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A class of estimators for population median in two
occasion rotation sampling
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Abstract
The present work deals with the problem of estimation of finite popu-
lation median at current occasion, in two occasion successive (rotation)
sampling. A class of estimators has been proposed for the estimation of
population median at current occasion, which includes many existing
estimators as a particular case. Asymptotic properties including the
asymptotic convergence of proposed class of estimators are elaborated.
Optimum replacement strategies are also discussed. The proposed class
of estimators at optimum condition is compared with the sample me-
dian estimator when there is no matching from the previous occasion as
well as with some other members of the class. Theoretical results have
been justified through empirical interpretation with the help of some
natural populations.
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1. Introduction
When both, the characteristic and the composition of the population change over

time, then the cross-sectional surveys at a particular point of time become important.
The survey estimates are therefore time specific, a feature that is particularly important
in some context. For example, the unemployment rate is a key economic indicator that
varies over time, the rate may change from one month to the next because of a change in
the economy (with business laying off or recruiting new employees). To deal with such
kind of circumstances, sampling is done on successive occasions with partial replacement
of the units.
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The problem of sampling on two successive occasions was first considered by Jessen
(1942), and latter this idea was extended by Patterson (1950), Narain (1953), Eckler
(1955), Gordon (1983), Arnab and Okafor (1992), Feng and Zou (1977), Singh and Singh
(2001), Singh and Priyanka (2008), Singh et al. (2012) and many others. All the above
efforts were devoted to the estimation of population mean or variance on two or more
occasion successive sampling.

Often, there are many practical situations where variables involved, consists of extreme
values and resulting strong influence on the value of mean. In such cases the study
variable is having a highly skewed distribution. For example, the study of environmental
issues, the study of income as well as expenditure, the study of social evils such as
abortions etc.. In these situations, the mean as a measure of central tendency may not
be representative of the population because it moves with the direction of asymmetry
leaving the median as a better measure since it is not affected by extreme values.

Most of the studies related to median have been developed by assuming simple random
sampling or its ramification in stratified random sampling (Gross (1980), Sedransk and
Meyer (1978), Smith and Sedransk (1983)).

As noted earlier, a large number of estimators for estimating the population mean at
current occasion have been proposed by various authors, but only a few efforts (namely
Martinez-Miranda et al. (2005), Singh et al. (2007) and Rueda and Munoz (2008)) have
been made to estimate the population median on current occasion in two occasion suc-
cessive sampling.

The present work develops a one-parameter class of estimators that estimate the
population median on the current occasion in two-occasion successive sampling. The
proposed class of estimators includes some of the estimators proposed by Singh et al.
(2007) for second quantile as particular cases.

Asymptotic expressions for bias and mean square error including the asymptotic con-
vergence of the proposed class of estimators are derived. The optimum replacement
strategies are discussed. The proposed class of estimators at optimum conditions is
compared with sample median estimator when there is no matching from the previous
occasion as well as with some of the estimators due to Singh et al. (2007) and few other
members of its class. Theoretical results are justified by empirical interpretation with
the help of some natural populations.

2. Sample Structure and Notations
Let U = (U1, U2, . . . , UN ) be the finite population of N units, which has been sampled

over two occasions. It is assumed that size of the population remains unchanged but
values of units change over two occasions. The character under study be denoted by x (y)
on the first (second) occasions respectively. Simple random sample (without replacement)
of n units is taken on the first occasion. A random subsample of m = nλ units is retained
for use on the second occasion. Now at the current occasion a simple random sample
(without replacement) of u = (n −m) = nµ units is drawn afresh from the remaining
(N − n) units of the population so that the sample size on the second occasion is also n.
µ and λ, (µ+ λ = 1) are the fractions of fresh and matched samples respectively at the
second (current) occasion. The following notations are considered for the further use:

Mx, My : Population median of the variables x and y,
respectively.

M̂x(n), M̂x(m), M̂y(m), M̂y(u) : Sample medians of the respective variables
shown in suffices and based on the sample
sizes given in braces.



fx(Mx), fy(My) : The marginal densities of variables x and y,
respectively.

3. Proposed Class of Estimators
To estimate the population median My on the current (second) occasion, two inde-

pendent estimators are suggested. One is based on sample of the size u = nµ drawn
afresh on the current (second) occasion and which is given by

Tu = M̂y(u) .(3.1)

Second estimator is a one-parameter class of estimators based on the sample of size
m = nλ common to the both occasions and is defined as

Tm(d) = M̂y(m)

[
(A+ C)M̂x(n) + fBM̂x(m)

(A+ fB)M̂x(n) + CM̂x(m)

]
,(3.2)

A = (d− 1)(d− 2), B = (d− 1)(d− 4),

C = (d− 2)(d− 3)(d− 4) and f =
n

N
,

where d is a non-negative constant, identified to minimize the mean square error of the
estimator Tm(d).

Now considering the convex linear combination of the estimators Tu and Tm(d), a
class of estimators for My is proposed as

T̂d = ϕTu + (1− ϕ)Tm(d),(3.3)

where ϕ is an unknown constant to be determined so as to minimize the mean square
error of the class of the estimators T̂d.

3.1. Remark. For estimating the median on each occasion, the estimator Tu is suitable,
which implies that more belief on Tu could be shown by choosing ϕ as 1 (or close to 1),
while for estimating the change from occasion to occasion, the estimator Tm(d) could
be more useful so ϕ might be chosen 0 (or close to 0). For asserting both problems
simultaneously, the suitable (optimum) choice of ϕ is desired.

3.2. Remark. The following estimators can be identified as a particular case of the
suggested class of estimators T̂d to estimate population median on the current occasion in
two occasion successive (rotation) sampling for different values of the unknown parameter
‘d’:
(i) T̂1 = ϕ1Tu + (1− ϕ1)Tm(1); (Ratio type estimator)
(ii) T̂2 = ϕ2Tu + (1− ϕ2)Tm(2); (Product type estimator)
(iii) T̂3 = ϕ3Tu + (1− ϕ3)Tm(3); (Dual to Ratio type estimator)
where

Tm(1) = M̂y(m)

[
M̂x(n)

M̂x(m)

]
,

Tm(2) = M̂y(m)

[
M̂x(m)

M̂x(n)

]
,

Tm(3) = M̂y(m)

[
nM̂x(n)−mM̂x(m)

(n−m)M̂x(n)

]
and ϕi (i = 1, 2, 3) are unknown constants to be determined so as to minimize the mean
square error of the estimators T̂i (i = 1, 2, 3).



3.3. Remark. The Ratio and Product type estimators, proposed by Singh et al. (2007)
for second quantile become particular cases of the proposed family of the estimators T̂d
for d = 1 and 2, respectively.

4. Properties of the Proposed Class of Estimators

The properties of the proposed class of estimators T̂d are derived under the following
assumptions:

(i) Population size is sufficiently large (i.e. N → ∞), therefore finite population cor-
rections are ignored.

(ii) As N → ∞, the distribution of the bivariate variable (x, y) approaches a contin-
uous distribution,which depend on population under consideration with marginal
densities fx(·) and fy(·), respectively (see Kuk and Mak (1989)).

(iii) The marginal densities fx(·) and fy(·) are positive.
(iv) The sample medians M̂y(u), M̂y(m), M̂x(m) and M̂x(n) are consistent and asymp-

totically normal (see Gross (1980)).
(v) Following Kuk and Mak (1989), Pyx is assumed to be the proportion of elements

in the population such that x ≤ M̂x and y ≤ M̂y.
(vi) The following large sample approximations are assumed:

M̂y(u) =My(1 + e0), M̂y(m) =My(1 + e1), M̂x(m) =Mx(1 + e2),

M̂x(n) =Mx(1 + e3) such that |ei| < 1 ∀ i = 0, 1, 2 and 3.

The values of various related expectations can be seen in Allen et al. (2002) and Singh
(2003). Under the above transformations, the estimators Tu and Tm(d) takes the following
forms:

Tu =My(1 + e0),(4.1)

Tm(d) =My[1 + e1 + d1e3 + d2e2 − d3e3 − d4e2 − d1d3e23
− d1d4e2e3 − d2d3e2e3 − d2d4e22 + d23e

2
3 + d24e

2
2

+ 2d3d4e2e3 + (d1 − d3)e1e3 + (d2 − d4)e1e2](4.2)

where d1 =
A+ C

A+ fB + C
, d2 =

fB

A+ fB + C
, d3 =

A+ fB

A+ fB + C
and d4 =

C

A+ fB + C
.

Thus we have the following theorems:

4.1. Theorem. The bias of the estimator T̂d to the first order of approximation is
obtained as

B(T̂d) = (1− ϕ)B{Tm(d)}(4.3)

where

B{Tm(d)} = 1

n
Q1 +

1

m
Q2 ,(4.4)

Q1 = (−d1d3 − d1d4 − d2d3 + d23 + 2d3d4)
{fx(Mx)}−2

4M2
x

+ (d1 − d3)(Pyx − 0.25)
{fy(My)}−1{fx(Mx)}−1

MyMx



and

Q2 = (−d2d4 + d24)
{fx(Mx)}−2

4M2
x

+ (d2 − d4)(Pyx − 0.25)
{fy(My)}−1{fx(Mx)}−1

MyMx
.

Proof. The bias of the estimator T̂d is given by

B{T̂d} = E{T̂d −My}
= ϕB{Tu}+ (1− ϕ)B{Tm(d)} .(4.5)

Since, the estimator Tu is unbiased for My and Tm(d) is biased for My, so the bias of the
estimator Tm(d)is given by

B{Tm(d)} = E{Tm(d)−My} .
Now, substituting the value of Tm(d) from equation (4.2) in the above equation we get
the expression for bias of Tm(d) as in equation (4.4).

Finally substituting the value of B{Tm(d)} in equation (4.5), we get the expression
for the B{T̂d}as in equation (4.3). �

4.2. Theorem. The mean square error of the estimator T̂d is given by

M(T̂d) = ϕ2V (Tu) + (1− ϕ)2M(Tm(d))opt.(4.6)

where

V (Tu) =
1

u

{fy(My)}−2

4
(4.7)

and

M(Tm(d))opt. =
1

m
A1 +

(
1

m
− 1

n

)
{α∗2A2 + 2α∗A3}(4.8)

where

A1 =
{fy(My)}−2

4
, A2 =

{fx(Mx)}−2

4

[
M2
y

M2
x

]
,

A3 = (Pyx − 0.25){fy(My)}−1{fx(Mx)}−1

[
My

Mx

]
,

α∗ = [α]d=d0 ,

α = (d2 − d4) = (d3 − d1) =
fB − C

A+ fB + C
and d0 is the optimum value of d.

Proof. The mean square error of the estimator T̂d is given by

M̂(Td) = E[T̂d −My]
2

= E[ϕ(Tu −My) + (1− ϕ){Tm(d)−My}]2

= ϕ2V (Tu) + (1− ϕ)2M [Tm(d)] + 2ϕ(1− ϕ) cov(Tu, Tm(d))(4.9)

where

V (Tu) = E[Tu −My]
2(4.10)

and

M [Tm(d)] = E[Tm(d)−My]
2 .(4.11)

As Tu and Tm(d) are based on two independent samples of sizes u and m respectively,
hence cov(Tu, Tm(d)) = 0. Now, substituting the values of Tu and Tm(d) from equations



(4.1) and (4.2) in equation (4.10) and (4.11) respectively, taking expectations and ignoring
finite population corrections we get the expression for V (Tu) as in equation (4.7) and
mean square error of Tm(d)is obtained as

M [Tm(d)] =

[
1

m
A1 +

(
1

m
− 1

n

)
{α2A2 + 2αA3}

]
where

A1 =
{fy(My)}−2

4
, A2 =

{fx(Mx)}−2

4

[
M2
y

M2
x

]
,

A3 = (Pyx − 0.25){fy(My)}−1{fx(Mx)}−1

[
My

Mx

]
and

α = (d2 − d4) = (d3 − d1) =
fB − C

A+ fB + C
.

The mean square error of the Tm(d) is a function of α, which in turns is a function of d,
hence it can be minimized for d, and therefore we have

∂{M [Tm(d)]}
∂d

= 0 .

This gives α = −A3
A2

, assuming ∂α
∂d
6= 0 which in turns yields a cubic equation in ‘d’ given

by

z1d
3 + z2d

2 + z3d+ z4 = 0(4.12)

where

z1 =

(
A3

A2
− 1

)
, z2 = (f + 9) +

A3

A2
(f − 8),

z3 = (−5f − 26) +
A3

A2
(23− 5f)

and

z4 = (4f + 24) +
A3

A2
(4f − 22) .

Now for given values of Mx, My, fx(Mx) and fy(My) one will get the three optimum
values of d for which M [Tm(d)] attains the minimum value. The possibility of getting
negative or imaginary roots cannot be ruled out. However, Singh and Shukla (1987) has
pointed out that for any choice of f , Mx, My, fx(Mx) and fy(My), there exists at least
one positive real root of the equation (4.12) ensuring thatM [Tm(d)] attaints its minimum
within the parameter space (0,∞). Since, there may exist at most three optimum values
of d, a criterion for suitable value of optimum d may be set as follows: “Out of all possible
values of optimum d, choose d = d0 as an adequate choice, which makes |B[Tm(d)]|
smallest”.

Hence, the minimum mean square error of Tm(d) is given by

M [Tm(d)]opt. =
1

m
A1 +

(
1

m
− 1

n

)
A4(4.13)

where A1 =
{fy(My)}−2

4
, A4 = α∗2A2 + 2α∗A3, and α∗ = [α]d=d0 .

Further, substituting the expression for V (Tu) and M [Tm(d)]opt. in equation (4.9) we
get the expression for M(T̂d) as in equation (4.6). �



4.3. Remark. The cubic equation (4.12) depends on the population parameters Pyx,
fy(My) and fx(Mx). If these parameters are known, the proposed estimator can be easily
applied. Otherwise, which is the most often situation in practice, the unknown popula-
tion parameters are replaced by their sample estimates. The population proportion Pyx
can be replaced by the sample estimate P̂yx and the marginal densities fy(My) and
fx(Mx) can be substituted by their kernel estimator or nearest neighbour density esti-
mator or generalized nearest neighbour density estimator related to the kernel estimator
(Silverman (1986)). Here, the marginal densities fy(My) and fx(Mx) are replaced by
f̂y(M̂y(m)) and f̂x(M̂x(n)) respectively, which are obtained by method of generalized
nearest neighbour density estimation related to kernel estimator.

To estimate fy(My) and fx(Mx), by generalized nearest neighbour density estimator
related to the kernel estimator, following procedure has been adopted:

Choose an integer h ≈ n
1
2 and define the distance δ(x1, x2) between two points on the

line to be |x1 − x2|.
For M̂x(n), define δ1(M̂x(n)) ≤ δ2(M̂x(n)) ≤ · · · ≤ δn(M̂x(n)) to be the distances,

arranged in ascending order, from M̂x(n) to the points of the sample.
The generalized nearest neighbour density estimate is defined by

f̂(M̂x(n)) =
1

nδh(M̂x(n))

n∑
i=1

K

[
M̂x(n)− xi
δh(M̂x(n))

]
where the kernel function K, satisfies the condition

∫∞
−∞K(x)dx = 1.

Here, the kernel function is chosen as Gaussian Kernel given by K(x) =
1

2π
e−( 1

2
x2).

The estimate of fy(My) can be obtained by the above explained procedure in similar
manner.

4.4. Theorem. The estimator T̂d, its bias and mean square error are asymptotically
convergent to the estimator T̂1, its bias and mean square error respectively for large d.

Proof. Taking limit as d→∞ in equation (3.3) we get

lim
d→∞

T̂d = ϕTu + (1− ϕ) lim
d→∞

Tm(d) .

Since, d 6= 0, dividing numerator and denominator of the second term in right hand side
of above equation by d3and taking limit as d→∞, we have

lim
d→∞

T̂d = ϕTu + (1− ϕ)Tm(1) = T̂1 .

This is the ratio type estimator to estimate population median in two occasion rotation
sampling as given in Remark 3.2. Similarly, using the expressions of bias and mean
square error of the estimator T̂d, it is easy to see that

lim
d→∞

B{T̂d} = B{T̂1}

and

lim
d→∞

M{T̂d} =M{T̂1} .

Thus the proposed class of estimators converges to a well-defined estimator even if one
chooses arbitrary, a larger value of the unknown parameter d. The bias and mean square
error also tends asymptotically to that of ratio type estimator to estimate finite popu-
lation median. There is no need to bother about the existence of the estimator while
choosing a larger value of d. �



5. Minimum Mean Square Error of the Proposed Class of Esti-
mators T̂d

Since, mean square error of T̂d in equation (4.6) is function of unknown constant ϕ,
therefore, it is minimized with respect to ϕ and subsequently the optimum value of ϕ is
obtained as

ϕopt. =
M{Tm(d)}opt.

V (Tu) +M{Tm(d)}opt.
(5.1)

and substituting the value of ϕopt. from equation (5.1) in equation (4.6), we get the
optimum mean square error of the estimator T̂d as

M(T̂d)opt. =
V (Tu) ·M{Tm(d)}opt.

V (Tu) +M{Tm(d)}opt.
.(5.2)

Further, by substituting the values from equation (4.7) and equation (4.8) in equation
(5.2), we get the simplified value of M(T̂d)opt. as

M(T̂d)opt. =
A1[A1 + µA4]

n[A1 + µ2A4]
,(5.3)

where µ (= u/n) is the fraction of fresh sample drawn on the current (second) occasion.
AgainM(T̂d)opt. derived in equation (5.3) is the function of µ. To estimate the population
median on each occasion the better choice of µ is 1 (case of no matching); however, to
estimate the change in median from one occasion to the other, µ should be 0 (case of
complete matching). But intuition suggests that an optimum choice of µ is desired to
devise the amicable strategy for both the problems simultaneously.

6. Optimum Replacement Policy
The key design parameter affecting the estimates of change is the overlap between

successive samples. Maintaining high overlap between repeats of a survey is operationally
convenient, since many sampled units have been located and have some experience in the
survey. Hence to decide about the optimum value of µ (fraction of sample to be drawn
afresh on current occasion) so that My may be estimated with maximum precision, we
minimize M(T̂d)opt. in equation (5.3) with respect to µ.

The optimum value of µ so obtained is one of the two roots given by

µ̂ =
−A1 ±

√
A1(A1 +A4)

A4
.(6.1)

The real value of µ̂ exists, iff A1(A1 + A4) ≥ 0. For any situation, which satisfies this
condition, two real values of µ̂ may be possible, hence in choosing a value of µ̂, care
should be taken to ensure that 0 ≤ µ̂ ≤ 1, all other values of µ̂ are inadmissible. If both
the real values of µ̂ are admissible, the lowest one will be the best choice as it reduces the
total cost of the survey. Substituting the admissible value of µ̂ say µ0 from equation (6.1)
in equation (5.3), we get the optimum value of the mean square error of the estimator
T̂d with respect to ϕ and µ both as

M(T̂d)opt.∗ =
A1[A1 + µ0A4]

n[A1 + µ2
0A4]

.



7. Efficiency Comparison

To evaluate the performance of the estimator T̂d, the estimator T̂d at optimum condi-
tions is compared with respect to the estimator M̂y(n)(the sample median), when there
is no matching from previous occasion. Since, M̂y(n) is unbiased for population median,
its variance for large N is given by

V [M̂y(n)] =
1

n

{fy(My)}−2

4
.(7.1)

The percent relative efficiency of the estimator T̂d (under optimal condition) with respect
to M̂y(n) is given by

P.R.E.(T̂d, M̂y(n)) =
V [M̂y(n)]

M(T̂d)opt.∗
× 100 .(7.2)

The estimator T̂d(at optimal conditions) is also compared with respect to the estimators
T̂1, T̂2 and T̂3, respectively. Hence for large N , the expressions for optimum mean square
errors of T̂1, T̂2 and T̂3 are given by

M(T̂1)opt.∗ =
A1[A1 + µ1A5]

n[A1 + µ2
1A5]

,

M(T̂2)opt.∗ =
A1[A1 + µ2A6]

n[A1 + µ2
2A6]

and

M(T̂3)opt.∗ =
A1[A1 + µ3A7]

n[A1 + µ2
3A7]

where

µ1 =
−A1 ±

√
A2

1 +A1A5

A5
, µ2 =

−A1 ±
√
A2

1 +A1A6

A6
,

µ3 =
−A1 ±

√
A2

1 +A1A7

A7
, A1 =

{fy(My)}−2

4
,

A5 = A2 − 2A3, A6 = A2 + 2A3 and A7 =

(
f

1 + f

)2
A2 + 2

(
f

1 + f

)
A3 ,

where A2 =
{fx(Mx)}−2

4

[
M2
y

M2
x

]
and A3 = (Pyx − 0.25){fy(My)}−1{fx(Mx)}−1

[
My

Mx

]
.

The percent relative efficiencies of T̂d at optimum conditions with respect to the
estimators T̂i for i = 1, 2 and 3 at optimum conditions are given by

P.R.E.(T̂d, T̂i) =
M(T̂i)opt.∗

M(T̂d)opt.∗
× 100 for i = 1, 2 and 3 .

8. Numerical Illustrations
The various results obtained in previous sections are now illustrated using two natural

populations.

Population Source. (Free access to the data by Statistical Abstracts of the United
States) In the first case, a real life situation consisting N = 51 states of United States
has been considered. Let yi represent the number of abortions during 2007 in the ith
state of U.S. and xi be the number of abortions during 2005 in the ith state of U.S. The
data are presented pictorially in Figure 8.1 as under:



Figure 8.1. Number of Abortions during 2005 and 2007 versus differ-
ent states of U.S.

Similarly in the second case, the study population consist of N = 51 states of United
States for year 2004. Let yi (study variable) be the percent of bachelor degree holders
or more in the year 2004 in the ith state of U.S. and xi be the percent of bachelor
degree holders or more in the year 2000 in the ith state of U.S. The data are represented
pictorially in Figure 8.2 as under:

Figure 8.2. Percent of Bachelor Degree Holders or More during 2000
and 2004 versus Different States of U.S.



Table 1. Descriptive Statistics for Population-I and Population-II

Population-I Population-II
Number of Number of % of Bachelor % of Bachelor
Abortions Abortions Degree Holders Degree Holder
in 2005 in 2007 or More in 2000 or More in 2004

Mean 23651.76 23697.65 27.19 27.17
Standard Error 5389.35 5510.75 0.65 0.75
Median 10410.00 9600.00 24.60 25.50
Standard Deviation 38487.71 39354.65 4.66 5.40
Kurtosis 12.39 14.42 0.29 1.67
Skewness 3.31 3.52 0.40 0.89
Minimum 70.00 90.00 15.30 15.30
Maximum 208430.00 223180.00 30.30 45.70

The graph in Figure 8.1 shows that the distribution of number of abortions in different
states is skewed towards right. Similar graph is obtained for Population-II as indicated
in Figure 8.2. One reason of skewness may be the distribution of population in different
states, that is, the states having larger populations are expected to have larger number
of abortion cases and the larger percent of bachelor degree holders or more for the second
case as well. Thus skewness of the data indicates that the use of median may be a good
measure of central location than mean in such a situation.

Based on the above description, the descriptive statistics for both populations have
been computed and are presented in Table 1.

For the two populations under consideration, the cubic equation (4.12) is solved for
“d” for some choices of “f ”. The optimum mean square errors of the proposed class of
estimators are found to be same for all the three values of “d” obtained. So, using the
criteria set in the proof of Theorem 4.1, Table 2 shows the best choice of the optimum
value of “d” for different choices of “f ” for both, Population-I and Population-II.

Table 2. Best choice of d for Population-I and Population-II, for dif-
ferent choices of f

f Population-I Population-II
d |Bias| d0 d |Bias| d0

10.0002 3.6526 2.4170 22.8356 0.1419 2.3553
0.9800 2.4170 0.3097 2.3533 0.1089

1.4705 4.1206 1.2030 0.1467
10.7520 1.8948 2.6449 2.5878 1.3940 25.5834

0.1960 2.6449 1.2919 25.5834 0.0702
1.3740 2.1515 1.1537 0.0748

11.5280 1.3005 11.5280 28.3715 0.0486 28.3715
0.2941 2.8115 1.5131 2.7621 0.1526

1.3146 1.4675 1.1244 0.0504
12.3230 0.9984 12.3230 31.1885 0.0367 31.1885

0.3922 2.9414 1.5271 2.8979 0.1562
1.2729 1.1168 1.1047 0.0381

13.1327 0.8141 13.1327 34.0268 0.0296 34.0268
0.4902 3.0462 1.4584 3.0070 0.1532

1.2417 0.9026 1.0905 0.0306



Table 3. Optimum value of µ and percent relative efficiencies of T̂d at
optimum conditions with respect to M̂y(n) and T̂i for i = 1, 2 and 3 at
optimum conditions

Population-I Population-II

f 0.9800 0.9800

d0 2.4170 2.3553

µ0 0.6800 0.6271

P.R.E.(T̂d, M̂y(n)) 136.00 125.41

P.R.E.(T̂d, T̂1) 103.33 100.16

P.R.E.(T̂d, T̂2) 206.73 173.48

P.R.E.(T̂d, T̂3) 128.93 120.81

9. Interpretation of Results and Conclusion
(1) From Table 2, it can clearly be seen that the real optimum value of ‘d’ always

exists for both the considered populations. This justifies the feasibility of the
proposed class of estimators T̂d.

(2) From Table 3, it can be seen that the optimum value of µ also exist for both the
considered populations. Hence, it indicates that the proposed class of estimators
T̂d is quite feasible under optimal conditions.

(3) Table 3 indicates that the proposed class of estimators T̂d at optimum conditions
is highly preferable over sample median estimator M̂y(n). It also performs better
than the estimators T̂1 and T̂2 which are the estimators proposed by Singh et al.
(2007) for second quantile. It also proves to be highly efficient than the estimator
T̂3 which is a Dual to Ratio type estimator, a member of its own class.

Hence, it can be concluded that the estimation of median at current occasion is cer-
tainly feasible in two occasion successive sampling. The enchanting convergence property
of proposed class of estimators T̂d justifies the incorporation of unknown parameter in
the structure of proposed class of estimators, since the optimum value of the parameter
always exists. Hence the proposed class of estimators T̂d can be recommended for its
further use by survey practitioners.
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