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Abstract

A generalization of the exponentiated Weibull geometric model called
the transmuted exponentiated Weibull geometric distribution is pro-
posed and studied. It includes as special cases at least ten models.
Some of its structural properties including order statistics, explicit
expressions for the ordinary and incomplete moments and generating
function are derived. The estimation of the model parameters is per-
formed by the maximum likelihood method. The use of the new lifetime
distribution is illustrated with an example. We hope that the proposed
distribution will serve as a good alternative to other models available
in the literature for modeling positive real data in several areas.
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1. Introduction

Several compounding distributions have been proposed in the literature to model life-
time data. Adamidis and Loukas [2] pioneered the two-parameter exponential-geometric
(EG) distribution with decreasing failure rate. Kus [16] de�ned the exponential-Poisson
distribution (following the same idea of the EG distribution) with decreasing failure
rate and discussed various of its properties. Adamidis et al. [1] proposed the extended
exponential-geometric (EEG) distribution which generalizes the EG distribution and dis-
cussed various of its structural properties along with its reliability features. The hazard
rate function (hrf) of the EEG distribution can be monotone decreasing, increasing or
constant. Lai et al. [17] introduced a modi�ed Weibull distribution capable of modeling
a bathtub-shaped hazard rate function (hrf). Mahmoudi and Shiran [19] proposed an
exponentiated Weibull-geometric (EWG) distribution by compounding the EW and geo-
metric distributions more �exible than the EW distribution and studied some of its prop-
erties. Wang and Elbatal [35] discussed a modi�ed Weibull geometric distribution having
monotonically increasing, decreasing, bathtub-shaped, and upside-down bathtub-shaped
hazard rate functions. Finally, Saboor et al. [31] introduced a transmuted exponen-
tial Weibull distribution which have a bathtub-shaped and upside-down bathtub-shaped
hazard rate functions.

The modeling of lifetime data by compounding a life model and a discrete distribution
has been used to construct new lifetime models in the last few years. For some references,
see Silva et al. [27]. In practice, the exponential and Weibull are the most used baseline
models. Suppose that a company has N systems functioning independently and producing
a certain product at a given time, where N is a random variable, which is often determined
by economy, customers demand, etc. The reason for considering N as a random variable
comes from a practical viewpoint in which failure (of a device for example) often occurs
due to the present of an unknown number of initial defects in the system. In this paper,
we focus on the case in which N is a geometric random variable with probability mass
function (pmf) P (N = n) = (1 − p) pn−1, for 0 < p < 1 and n = 1, 2, · · · . We can also
consider that N follows other discrete distributions, such as the binomial, Poisson, etc,
whereas they require to be truncated at zero since N ≥ 1. Another reason by taking N
to be a geometric random variable is that the �optimum� number can be interpreted as
the �number to event�, matching up with the de�nition of a geometric random variable as
suggested by Nadarajah et al. [22]. Other motivations can also be found in Nadarajah et
al. [22]. Readers are referred to [34].

Suppose that {Zi}Ni=1 are independent and identically distributed (iid) random vari-
ables having the EW(α, β, θ) distribution with cumulative distribution function (cdf)
given by

F (x;α, β, θ) = (1− e−(αx)β )θ, x > 0,

and N a discrete random variable having a geometric distribution de�ned before. Let
Z(n) = max {Zi}Ni=1. The cdf and probability density function (pdf) of Z(n) are given by

(1.1) G(x;α, β, θ, p) =
(1− p) (1− e−(αx)β )θ

1− p(1− e−(αx)β )θ

and

(1.2) g(x;α, β, θ, p) = (1− p)θβαβxβ−1e−(αx)β (1− e−(αx)β )θ−1 [1−p(1− e−(αx)β )θ]−2,

respectively, where α, β, θ > 0 and p ∈ [0, 1). The lifetime model de�ned by (1.1) and
(1.2) is called the exponentiated Weibull geometric (EWG) distribution [19]. Hereafter,
let Y be a random variable having the density (1.2) and write Y vEWG(α, β, θ, p).
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In this paper, we de�ne and study a new lifetime model called the transmuted expo-
nentiated Weibull-geometric (�TEWG� for short) distribution. The main feature of this
model is that a transmuted parameter is inserted in (1.2) to give greater �exibility in the
form of the generated distribution. Using the quadratic rank transmutation map stud-
ied by [32], we construct the �ve-parameter TEWG model. We give a comprehensive
description of some mathematical properties of the new distribution with the hope that
it will attract wider applications in reliability, engineering and other areas of research.
The concept of transmuted generator is explained below.

A Quadratic Rank Transmutation Map (QRTM) is de�ned by GR12(u) = u+ λu (1−
u), |λ| ≤ 1, from which the cdf's satisfy F2(x) = (1+λ)F1(x)−λF1(x)2. By di�erentiating
F2(x), we have

(1.3) f2(x) = f1(x) [(1 + λ)− 2λF1(x)] ,

where f1(x) and f2(x) are the pdf's corresponding to the cdf's F1(x) and F2(x), respec-
tively. For λ = 0, we have f2(x) = f1(x).

1.1. Lemma. The function f2(x) given by (1.3) is a well-de�ned density function.

Proof. Rewriting f2(x) as f2(x) = f1(x)[1 − λ{2F1(x) − 1}], we note that f2(x) is
nonnegative. We prove that the integration over its support is equal to one. Considering
that the support of f1(x) is (−∞,∞), we have

∫ ∞
−∞

f2(x)dx = (1 + λ)

∫ ∞
−∞

f1(x)dx− 2λ

∫ ∞
−∞

f1(x)F1(x)dx = 1.

Similarly, for other cases, where the support of f1(x) is a part of the real line, the previous
lemma holds. Hence, f2(x) is a well-de�ned pdf. We call f2(x) the transmuted pdf of a
random variable with baseline density f1(x). This proves the current result.

Many authors constructed generalizations of some well-known distributions by using
the transmuted construction. Aryal and Tsokos [4, 3] de�ned the transmuted generalized
extreme value and transmuted Weibull distributions. Aryal [5] proposed and studied vari-
ous structural properties of the transmuted log-logistic distribution, Shuaib and King [28]
introduced the transmuted modi�ed Weibull distribution, which extends the transmuted
Weibull distribution by [3], and studied some of its mathematical properties and maxi-
mum likelihood estimation of the unknown parameters. Elbatal and Aryal [11] discussed
the transmuted additive Weibull distribution. Elbatal [12, 13] presented the transmuted
generalized inverted exponential and transmuted modi�ed inverse Weibull distributions.
Further, Merovci and Elbatal [20] proposed the transmuted Lindley-geometric distribu-
tion, Merovci et al. [20] de�ned the transmuted generalized inverse Weibull distribution
and Elbatal et al. [10] studied the transmuted exponentiated Fréchet distribution.

The rest of the paper is organized as follows. In Section 2, we provide the pdf, cdf and
survival function (sf) of the new distribution. Some special cases are given in Section 3.
The density of the order statistics is given in Section 4. A mixture representation for
the new pdf is derived in Section 5, where some of its structural properties can be easily
obtained. Section 7 is related to the maximum likelihood estimates (MLEs) and the
asymptotic con�dence intervals for the unknown parameters. Finally, in Section 8, we
present a real data analysis to illustrate the �exibility of the new lifetime model. Some
conclusions are given in Section 9.
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2. The TEWG Distribution

Let φ = (α, β, θ, p, λ)T . By inserting (1.1) and (1.2) in equation (1.3), the cdf and pdf
of the TEWG distribution are given by

FTEWG(x;φ) =
(1− p)

(
1− e−(αx)β

)θ
1− p

(
1− e−(αx)β

)θ
×

1 + λ− λ

 (1− p)
(

1− e−(αx)β
)θ

1− p
(
1− e−(αx)β

)θ

(2.1)

and

fTEWG(x;φ) = θβαβ(1− p)xβ−1e−(αx)β

×
(

1− e−(αx)β
)θ−1

[
1− p

(
1− e−(αx)β

)θ]−2

×

(1 + λ)− 2λ

 (1− p)
(

1− e−(αx)β
)θ

1− p
(
1− e−(αx)β

)θ

 ,(2.2)

respectively, where p ∈ [0, 1), α, β, θ > 0 and |λ| ≤ 1. If X is a random variable with pdf
(2.2), we use the notation X vTEWG(φ).

We emphasize that the new model (2.2) is obtained by using the transmuted con-
struction applied to a compounding life distribution from the exponentiated Weibull and
geometric distributions.

The sf of X is given by STEWG(x;φ) = 1 − FTEWG(x;φ), whereas its hazard rate
function (hrf) becomes hTEWG(x;φ) = fTEWG(x;φ)/STEWG(x;φ), which is an impor-
tant quantity to characterize life phenomenon. The reversed hazard rate function (rhrf)
of X is given by τTEWG(x;φ) = fTEWG(x;φ)/FTEWG(x;φ).

2.1. Shapes of density and hazard function. The TEWG density (2.2) allows for
greater �exibility of the tails. This function can exhibit di�erent behavior depending on
the parameter values as shown in Figures 1, 2 and 3. They display plots of the pdf of X
for selected parameter values. Figure 1(a,b) and Figure 2(d) reveal that the mode of the
pdf increases as λ, α and θ increases, respectively. Figure 2(c) and 3(e) indicate that the
parameters β and p behave somewhat as scale parameters. Figure 3(f) and 4(g) display
the increasing and bathtub-shaped of the hrf's, respectively.

3. Special Models

The TEWG distribution is a very �exible model that provides di�erent distributions
when its parameters are changed. It contains the following ten special models:

• For λ = 0, then (2.2) reduces to the EWG distribution pioneered by [19].
• The case θ = 1 refers to the transmuted Weibull-geometric distribution.
• For λ = 0 and θ = 1, we have the Weibull-geometric distribution given by [6].
• The transmuted generalized exponential geometric distribution arises as a special
case of the TEWG distribution by taking θ = β = 1.

• The case β = 1 refers to the transmuted exponentiated exponential geometric
distribution.

• Setting λ = 0 and β = 1, we have the exponentiated exponential geometric
distribution given by [18].
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(a) (b)

Figure 1. The TEWG density function: (a) α = 0.5, θ = 1, β =
1.1, p = 0.5 and λ = −1 (dotted line), λ = −0.5 (small dashed line),
λ = 0 (long dashed line), λ = 0.5 (thick line). (b) λ = −0.5, θ = 2, β =
1.1, p = 0.5 and α = 0.1 (dotted line), α = 0.2 (small dashed line),
α = 0.3 (long dashed line), α = 0.4 (thick line).

(c) (d)

Figure 2. The TEWG density function: (c) α = 0.5, θ = 1, p =
0.5, λ = −0.5 and β = 1 (dotted line), β = 2 (small dashed line),
β = 10 (long dashed line), β = 30 (thick line). (d) λ = −0.5, α =
0.5, β = 1, p = 0.5 and θ = 1 (dotted line), θ = 1.5 (small dashed
line), θ = 2 (long dashed line), θ = 4 (thick line).

• For θ = β = 1, it follows the transmuted exponential geometric distribution.
• For λ = 0 and θ = β = 1, we obtain the exponential geometric distribution given
by [2].

• For β = 2, we have the transmuted generalized Rayleigh geometric distribution.
• The case β = 2 and θ = 1 refers to the transmuted Rayleigh geometric distribu-
tion.
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(e) (f)

Figure 3. The TEWG density function: (e) α = 0.5, θ = 2, λ =
−0.5, β = 1.1 and p = 0 (dotted line), p = 0.3 (small dashed line),
p = 0.6 (long dashed line), p = 0.9 (thick line). The TEWG hazard
rate function: (f) Increasing (α = 2.45, β = 1.2, θ = 2.9, p = 0.9, λ =
0.15), decreasing (α = 0.5, β = 0.4, θ = 0.1, p = 0.2, λ = 0.1), bathtub
(α = 0.3, β = 3.3, θ = 0.1, p = 0.8, λ = 1.2) and upside-down bathtub
(α = 2.4, β = 1, θ = 1.3, p = 0.01, λ = 0.5).

4. Order statistics

In this section, we derive closed-form expressions for the pdf of the rth order statistic
of X. Let X1, . . . , Xn be a simple random sample from the TEWG distribution with pdf
and cdf given by (2.1) and (2.2), respectively. Let X(1) ≤ X(2) ≤, . . . ,≤ X(n) denote the
order statistics obtained from this sample. The pdf of Xi:n, say fi:n(x;φ), is given by

(4.1) fi:n(x, φ) =
1

B(i, n− i+ 1)
F (x;φ)i−1 [1− F (x;φ)]n−i f(x;φ),

where F (x;φ) and f(x;φ) are the cdf and pdf of X given by (2.1) and (2.2), respectively,
and B(·, ·) is the beta function. We have

fi:n(x;φ) =
θβαβ(1− p)
B(i, n− i+ 1)

xβ−1e−(αx)βhθ−1

×
[
1− phθ

]−2
{

(1 + λ)− 2λ

[
(1− p)hθ

1− phθ

]}
×
[

(1− p)hθ

1− phθ

{
1 + λ− λ

[
(1− p)hθ

1− phθ

]}]i−1

×
[
1− (1− p)hθ

1− phθ

{
1 + λ− λ

[
(1− p)hθ

1− phθ

]}]n−i
,

where h = 1− e−(αx)β .
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5. Mixture Representation

Based on equation (1.3), we can write

(5.1) f(x) =

∞∑
k=0

[w1k hk+1(x) + w2k hk+2(x)] ,

where w1k = (1 + λ)(1 − p)pk and w2k = −(k + 1)λ(1 − p)2pk. Equation (5.1) reveals
that the density function of X is a mixture of EW densities.

5.1. Moments. Using the mixture representation, we obtain

(5.2) µ′r = E(Xr) =

∞∑
k=0

[w1k E(Y rk+1) + w2k E(Y rk+2)] .

We now provide two explicit expressions for E(Y rk+1). First, Choudhury [7] derived
the closed-form expression

E(Y rk+1) =
(k + 1)θ

αr
Γ

(
r

β
+ 1

)[
1 +

∞∑
i=1

(−1)i ai((k + 1)θ)

(i+ 1)r/β+1

]
,

where ai = ai(γ) = (−1)i (γ − 1) · · · (γ − i)/i! for i = 1, 2, . . .. The in�nite series on the
right hand side converges for all θ > 0.

Second, Nadarajah and Gubta [24] derived an in�nite series representation applicable
for any r > −β real or integer given by

E(Y rk ) =
(k + 1)θ

αr
Γ

(
r

β
+ 1

) ∞∑
i=0

(1− (k + 1)θ)i
i! (i+ 1)(r+β)/β

.

Inserting the last two expressions in (5.2) gives E(Xr)

5.2. Incomplete moments. The answers to many important questions in economics
require more than just knowing the mean of the distribution, but its shape as well. This
is obvious not only in the study of econometrics but in other areas as well.

For lifetime models, it is of interest to known the rth lower and upper incomplete
moments of X de�ned by mr(x) =

∫ x
0
xr f(x)dx and vr(x) =

∫∞
x
xrf(x)dx, respectively,

for any real r > 0. Clearly, these rth incomplete moments are related by vr(x) =
µ′r −mr(x).

Based on equation (5.1), we have

(5.3) mr(x) =

∞∑
k=0

[
w1km

(k+1)
r (x) + w2km

(k+2)
r (x)

]
,

where m
(k+1)
r (x) =

∫∞
x
xr hk+1(x)dx is the rth lower incomplete moment of Yk+1.

Following a result of [23], we obtain

m(k+1)
r (x) = (k + 1) θ α−r β

∞∑
j=0

(−1)j

(j + 1)(r+1)β

(
(k + 1)θ − 1

j

)

× γ
(
r

β
+ 1; (j + 1)(αx)β

)
,(5.4)

where γ(s; t) =
∫ t
0
xs−1 e−xdx is the lower incomplete gamma function. Equation (5.4)

givesmr(x) as a linear combination of incomplete gamma functions evaluated at di�erent
points.
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The main application of the �rst incomplete moment refers to the Bonferroni and
Lorenz curves. These curves are very useful in economics, reliability, demography, insu-
rance and medicine. For a given probability π, they are de�ned by B(π) = m1(q)/(π µ′1)
and L(π) = m1(q)/µ′1, respectively, wherem1(q) can be determined from (5.3) with r = 1
and q = Q(π) is calculated by inverting numerically (2.1).

The amount of scatter in a population is measured to some extent by the totality of
deviations from the mean and median de�ned by δ1 =

∫∞
0
|x − µ′1|f(x)dx and δ2(x) =∫∞

0
|x −M |f(x)dx, respectively, where µ′1 = E(X) is the mean and M = Q(0.5) is the

median. These measures can be determined using the relationships δ1 = 2µ′1F (µ′1;φ))−
2m1(µ′1) and δ2 = µ′1 − 2m1(M), where m1(µ′1) comes from (5.3) with r = 1.

5.3. Generating function. Let Mk+1(t) be the moment generating function (mgf) of
Yk+1. We obtain the mgf of X, say M(t), from equation (5.1) as

M(t) =

∞∑
k=0

[w1kMk+1(t) + w2kMk+2(t)] .

We provide an explicit expression forMk+1(t) when β > 1, which requires the complex
parameter Wright generalized hypergeometric function with p numerator and q denomi-
nator parameters (Kilbas et al., 2006, Equation (1.9)) de�ned by

pΨq

[
(α1, A1) , . . . , (αp, Ap)
(β1, B1) , . . . , (βq, Bq)

; z

]
=

∞∑
n=0

p∏
j=1

Γ (αj +Ajn)

q∏
j=1

Γ (βj +Bjn)

zn

n!
(5.5)

for z ∈ C, where αj , βk ∈ C, Aj , Bk 6= 0, j = 1, p, k = 1, q and the series converges for
1 +

∑q
j=1Bj −

∑p
j=1Aj > 0.

The mgf of Yk+1 (when β > 1) is given by

Mk+1(t) = (k + 1)θ

∞∑
j=0

(−1)j

j + 1

(
(k + 1)θ − 1

j

)
1Ψ0

[ (
1, β−1

)
− ;α t (j + 1)−1/β

]
.(5.6)

Generalized hypergeometric functions are included as in-built functions in most ana-
lytical softwares, so the special function in (5.5) and hence (5.6) can be evaluated by the
softwares Maple, Matlab and Mathematica using known procedures.

6. Residual life and reversed failure rate functions

Given that a component survives up to time t ≥ 0, the residual life is the period beyond
t until the time of failure and de�ned by the conditional random variable X − t|X >
t. In reliability, it is well-known that the mean residual life function and ratio of two
consecutive moments of residual life determine the distribution uniquely [15]. Therefore,
we obtain the rth order moment of the residual life using the general formula

µr(t) =
1

F (t)

∫ ∞
t

(x− t)rf(x;ϕ) dx, r ≥ 1.
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Applying the binomial expansion of (x− t)r and substituting f(x;ϕ) given by (2.2) into
the above formula and using the generalized binomial power series gives

µr(t) =
θβαβ(1− p)

F (t)

r∑
m=0

∞∑
k,j=0

(−1)m+k

(
r

m

)
(j + 1)pj

{
(1 + λ)

((j+1)θ−1

k

)
tm

− λ(1− p)(j + 2)

(
(j+2)θ−1

k

)}∫ ∞
t

xr+β−m−1 e−(k+1)(αx)βdx

=
θ(1− p)
F (t)

r∑
m=0

∞∑
k,j=0

(−1)m+k

(
r

m

)
(j + 1) pj tm

{
(1 + λ)

(
(j+1)θ−1

k

)

− λ(1− p)(j + 2)

(
(j+2)θ−1

k

)}[
Γ( r−m

β
+ 1; (k + 1)(αt)β)

αr−m(k + 1)
r−m
β

+1

]
,(6.1)

where Γ(s; t) =
∫∞
t
xs−1 e−xdx is the upper incomplete gamma function.

Another important characteristic of the TEWG model is the mean residual life (MRL)
function obtained by setting r = 1 in equation (6.1). The importance of the MRL function
is due to its uniquely determination of the lifetime distribution as well as the failure rate
(FR) function. Lifetimes can exhibit IMRL (increasing MRL) or DMRL (decreasing
MRL). The MRL function that �rst decreases (increases) and then increases (decreases)
is usually called bathtub (upside-down bathtub) shaped, BMRL (UMRL). Ghitany [14],
Mi [21], Park [30] and Tang et al. [33], among others, studied the relationship between
the behaviors of the MLR and FR functions of a distribution.

7. Estimation and Inference

Here, we determine the maximum likelihood estimates (MLEs) of the parameters of
the new distribution from complete samples only. Let x1, . . . , xn be a random sample
of size n from the TEWG(x;φ) model, where φ = (α, β, θ, p, λ)T . The log likelihood
function for the vector of parameters φ can be expressed as

`(φ) = n log θ + n log β + nβ logα+ n log(1− p) + (β − 1)

n∑
i=1

log(xi)−
n∑
i=1

(αxi)
β

− 2
n∑
i=1

log

[
1− p

(
1− e−(αx(i))

β
)θ]

+ (θ − 1)

n∑
i=1

log
(

1− e−(αx(i))
β
)

+

n∑
i=1

log

(1 + λ)− 2λ

 (1− p)
(

1− e−(αx(i))
β
)θ

1− p
(

1− e−(αx(i))
β
)θ

 .

The corresponding score function is given by

(7.1) Un(ϕ) =

(
∂`(φ)

∂α
,
∂`(φ)

∂β
,
∂`(φ)

∂θ
,
∂`(φ)

∂p
,
∂`(φ)

∂λ

)T
.
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The log-likelihood can be maximized either directly or by solving the nonlinear likelihood
equations obtained from (7.1), namely:

∂`(φ)

∂α
= nβ

α
− βαβ−1

n∑
i=1

(xi)
β + (θ − 1)

n∑
i=1

e
−(αx(i))

β
βαβ−1(xi)

β(
1−e

−(αx(i))
β
)

+2θp
n∑
i=1

e
−(αx(i))

β
βαβ−1(xi)

β
(
1−e

−(αx(i))
β)θ−1

[
1−p

(
1−e

−(αx(i))
β
)θ]

−2λ
n∑
i=1

1(1+λ)−2λ


(1−p)

(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ




×

 (1−p)θβαβ−1e
−(αx(i))

β
(xi)

β
(
1−e

−(αx(i))
β)θ−1

[
1−p

(
1−e

−(αx(i))
β
)θ]2

 = 0,

∂`(φ)

∂β
= n

β
+ n logα+

n∑
i=1

log(xi)−
n∑
i=1

(αxi)
β log(αxi)

+2pθ
n∑
i=1

(
1−e

−(αx(i))
β)θ−1

e
−(αx(i))

β
(αxi)

β log(αxi)[
1−p

(
1−e

−(αx(i))
β
)θ]

+(θ − 1)
n∑
i=1

e
−(αx(i))

β
(αxi)

β log(αxi)(
1−e

−(αx(i))
β
)

−2λ
n∑
i=1

1(1+λ)−2λ


(1−p)

(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ




×

 θ(1−p)
(
1−e

−(αx(i))
β)θ−1

e
−(αx(i))

β
(αxi)

β log(αxi)[
1−p

(
1−e

−(αx(i))
β
)θ]2

 = 0,

∂`(φ)

∂θ
= n

θ
+

n∑
i=1

log
(

1− e−(αx(i))
β
)

+ 2p
n∑
i=1

(
1−e

−(αx(i))
β)θ

log

(
1−e

−(αx(i))
β)

1−p
(
1−e

−(αx(i))
β
)θ

+
n∑
i=1

1(1+λ)−2λ


(1−p)

(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ




×

 (1−p)
(
1−e−(αx(i))

β)θ
log

(
1−e

−(αx(i))
β)

[
1−p

(
1−e

−(αx(i))
β
)θ]2

 = 0,
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∂`(φ)

∂p
= −n

1−p + 2
n∑
i=1

(
1−e

−(αx(i))
β)θ

[
1−p

(
1−e

−(αx(i))
β
)θ]

−2λ
n∑
i=1

1(1+λ)−2λ


(1−p)

(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ




×


(
1−e−(αx(i))

β)θ(
1−
(
1−e

−(αx(i))
β)θ)

[
1−p

(
1−e

−(αx(i))
β
)θ]2

 = 0,

and

∂`(φ)

∂λ
=

n∑
i=1

1− 2

 (1−p)
(
1−e

−(αx(i))
β)θ

1−p
(
1−e

−(αx(i))
β
)θ


(1 + λ)− 2λ

 (1−p)
(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ


= 0.

The above equations cannot be solved analytically but statistical software can be used
to solve them numerically, for example, through the R-language or any iterative methods
such as the NR (Newton-Raphson), BFGS (Broyden-Fletcher-Goldfarb-Shanno), BHHH
(Berndt-Hall-Hall-Hausman), NM (Nelder-Mead), SANN (Simulated-Annealing) and L-
BFGS-B (Limited-Memory Quasi-Newton code for Bound-Constrained Optimization).

The modi�ed Anderson-Darling (A∗) and the modi�ed Cramér-von Mises (W ∗) sta-
tistics are widely used to determine how closely a speci�c cdf F (·) �ts the empirical
distribution for a given data set. The statistics A∗ and W ∗ are given by

A∗ =

(
2.25

n2
+

0.75

n
+ 1

)[
−n− 1

n

n∑
i=1

(2i− 1) log (zi (1− zn−i+1))

]
,

and

W ∗ =

(
0.5

n
+ 1

)[ n∑
i=1

(
zi −

2i− 1

2n

)2

+
1

12n

]
,

respectively, where zi = F (y(i)), and the y(i)'s are the ordered observations.
The smaller these statistics are, the better the �t. Upper tail percentiles of the as-

ymptotic distributions of them were tabulated by [25].

8. Application to the carbon �bres

We provide an application to a real data set to prove the �exibility of the TEWG
distribution. We �t the gamma exponentiated exponential (GEE) [29], exponentiated
Weibull�geometric (EWG) [19], extended Weibull (ExtW) [26], Kumaraswamy modi�ed
Weibull (KwMW) [9] and TEWG distributions to a real data on �carbon �bres� [25]. The
parameters of the following distributions are estimated by maximizing the log-likelihood
using the NMaximize procedure in the symbolic computational package Mathematica.
The density functions (for x > 0) associated to these models are given by:

• The GEE density function,

f(x) =
λαδ e−λ x

(
1− e−λ x

)α−1 (− log
(
1− e−λx

))δ−1

Γ(δ)
, λ , α , δ , x > 0.
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(h) (i)

Figure 4. (a) The estimated TEWG density superimposed on the his-
togram for the carbon �bres. (b) The empirical cdf and the estimated
TEWG cdf.

Table 1. MLEs of the parameters (standard errors in parentheses) for
the carbon �bres

Distributions Estimates

GEE (λ , α , δ) 0.26555 10.0365 7.23658
(0.21621) (2.59504) (7.05288)

EWG (α, θ, β, p) 520.24 0.35943 177.132 0.999778
(332.051) (0.02509) (207.54) (0.00262)

ExtW ( a , b , c) 16.1979 0.001 8.05671
(25.7118) (0.938764) (1.65309)

KwMW(α , γ , λ , a , b) 0.14981 1.7994 0.49987 0.64975 0.171114
(0.326517) (2.40813) (0.616749) (1.13328) (0.529126)

TEWG (α, θ, β, p, λ) 59.2556 0.455874 1.42577 0.999917 -0.447535
(27.5648) (0.03366) (1.60102) (0.00937) (0.49717)

• The ExtW density function,

f(x) = a (c+ b x)x−2+b e−c/x−axbe−c/x

, a > 0 , b > 0 , c ≥ 0 , x > 0.

• The KwMW density function,

f(x) = a bαxγ−1(γ + λx) exp
(
λx− αxγ eλ x

) [
1− exp (−αxγ eλ x)

]a−1

×
{

1−
[
1− exp (−αxγ eλ x)

]a}b−1

,

where a > 0 , b > 0, α > 0 , γ > 0 , λ ≥ 0.

The estimated pdf and cdf of the TEWG distribution �tted to the uncensored breaking
stress of carbon �bres (in Gba) reported by [8] are displayed in Figure 4. The estimates
of the parameters and their standard errors (SEs) are listed in Table 1. The values of
the statistics A∗ and W ∗, Akaike Information Criterion (AIC), Bayesian Information
Criterioon (BIC), Hannan�Quinn Information Criterion (HQIC) and Consistent Akaike
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Table 2. Goodness-of-�t statistics for the carbon �bres

Distributions A∗ W ∗ AIC BIC HQIC CAIC
GEE (λ , α , δ) 1.43415 0.266823 189.787 196.356 192.383 190.175
EWG (α, β, θ, p) 0.789187 0.121661 118.164 127.922 122.625 119.82
ExtW ( a , b , c) 2.26745 0.416152 207.471 214.04 210.067 207.858
KwMW(αγ , λ , a , b) 1.28891 0.212227 180.676 191.624 185.002 181.676
TEWG (α, β, θ, p, λ) 0.77199 0.12016 117.586 128.534 121.912 118.586

Information Criterion (CAIC) are also given in Table 2. We note that the TEWG model
provides the best �t among these models.

To compare the TEWG model with its EWG sub-model, the likelihood-ratio (LR)
statistic is given by w = 4.54198 with p-value 0.033. The value if the LR statistic
suggests that the TEWG model performs signi�cantly better than its sub-model EWG.

9. Conclusions

We propose a new compounding lifetime model named the transmuted exponentia-
ted Weibull geometric distribution, and study some of its general structural properties.
The proposed model includes at least ten special lifetime models. A very useful mixture
representation for its density function is derived. We provide explicit expressions for the
moments and incomplete moments, generating and quantile functions, mean deviations
and order statistics. These expressions are manageable using analytic and numerical
computer resources, which may turn into adequate tools comprising the arsenal of applied
statisticians. The model parameters are estimated by maximum likelihood. We prove
that the proposed model can be superior to some models generated from other know
families in terms of model �tting by means of an application to a real data set.
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