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On almost unbiased ridge logistic estimator for the
logistic regression model
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Abstract

Schaefer et al. [15] proposed a ridge logistic estimator in logistic regres-
sion model. In this paper a new estimator based on the ridge logistic
estimator is introduced in logistic regression model and we call it as
almost unbiased ridge logistic estimator. The performance of the new
estimator over the ridge logistic estimator and the maximum likelihood
estimator in scalar mean squared error criterion is investigated. We
also present a numerical example and a simulation study to illustrate
the theoretical results.
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1. Introduction

In this paper we consider the estimation of Euclidean parameters β ∈ Rp in logistic
regression model based on the dependent variable yi is Be(πi). The parameters πi relate
to β and x1, x2,...,xn with the following value:

(1.1) πi =
exp(xiβ)

1 + exp(xiβ)
, i = 1, 2, ..., n

Usually the parameters of the model should be estimated using the maximum likelihood
(ML) way by applying the following iterative weighted least square (IWLS) algorithm:

(1.2) β̂ML = (X ′ŴX)−1X ′Ŵ Ẑ

where Ẑ is a vector with ith element equals log(π̂i) + yi−π̂i
π̂i(1−π̂i)

and W = diag( π̂i
1−π̂i

).
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Since ML estimation does not require any restriction on the characteristics of the
independent variables, Maximum likelihood (ML) is the preferred estimation way in
logistic regression. However, the ML estimator can be a�ected seriously by the presence
of collinearity. It is known that ML parameter estimates have large variances in cases
of multicollinearity. Many methods have proposed to combat this problem in linear
regression model, such as the ridge estimator by Hoerl and Kennard [5], Liu estimator
by Liu [10].

Schaefer et al. [15] use the ridge method to overcome the multicollinearity in logistic
regression model and propose a ridge logistic estimator. Mansson and Shukur [13], Kibria
et al. [12] proposed many methods to estimate the ridge parameter in ridge logistic
estimator. Inan and Erdogan [9] proposed a Liu-type logistic estimator to overcome
multicollinearity in logistic regression model.

Though the ridge logistic estimator proposed by Schaefer et al. [15] can overcome
multicollinearity, however, this estimator has big bias. In this paper, we propose a new
estimator which can be used not only overcome multicollinearity, but also can reduce
the bias of the ridge estimator. We also discuss the statistical properties of the new
estimator.

2. The almost unbiased ridge logistic estimator

The ridge logistic estimator (RLE) in the logistic regression model presented by Schaefer
et al. [15] is denoted as follows:

(2.1) β̂RLE(k) = (X ′ŴX + kI)−1X ′Ŵ Ẑ, k > 0

It is easy to obtain that:

Bias(β̂RLE(k)) = E(β̂RLE(k))− β
= (X ′ŴX + kI)−1X ′ŴXβ − β
= [(X ′ŴX + kI)−1X ′ŴX − I]β

= (X ′ŴX + kI)−1[X ′ŴX − (X ′ŴX + kI)]β

= −k(X ′ŴX + kI)−1β(2.2)

and

(2.3) Cov(β̂RLE(k)) = (X ′ŴX + kI)−1X ′ŴX(X ′ŴX + kI)−1

In linear regression model, many authors have studied the almost unbiased estimator,
such as Kadiyala [11], Akdeniz and Kaciranlar [1] and Xu and Yang [16, 17].

To obtain the almost unbiased ridge logistic estimator, we �rstly list the following
de�nitions.

De�nition 2.1. [16, 17] Suppose β̂ is a biased estimator of parameter vector β, and if the

bias vector of β̂ is given by Bias(β̂) = E(β̂)−β = Rβ, which shows that E(β̂−Rβ) = β,

then we call the estimator β̃ = β̂−Rβ̂ = (I−R)β̂ is the almost unbiased estimator based

on the biased estimator β̂.
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Now, we are ready to derive the almost unbiased ridge logistic estimator based on the

RLE. Since: Bias(β̂RLE(k)) = (X ′ŴX + kI)−1X ′ŴXβ − β ,we have

β̂AURLE(k) = [I − ((X ′ŴX + kI)−1X ′ŴX − I)]β̂RLE(k)

= [2I − (X ′ŴX + kI)−1X ′ŴX]β̂RLE(k)

= [2I − (X ′ŴX + kI)−1X ′ŴX](X ′ŴX + kI)−1X ′Ŵ Ẑ

= [I + (X ′ŴX + kI)−1X ′ŴX](X ′ŴX + kI)−1X ′ŴXβ̂ML

= [I + k(X ′ŴX + kI)−1][I − k(X ′ŴX + kI)−1]β̂ML

= [I − k2(X ′ŴX + kI)−2]β̂ML(2.4)

In the next section, we will discuss the properties of the new estimator.
For the convenience of the following discussions, let α = Q′β, Λ = diag(λ1, ..., λp) =

Q′(X ′ŴX)Q, where λ1 ≥ ... ≥ λp > 0 are the ordered eigenvalues of X ′ŴX.

3. The performance of the new estimator

The new estimator is proposed to reduce the bias of the ridge logistic estimator (RLE).
So now we compare the new estimator with the RLE.

3.1. Theorem. In logistic regression model we have

‖ Bias(β̂AURLE(k)) ‖2<‖ Bias(β̂RLE(k)) ‖2 for k > 0.

Next we discuss the superiority of the new estimator in the scalar mean squared error

(MSE) sense. Firstly we give its de�nition. Let β̂ be an estimator of β, then the scalar
mean squared error is de�ned as follows:

MSE(β̂) = E(β̂ − β)′(β̂ − β) = tr{Cov(β̂)}+Bias(β̂)′Bias(β̂)(3.1)

3.2. Theorem. A su�cient of the new estimator superior to the RLE by the MSE
criterion in logistic regression model is

k >
3− λiα2

i +
√

(3 + λiα2
i )

2 + 4λiα2
i

4α2
i

for all i = 1, ..., p.

3.3. Theorem. The new estimator is superior to the maximum likelihood (ML) estimator
in logistic regression model for k > 0 if 1 − λiα2

i > 0 for all i = 1, ..., p and for k <
2λi+λi

√
2(1+α2

iλi)

α2
iλi−1

if 1− λiα2
i < 0 for some i.

4. The selection of ridge parameter k

In this section we consider that the ridge parameter which is obtained by using the
ridge parameter introduced in the previous section and the ridge parameters proposed
by Hoerl and Kennard [5], Hoerl et al. [6], Batah et al. [3], Lawless and Wang [7] and
Khurana et al [4].

The ridge parameter corresponding to Eq. (7.2) is

kNEW =
p∑p

i=1[α2
i /[1 + (1 + λi ∗ α2

i )
1/2]

Second, the Hoerl and Kennard [5] ridge parameter is de�ned as

kHK =
σ̂2

maxα2
iML
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Table 1. Estimated quadratic bias with γ = 0.9

k NEW HK HKB LW LS

RLE×10−2 3.8401 0.5730 2.9811 0.0000 5.0532
AURLE ×10−2 0.0023 0.0000 0.0014 0.0000 0.0039

Table 2. Estimated quadratic bias with γ = 0.95

k NEW HK HKB LW LS

RLE 0.1093 0.0020 0.0100 0.0000 0.1627
AURLE 0.0002 0.0006 0.0001 0.0000 0.0004

Table 3. Estimated quadratic bias with γ = 0.99

k NEW HK HKB LW LS

RLE 0.9889 0.2645 0.9696 0.0000 1.3761
AURLE 0.1230 0.0090 0.0118 0.0000 0.2368

Third, the Hoerl et al. [6] ridge parameter is de�ned as

kHKB =
pσ̂2

β̂′MLβ̂ML

Fourth, the Lawless and Wang [7] ridge parameter is de�ned as

kLW =
pσ̂2

β̂′MLX
′WXβ̂ML

Fifth, the Lindley and Smith [8] ridge parameter is de�ned as

kLS =
(n− p)(p+ 2)

n+ 2

σ̂2

β̂′MLβ̂ML

5. Monte Carlo simulation

The main purpose of this article is to compare the MSE properties and bias of the ML,
RLE and AURLE when the regressors are highly intercorrelated. Hence, the core factor
varied in the design of the experiment is the degree of correlation γ between the regressors.
Therefore, the following formula which enables us to vary the strength of the correlation
is used to generate the explanatory variables:

(5.1) xij = (1− γ2)1/2zij + γzip, i = 1, ..., n, j = 1, ..., p

where zij are independent standard normal pseudo-random numbers,and γ is speci�ed
so that the correlation between any two explanatory variables is given by γ2.

Four di�erent values of γ corresponding to 0.9, 0.95, 0.99 are considered and the sample
size is equal to 50.

All simulation results are given in Tables 1-6.
From Tables 1-3, we can see that the new estimator has smaller quadratic bias than

the RLE. When we see the estimated MSE of the new estimator and the RLE, we see
that the new estimator is always superior to the RLE. The new estimator is superior to
the RLE in the MSE criterion.
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Table 4. Estimated MSE with γ = 0.9

k 0 NEW HK HKB LW LS

ML 0.0376 0.0376 0.0376 0.0376 0.0376 0.0376
RLE 0.0376 0.0709 0.0413 0.0629 0.0376 0.0823
AURLE 0.0376 0.0374 0.0376 0.0374 0.0376 0.0375

Table 5. Estimated MSE with γ = 0.95

k 0 NEW HK HKB LW LS

ML 0.0717 0.0717 0.0717 0.0717 0.0717 0.0717
RLE 0717 0.1645 0.0843 0.1558 0.0717 0.2146
AURLE 0.0717 0.0711 0.0714 0.0711 0.0717 0.0722

Table 6. Estimated MSE with γ = 0.99

k 0 NEW HK HKB LW LS

ML 0.3111 0.3111 0.3111 0.3111 0.3111 0.3111
RLE 0.3111 1.1128 0.4654 1.0948 0.3111 1.4769
AURLE 0.3111 0.2943 0.2955 0.3487 0.3111 0.4392

From the Tables, we also conclude that the new ridge parameter perform well.

6. Numerical example

In this section, we present a real data application in order to illustrate the bene�ts of
the new estimator AURLE and satisfy the theoretical results. The data set is obtained
from the o�cial website of the Statistics Sweden (http://www.scb.se/) and it was also
used in Asar and Genc [2] and a similar data set was used in Mansson et al. [4]. There are
271 observations which are the municipalities of Sweden in the data set. We �t a logistic
regression model where the followings are the independent variables: the population (x1),
the number of unemployed people (x2), the number of newly constructed buildings (x3)
and the number of bankrupt �rms (x4). We consider the net population change as the
dependent variable such that it is coded as 1 if there is an increase in the population and 0
vice versa. We computed the bivariate correlations and observed that they are all greater
than 0.90. The condition number being a measure of the degree of multicollinearity is
computed as 38.3274 showing that there is severe multicollinearity problem with this
data.

We provide the estimated theoretical MSE and coe�cients of ML, RLE and AURLE
for kNEW kHK , kHKB , kLW and kLS in Table 7.

It is observed from Table 7 that MSE of ML is the largest among all possible situations.
The new estimator NEW works well with the estimator AURLE such that AURLE has
a less MSE than RLE when NEW is used. Moreover, AURLE has better performance
when HKB and LS are used. In Figure 1, we plot the MSE values of RLE and AURLE
for changing values of the parameter k between zero and 1. It is seen from Figure 1 that
ARLE has less MSE values in this interval. According to Theorem 3.2, for k > 4.0608 ,
AURLE should have a less MSE than that of RLE. This result can be seen from Figure
2.
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Table 7. The estimated theoretical MSEs and coe�cients of estima-
tors for di�erent estimators of k

k β1 β2 β3 β4 SMSE

kNEW 2.3757 0.2549 1.1752 -2.7641 973.7117
kHK 18.1501 -11.8274 3.6423 -9.0784 1157.0656

RLE kHKB 4.1873 -0.9625 1.9584 -4.1488 904.7912
KLW 0.1674 0.1576 0.1342 0.0622 1076.8163
kLS 8.3886 -4.2012 2.8882 -6.0829 826.1210

kNEW 3.9688 -0.6164 2.0167 -4.3217 931.4176
kHK 23.2398 -15.7957 3.8558 -10.4687 1642.0958

AURLE kHKB 7.1375 -3.1442 2.9676 -5.9501 865.1787
KLW 0.2679 0.2492 0.2012 0.0581 1074.8677
kLS 13.6711 -8.3300 3.6388 -8.0437 936.7677

ML 25.3151 -17.4071 3.8669 -10.9661 1894.3979
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Figure 1. The estimated MSE of RLE and AURLE when 0 < k < 1

Moreover, we plot the biases of the estimators to illustrate Theorem 3.1 in Figure 3.
According to Figure 3, it is observed that the squared bias of AURLE is always less than
that of RLE which coincides with Theorem 3.1.

Finally, Theorem 3.3 is also satis�ed. Since 1−λiα2
i > 0, AURLE has less MSE value

than that of ML.

7. Conclusion

In this paper we propose a almost unbiased ridge logistic estimator based on the ridge
logistic estimator and we also discuss the properties of the new estimator. The compar-
ison results show that the new estimator has smaller quadratic bias the RLE, and under
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Figure 2. The estimated MSE of RLE and AURLE for satisfying
Theorem 3.2

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

B
ia

s

 

 

RLE
AURLE

Figure 3. The biases of the estimator RLE and AURLE when 0 < k < 1

certain conditions the new estimator is superior to the ML and RLE in the MSE sense.
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Appendix

3.1 Theorem

Proof. We have Bias(β̂RLE(k)) = −k(X ′ŴX + kI)−1β and

Bias(β̂AURLE(k)) = [I − k2(X ′ŴX + kI)−2]β − β
= −k2(X ′ŴX + kI)−2β(7.1)

Thus we have

‖Bias(β̂RLE(k))‖2 − ‖Bias(β̂AURLE(k))‖2

= β′k2(X ′ŴX + kI)−2β − β′k4(X ′ŴX + kI)−4β

= α′k2(Λ + kI)−2α− α′k4(Λ + kI)−4α = α′Gα(7.2)

where G = k2(Λ + kI)−2 − k4(Λ + kI)−4 = diag( k
2λi(λi+2k)

(λi+k)4
), thus for k > 0, α′Gα > 0.

The proof is completed. �

3.2 Theorem

Proof. By (2.2)-(2.3) and the de�nition of SMSE, we have

MSE(β̂RLE(k)) = tr{Covβ̂RLE(k)}+Bias(β̂RLE(k))′Bias(β̂RLE(k))

= tr{(X ′ŴX + kI)−1X ′ŴX(X ′ŴX + kI)−1}
+α′k2(Λ + kI)−2α

=

p∑
i=1

λi
(λi + k)2

+

p∑
i=1

k2α2
i

(λi + k)2

=

p∑
i=1

λi + k2α2
i

(λi + k)2
(7.3)

By (2.4), we can compute that:

Covβ̂AURLE(k)

= [I − k2(X ′ŴX + kI)−2](X ′ŴX)−1[I − k2(X ′ŴX + kI)−2](7.4)

Then we get

MSE(β̂AURLE(k))

= tr{Covβ̂AURLE(k)}+Bias(β̂AURLE(k))′Bias(β̂AURLE(k))

= tr{[I − k2(X ′ŴX + kI)−2](X ′ŴX)−1[I − k2(X ′ŴX + kI)−2]}
+α′k4(Λ + kI)−4α

=

p∑
i=1

(1− k2

(λi + k)2
)2

1

λi
+

p∑
i=1

k4α2
i

(λi + k)4

=

p∑
i=1

(λi + 2k)2λi + k4α2
i

(λi + k)4
(7.5)

Now we consider the di�erence:

∆1 = MSE(β̂RLE(k))−MSE(β̂AURLE(k))

=

p∑
i=1

λi + k2α2
i

(λi + k)2
−

p∑
i=1

(λi + 2k)2λi + k4α2
i

(λi + k)4

=

p∑
i=1

λik[2k2α2
i + (λiα

2
i − 3)k − 2λi]

(λi + k)4
(7.6)
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∆1 will be positive for k > 0 if and only if

2k2α2
i + (λiα

2
i − 3)k − 2λi > 0(7.7)

for all i = 1, ..., p. The expression in (7.7) is a quadratic function of k which has two
distinct roots

k1,2 =
3− λiα2

i ±
√

(3 + λiα2
i )

2 + 4λiα2
i

4α2
i

(7.8)

Though the root
3−λiα

2
i−
√

(3+λiα
2
i )

2+4λiα
2
i

4α2
i

is negative. Thus when k > 0 and

k >
3− λiα2

i +
√

(3 + λiα2
i )

2 + 4λiα2
i

4α2
i

for all i = 1, ..., p, the new estimator is superior to the RLE by the MSE criterion in
logistic regression model. �

3.3 Theorem

Proof. It is easy to obtain that

MSE(β̂ML) =

p∑
i=1

1

λi
(7.9)

Now we study the following di�erence:

∆2 = MSE(β̂ML)−MSE(β̂AURLE(k))

=

p∑
i=1

1

λi
−

p∑
i=1

(λi + 2k)2λi + k4α2
i

(λi + k)4

= k2
p∑
i=1

(1− α2
iλi)k

2 + 4λik + 2λ2
i

λi(λi + k)4
(7.10)

∆2 will be positive if and only if

(1− α2
iλi)k

2 + 4λik + 2λ2
i > 0(7.11)

Now we discuss (1− α2
iλi)k

2 + 4λik + 2λ2
i .

(1) If 1− λiα2
i > 0 for all i = 1, ..., p, then (1− α2

iλi)k
2 + 4λik + 2λ2

i > 0.
(2) If 1− λiα2

i < 0 for some i = 1, ..., p, then using the method in Theorem 3.2, we have

if k <
2λi+λi

√
2(1+α2

iλi)

α2
iλi−1

, (1− α2
iλi)k

2 + 4λik + 2λ2
i > 0.

This completes the proof of Theorem. �


