

∂ν∂ξ′
− 1

2

∂2bij
∂ν∂ξ′

+
∂2 log Φ(kij)

∂ν∂ξ′
,

where ν represents the parameters θ, σ2 or λ and

∂2 log Φ(kij)

∂ν∂ξ′
= δΦ(kij)

( ∂2kij
∂ν∂ξ′

)
+ ∆Φ(kij)

(∂kij
∂ν

)(∂kij
∂ξ

)′
∂2log a

∂λ2
= 2

(a− 2λ2)

a2
,

∂2bij
∂λ2

=
4

πa
− 8

σkij

λa
3
2

+ 2
bij
a2

(4λ− a),

∂2bij
∂λ∂σ2

= 2

√
2

π

σkij

λa
3
2

+ 4
λ

a2
bij ,

∂2bij

∂σ22 = −2
bij
a2
,

∂2bij
∂λ∂θ

= 2(
kij

a
3
2

−
√

2

π

1

a
)w′ij ,

∂2bij
∂σ2∂θ

=
σkij

λa
3
2

w′ij ,

∂2bij
∂θ∂θ′

=
2

a
w′ij(wij),

∂2kij
∂λ∂θ

= − σ

a
3
2

w′ij ,

∂2kij
∂λ2

= 2

√
2

π

σ

a
3
2

− 3
σ2

a2
kij
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∂2kij
∂λ∂σ2

=
(2σ2 + λ2)

2σa
3
2

(
kij

λa
1
2

−
√

2

π
λ) +

λkij
a2

(
3

2
− a

σ2
),

∂2kij
∂θ∂θ′

= 0.

with ∆φ(u) = δΦ(u)(u+ δΦ(u)). Therefore the Hessian matrix of model is obtained as:

HHH(θ, σ2, λ|y,W ) =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 ,

where

h11 =
∂2`(θ, σ2, λ|y,W )

∂θ∂θ′
, h22 =

∂2`(θ, σ2, λ|y,W )

∂λ2
, h33 =

∂2`(θ, σ2, λ|y,W )

∂(σ2)2
,

h12 = h21 =
∂2`(θ, σ2, λ|y,W )

∂θ∂λ
, h13 = h31 =

∂2`(θ, σ2, λ|y,W )

∂θ∂σ2
,

h23 = h32 =
∂2`(θ, σ2, λ|y,W )

∂σ2∂λ
.

Consequently, the Fisher information matrix of model is given by

I(θ, σ2, λ|y,W ) = −H(θ, σ2, λ|y,W ) =

 I(θ) I(θ.λ) I(σ2,θ)
I(θ, λ) I(λ) I(σ2, λ)
I(σ2,θ) I(σ2, λ) I(σ2)

 ,

where

I(θ) = −E(
∂2`(θ, σ2, λ|y,W )

∂θ∂θ′
)

= −1

a
W ′W +E

(
φ(kij)

Φ(kkk)
(kij +

φ(kij)

Φ(kij)
)

)
− λ

σσ2a
W ′W ,

I(λ) = −E(
∂2`(θ, σ2, λ|y,W )

∂λ2
) = −a− 2λ2

a2

−
(

2

πa
− 4

a2

√
2

π
λ+

(4− a)

a2

1

σ2 + λ2
(σ2 +

2λ2

π
)

)
+ E

(
φ(kij)

Φ(kij)
(2

√
2

π

σ

a
3
2

)− 3
σ2

a2
kij

φ(kij)

Φ(kij)
(kij +

φ(kij)

Φ(kij)
)kij

(
1− λ2

a

)
+

λ

σa
1
2

√
2

π

)
,

I(σ2) = −E(
∂2`(θ, σ2, λ|y,W )

∂σ2
),

I(σ2, λ) = −E(
∂2`(θ, σ2, λ|y,W )

∂σ2∂λ
),

I(σ2,θ) = −E(
∂2`(θ, σ2, λ|y,W )

∂σ2∂θ
),

I(θ, λ) = −E(
∂2`(θ, σ2, λ|y,W )

∂θ∂λ
).

Now, one can use the inverse of expected Fisher information matrix to approximate the
variance of ML estimators. Thus, the asymptotic distributions of ML estimators and
asymptotic con�dence intervals for the model parameters are given by

θ̂ML ∼ AN(θ, I−1(θ)),

σ̂2
ML ∼ AN(σ2, I−1(σ2)),

λ̂ML ∼ AN(λ, I−1(λ)),

and

(θ̂ML − Z
1−
α

2

√
I−1(θ̂ML) , θ̂ML + Z

1−
α

2

√
I−1(θ̂ML)),
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(σ̂2
ML − Z

1−
α

2

√
I−1(σ̂2

ML) , σ̂2
ML + Z

1−
α

2

√
I−1(σ̂2

ML)),

(λ̂ML − Z
1−
α

2

√
I−1(λ̂ML) , σ̂2

ML + Z
1−
α

2

√
I−1(λ̂ML)),(4.1)

respectively. Notice that in (4.1) we substituted the ML estimates of parameters in
Fisher information matrix to estimate it. According to the large sample theory results, if

I(ξ) is a continuous function of ξ, as it is typically the case, then I(θ̂ML) is a consistent
estimator of I(θML). See, for example, Lehmann [17], p.p. 525, for more details.

5. Simulation Study

In this section, we perform a simulation study to assess the e�ciency of the ML
estimators of the model parameters for the proposed model. We consider an ANCOVA
model with a covariate and a two-level treatment of the form

(5.1) µij = E(yij |X,Z) = β0 + βi + γ(zij − z̄i),
with i = 1, 2 and j = 1, . . . , r. The values of the model parameters are set to be
β0 = 2, β1 = 5 and γ = 1. The covariate values are simulated from normal distribution.
Then, the values of µij , i = 1, 2, j = 1, . . . , r are computed using the equality of µij =
wijθ. Finally, the response variable observations {yij , i = 1, 2; j = 1, ..., r} are simulated

from SSN(wijθ −
√

2

π
, σ2, λ). In order to evaluate the e�ect of sample size, n = sr,

on e�ciency of the ML estimators, we consider the number of replications, r, to be
{10, 25, 50, 100}.

Also, to assess the ability of the proposed model for modeling observations with both
symmetric and asymmetric structures, we consider di�erent values for the skewness pa-
rameter as {−2,−1, 0, 1, 2}. Taking these considerations into account, the values of the
root mean square error (RMSE) for the ML estimators of the model parameters are
computed and presented in Table 1. We also provide the corresponding values of the
ML estimators under normal distribution as the usual traditional ANCOVA model in
order to compare and evaluate the robustness of di�erent models against violation from
normality. The number of repetitions in simulations �xed to be 5000 in order to take
into account the uncertainty in random number generating procedure. As it is expected,
for λ = 0, there are no signi�cant di�erences between the values of RMSE for normal
and skew normal ANCOVA models. This is because for λ = 0 the skew normal distri-
bution reduces to normal distribution. For positive and negative values of the skewness
parameter, which respectively correspond to the right-skewed and left-skewed data, the
skew normal model provides more e�ciency (in terms of smaller RMSE) than the normal
model because it truly takes into account the skewed structure of data. Obviously, due to
the asymptotic optimality of ML estimators, the e�ciency of estimators for both normal
and skew normal models increase when the sample size increases.

6. Real Example

To illustrate the proposed methodology and to evaluate its applicability, we provide a
real example in this section. Table 2 shows the salary data for 58 employees in a company
in Iran by the level of pro�ciency and working experience. Our aim is to �nd the possible
relation between salary as the response variable and working experience as a covariate
for di�erent levels of the pro�ciency factor. Therefore, we consider an ANCOVA model
with a covariate and a two-level treatment as

µij = E(yij |X,Z) = β0 + βi + γ(zij − z̄i),
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Table 1. The values of RMSE for ML estimators of the model parameters.

ANCOVA Model

Skew Normal Normal
Sample

λ Size λ β0 β1 γ β0 β1 γ

20 4.5209 0.9088 4.7756 27.5127 1.0760 5.0431 27.6104
-2 50 4.6625 0.9106 4.6961 22.2627 1.0288 5.0194 22.9811

100 4.4520 0.9126 4.7334 12.2603 1.0186 5.0084 12.6771
200 3.9090 0.9206 4.8485 10.1249 1.0077 5.0029 9.6656

20 3.5050 0.6819 4.7952 18.3095 1.0264 5.0178 18.3095
-1 50 1.1328 0.6630 4.9245 10.9095 1.0105 5.0063 11.4319

100 3.7464 0.6995 4.7370 8.2709 1.0068 5.0068 8.6453
200 3.4097 0.7170 4.7982 5.7749 1.0017 5.0040 6.1442

20 < 1× 10−13 1.0098 5.0072 10.5319 1.0098 5.0072 10.5319
0 50 < 1× 10−13 1.0055 5.0018 7.5567 1.0055 5.0018 7.5567

100 < 1× 10−13 1.0036 5.0013 5.4093 1.0036 5.0013 5.4093
200 < 1× 10−13 1.0019 4.9981 3.6826 1.0019 4.9981 3.6826

20 1.4593 0.6506 4.8993 18.1243 1.0292 5.0137 19.0754
1 50 1.1328 0.6630 4.9245 10.9095 1.0105 5.0063 11.4319

100 0.7788 0.6711 4.9595 7.4625 1.0067 5.0032 7.8143
200 0.9599 0.9989 4.9984 6.1875 1.0037 5.0002 6.2877

20 2.4142 0.6868 4.6382 29.2781 1.0835 5.0349 36.4821
2 50 2.9663 0.6086 4.3624 15.1047 1.0414 4.9991 19.1748

100 3.3649 0.5308 4.1750 9.6994 1.0131 5.0090 12.9511
200 3.8389 0.4401 3.8845 7.6109 1.0100 5.0012 10.2676

with i = 1, 2 and j = 1, . . . , 29. The histogram and box plot of the response variable
observations presented in Figure 1, indicate unimodality and right-skewed structure of
data. The result of goodness-of-�t tests indicate that skew normal, lognormal and inverse
gaussian distributions could be �tted to the response observations at the 5% signi�cance
level . The ML estimates of model parameters and their corresponding 95% asymptotic
con�dence intervals are presented in Table 3. We also provide the corresponding values
for the ML estimators of the parameters for inverse Gaussian ANCOVA model, developed
by [19], and lognormal distribution as other possible candidates for modeling a positively
skewed data. The normal model is also considered to assess the e�ect of ignoring the
skewness in modeling process. As it can be clearly seen, in skew normal, lognormal and
inverse Gaussian ANCOVA models both the e�ects of covariate and pro�ciency factor are
signi�cant. While the normal model incorrectly indicates that the working experience is
not a signi�cant covariate. The negative log-likelihood values along with AIC and BIC
criteria for di�erent models are provided in Table 4. Notice that as it is pointed out by
[19] the regression coe�cients and factor e�ects are not directly comparable for di�erent
models due to their di�erent link functions. Therefore the predicted mean, µ̂, under
di�erent models of interest can be compared via the root mean square error of prediction
(RMSEP) criterion, presented in Table 4.
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Table 2. Salary data for 58 employees in a company in Iran by the
level of pro�ciency and working experience.

Pro�ciency
Level I Level II

Salary Working Salary Working
(1000,000 Rial) Experience (1000,000 Rial) Experience

No. (Year) (Year)

1 13.21067 13 22.37932 16
2 17.06074 22 18.49741 11
3 15.59944 17 15.24213 10
4 14.71969 15 15.09468 11
5 15.36749 18 15.91385 10
6 16.06207 20 18.95504 15
7 19.89032 11 15.32940 9
8 13.40146 13 15.11344 8
9 11.32948 13 14.69974 10
10 16.11468 16 17.81728 11
11 12.02035 16 19.44098 17
12 11.43113 11 18.08340 13
13 15.06282 13 12.64286 4
14 14.66817 17 14.48483 8
15 13.40854 19 20.44149 14
16 14.63256 13 18.36701 12
17 16.38201 18 25.21042 22
18 13.41755 10 15.72097 10
19 13.49431 16 20.43385 14
20 19.67476 16 17.28177 11
21 12.79719 15 16.72111 11
22 13.80254 18 19.04832 12
23 17.15738 23 14.69331 8
24 16.31889 16 14.76271 10
25 12.91568 14 17.64608 12
26 12.68716 11 17.11542 10
27 11.24524 10 19.80369 17
28 14.62928 18 16.30396 7
29 17.96321 26 18.22075 6

Table 3. The ML estimates and 95% asymptotic con�dence intervals
of parameters for the skew normal ANCOVA model along with corre-
sponding values for normal, lognormal and inverse Gaussian models.

Parameters
ANCOVA Model β0 β1 γ

Normal 7.67 4.70 0.44
(5.59,9.76) (3.20,6.21) (-0.07,0.96)

Lognormal 2.25 0.29 0.03
(2.12,2.39) (0.22,0.36) (0.02,0.03)

Inverse Gaussian 0.063 0.005 -0.001
(0.061,0.065) (0.003,0.007) (-0.002,-0.001)

Skew Normal 14.65 2.95 0.46
(13.65,15.65) (1.93,3.97) (0.28,0.65)

It is seen that the skew normal model has better �t to the data than those of the
other models. Moreover, the values of the RMSEP for di�erent models indicate that the
skew normal model leads to a model with higher predictive power than other models. Of
course, it is clear that the main advantage of the skew normal model to lognormal and
inverse Gaussian models is its applicability for symmetric, right-skewed and left-skewed
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Figure 1. The histogram and box plot of the response variable observations.

Table 4. The values of negative log-likelihood, AIC and BIC and RM-
SEP criteria for skew normal ANCOVA model along with correspond-
ing values for normal, lognormal and inverse Gaussian mode.

Goodness-of-�t Criteria
ANCOVA Model -loglike AIC BIC RMSEP

Normal 408.65 821.31 825.43 6.5931
Lognormal 291.40 588.80 594.98 5.2246

Inverse Gaussian 156.59 319.19 325.37 2.7994

Skew Normal 140.34 286.68 292.86 1.8062

data, whereas lognormal and inverse Gaussian models can be used only for analyzing
right-skewed data.

7. Conclusions

In many real world applications the normality assumption does not hold. Too many
researches have been recently focused to develop suitable methods for dealing with non-
normality. Particularly, in many real world applications the response variable re�ects a
unimodal skewed structure. In these cases, the skew normal family of distributions due
to its �exibility can be used for data analysis. The results show that in this situations
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the skew normal ANCOVA model leads to the more e�cient estimations of the model
parameters than the normal model. Moreover it is a considerably good rival for other
traditional models such as lognormal and inverse Gaussian for analyzing skewed data. It
is obvious that, the proposed ANCOVA model can be used when the data are symmetric,
because the skew normal family of distribution includes the normal distribution as a
special case. In this paper, we employed Sahu [21] skew normal distribution among other
families of skew normal distributions due to its interesting distributional properties such
as simple implementing of the EM algorithm. But other families of the skew normal
distribution can be employed in a similar manner.
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