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A two-step approach to ratio and regression
estimation of �nite population mean using optional

randomized response models

Geeta Kalucha∗, Sat Gupta† and Javid Shabbir‡

Abstract

We propose a modi�ed two-step approach for estimating the mean of a
sensitive variable using an additive optional RRT model which allows
respondents the option of answering a quantitative sensitive question
directly without using the additive scrambling if they �nd the ques-
tion non-sensitive. This situation has been handled before in Gupta et
al. (2010) using the split sample approach. In this work we avoid the
split sample approach which requires larger total sample size. Instead,
we estimate the �nite population mean by using an Optional Addi-
tive Scrambling RRT Model but the corresponding sensitivity level is
estimated from the same sample by using the traditional Binary Un-
related Question RRT Model of Greenberg et al. (1969). The initial
mean estimation is further improved by utilizing information from a
non-sensitive auxiliary variable by way of ratio and regression estima-
tors. Expressions for the Bias and MSE of the proposed estimators
(correct up to �rst order approximation) are derived. We compare the
results of this new model with those of the split-sample based Optional
Additive RRT Model of Kalucha et al. (2015), Gupta et al. (2015) and
the simple optional additive RRT Model of Gupta et al. (2010). We see
that the regression estimator for the new model has the smallest MSE

among all of the estimators considered here when they have the same
sample size.
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1. Introduction

The randomized response technique of reducing respondent bias in obtaining answers
to sensitive questions developed by Warner (1965) has been extended from the situation
where response is categorical to that in which the response is quantitative. Choice of
scrambling mechanism plays an important role in quantitative response models. Eichhron
and Hayre (1983), Gupta and Shabbir (2004), Gupta et al. (2002, 2010), Wu et al. (2008)
and many others have estimated the mean of a sensitive variable when the study variable
is sensitive and no auxiliary information is available. While Eichhron and Hayre (1983)
have used multiplicative scrambling, Gupta et al. (2010) have used additive scrambling
in the context of optional randomized response models where a respondent provides a
true response if he/she considers the question non-sensitive, and provides a scrambled
response if the question is deemed sensitive. The researcher will not know which type of
response has been provided. Sousa et al. (2010) and Gupta et al. (2012) suggested mean
estimators based on full additive RRT models using an auxiliary variable. Kalucha et al.
(2015) and Gupta et al. (2015) improved the mean estimators further by using optional
additive RRT models which apart from estimating µY (the mean of sensitive variable
Y ) also estimated W (the sensitivity level of the research question) using a split-sample
approach. Recently Singh and Tarray (2014) have studied optional randomized response
model in the strati�ed sampling setting.

The main motivation for the proposed model is to avoid the split sample approach
which requires unnecessarily larger total sample sizes. We estimate the mean of the
sensitive characteristic by using an Additive Optional RRT model but the corresponding
sensitivity level is estimated from the same sample by using the Greenberg et al. (1969)
model. This eliminates the need for split-sample approach that requires a larger total
sample size.

Let µY and σ2
Y be the unknown mean and variance of the sensitive variable Y , µX

and σ2
X be the known mean and variance of the auxiliary variable X. Let W be the

unknown sensitivity level of the survey question in the population.

2. The Split-Sample Model � Gupta et al. (2010)

Here the sample of size n is split into two sub-samples of sizes n1 and n2 (n1 +n2 = n).
Let S1, S2 be scrambling variables used in the two sub-samples. Let the mean and
variance respectively of Si (i = 1, 2) be θi and σ2

Si
. We assume that Y , X and Si

(i = 1, 2) are mutually independent. For the ith population unit (i = 1, 2, . . . , N), let yi
and xi respectively be the values of the study variable Y and the auxiliary variable X.

Moreover let ȳ =
∑n

1 yi
n

, x̄ =
∑n

1 xi
n

, z̄ =
∑n

1 zi
n

be the sample means, and µY = E(Y ),
µX = E(X) and µZ = E(Z) be the corresponding population means for Y , X and the
scrambled response Z respectively. We assume that µX is known. In each sub sample, we
will observeX directly but will only have an additively scrambled version of Y . According
to this model, the reported response Zi in the ith sub-sample is given by

Zi =

{
Y with probability (1−W )

(Y + Si) with probability W

}
i = 1, 2

The mean and variance respectively for Zi (i = 1, 2) are given by

E(Zi) = µY + θiW where E(Si) = θi (i = 1, 2),(2.1)
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and

σ2
Zi = σ2

Y + σ2
SiW + θ2

iW (1−W )(2.2)

It follows easily from (2.1) that for θ1 6= θ2,

µY =
θ2E(Z1)− θ1E(Z2)

θ2 − θ1
and W =

E(Z2)− E(Z1)

(θ2 − θ1)
.(2.3)

Hence if information on X is ignored, expressions in (2.3) lead to the following unbiased
estimators of µY and W :

µ̂Y =
θ2z̄1 − θ1z̄2

θ2 − θ1
, θ1 6= θ2 and Ŵ =

z̄2 − z̄1

(θ2 − θ1)
, θ1 6= θ2,(2.4)

where z̄1, z̄2 respectively are the sample mean of reported responses in the two sub-
samples.

It can be veri�ed that µ̂Y and Ŵ are unbiased estimators of the population mean µY
and the sensitivity level W . Variances of these estimators are given by

Var(µ̂Y ) =
1

(θ2 − θ1)2

[
θ2

2

(
1− f1

n1

)
σ2
Z1

+ θ2
1

(
1− f2

n2

)
σ2
Z2

]
(2.5)

and

Var(Ŵ ) =
1

(θ2 − θ1)2

[(
1− f1

n1

)
σ2
Z1

+

(
1− f2

n2

)
σ2
Z2

]
,

where θ1 6= θ2, f1 = n1
N
, f2 = n2

N
, f = n

N
= f1 + f2,

σ2
Z1

=
1

N − 1

N∑
i=1

(Z1i − µZ)2 and σ2
Z2

=
1

N − 1

N∑
i=1

(Z2i − µZ)2 .

3. The Proposed Model

In the proposed model, the underlying sensitivity level W and its variance are esti-
mated by using the Greenberg et al. (1969) model. Here the sensitive question is �Whether
or not you consider the underlying main research question sensitive for a face-to-face sur-
vey�. Let πb be the known probability of the binary innocuous unrelated question and
pb be the known probability of the respondent selecting the sensitivity question. We
consider a �nite population U = {1, 2, . . . , N} of size N and a random sample of size
n be drawn without replacement. When estimating the mean, let S be the scrambling
variable used to additively scramble the responses in the sample with mean E(S) = θ.
We assume that Y , X and S are mutually independent.

3.1. Estimation of Sensitivity Level (W ). The probability of �yes response� to the
sensitivity question is given by

Py = pbW + (1− pb)πb(3.1)

Solving for W, we have

W =
Py − (1− pb)πb

pb
(3.2)

Thus the estimate of W, as per the Greenberg et al. (1969) model, is given by

Ŵ =
P̂y − (1− pb)πb

pb
,(3.3)

where P̂y is the proportion of yes response in the sample.
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We know that Ŵ is an unbiased estimator and its variance is given by

Var(Ŵ ) =

(
1− f
n

)
Py(1− Py)

p2
b

(3.4)

An unbiased estimator of this variance is given by

V̂ar(Ŵ ) =

(
1− f
n− 1

)
P̂y(1− P̂y)

p2
b

(3.5)

3.2. Estimation of Mean. The reported quantitative response Z to the main research
question according to optional additive RRT model can be expressed as

Z =

{
Y + S with probability W

Y with probability 1−W

}
The mean and variance respectively of Z are given by

E(Z) = WE(Y + S) + (1−W )E(Y )

= E(Y ) +WE(S)

= µY +Wθ,(3.6)

and

Var(Z) = WE(Y + S)2 + (1−W )E(Y 2)− µ2
Z

= σ2
Y +Wσ2

S + θ2W (1−W )(3.7)

From equation (3.6) we have

µY = µZ −Wθ

This leads to an estimator for µY given by

µ̂YW∗ = µ̂Z − Ŵθ,(3.8)

where µ̂Z = z̄ is the sample mean of reported responses and Ŵ is given by equation (3.3).
We note that µ̂YW∗ is an unbiased estimator of µY and its variance is given by

Var(µ̂YW∗) = Var(z̄ − Ŵθ)

= Var(z̄) + θ2 Var(Ŵ )

=

(
1− f
n

)
(σ2
Z) + θ2

(
1− f
n

)
Py(1− Py)

p2
b

(3.9)

The variance of the estimator in (3.9) can be conveniently estimated by

V̂ar(µ̂YW∗) =

(
1− f
n

)
(s2
z) + θ2V̂ar(Ŵ )(3.10)

where s2
z is the sample variance of reported responses given by

s2
z = (n− 1)−1∑n

i=1(zi − z̄)2 and V̂ar(Ŵ ) is as given in (3.5) above.
We further modify the proposed mean estimator µ̂YW∗ in the presence of an auxiliary

variable by proposing ratio (µ̂RW∗) and regression (µ̂RegW∗) estimators and compare it
with the estimators proposed in Kalucha et al. (2015) and Gupta et al. (2015), both
based on split-sample approach.
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4. Ratio Estimator

4.1. Kalucha et al. (2015) � Split-Sample Based Ratio Estimator. Kalucha et
al. (2015) proposed the following additive ratio estimator for the mean of Y :

µ̂AR =

(
θ2z̄1 − θ1z̄2

θ2 − θ1

)(
µX
x̄1

+
µX
x̄2

)(
1

2

)
, θ1 6= θ2.(4.1)

where
(
θ2z̄1−θ1z̄2
θ2−θ1

)
is the unbiased estimator of µY given by Gupta et al. (2010), and

x̄1 and x̄2 are the respective sub-sample means for X. It was shown that this estimator
performs better than the ratio estimator proposed by Sousa et al. (2010) utilizing a
non-optional additive RRT model.

Bias and MSE of µ̂AR, correct up to �rst order of approximation, are given by

Bias(µ̂AR) =

(
1− f1

n1

)[
µY
2
C2
x −

(
θ2

θ2 − θ1

)
ρyxσY Cx

2

]
+

(
1− f2

n2

)[
µY
2
C2
x + (

θ1

θ2 − θ1
)
ρyxσY Cx

2

]
= C2

xµY

[
α− ρyx

β

2

]
(4.2)

and

MSE(µ̂AR) =
1

(θ2 − θ1)2

[
θ2

2

(
1− f1

n1

)
σ2
Z1

+ θ2
1

(
1− f2

n2

)
σ2
Z2

]
+
µ2
Y C

2
x

4
α− µY ρyxσY Cxβ(4.3)

where α =
(

1−f1
n1

)
+
(

1−f2
n2

)
, β =

(
1−f1
n1

)(
θ2

θ2−θ1

)
−
(

1−f2
n2

)(
θ1

θ2−θ1

)
, and Cx is the

coe�cient of variation for X.

4.2. Proposed Ratio Estimator-New Approach. In this section we propose a ratio
estimator where the RRT estimator of the mean of Y given by (3.8) above is further
improved by using information on an auxiliary variable X. We de�ne δz = (z̄− µZ)/µZ ,
δx = (x̄− µX)/µX . Note that E(δi) = 0 for i = z, x.

The proposed estimator is given by

µ̂RW∗ = (z̄ − Ŵθ)
(µX
x̄

)
= (µZ(1 + δz)− Ŵθ)(1 + δx)−1(4.4)

Using Taylor's approximation and retaining terms of order up to 2, (4.4) can be rewritten
as

µ̂RW∗ − µZ ∼= µZ(δz − δx − δzδx + δ2
x)− Ŵθ(1− δx + δ2

x)(4.5)

Substituting the value of µZ from (3.6) in (4.5), we have

µ̂RW∗ − µY ∼= µY (δz − δx − δzδx + δ2
x) + (W − Ŵ )θ(1− δx + δ2

x) +Wθ(δz − δzδx)(4.6)

Under the assumption of bivariate normality (see Sukhatme and Sukhatme, 1970), we
have

E(δ2
z) =

1− f
n

C2
z , E(δ2

x) =
1− f
n

C2
x, E(δzδx) =

1− f
n

Czx

where Czx = ρzxCzCx, Cz and Cx are the coe�cients of variation of Z and X, respec-
tively.



1824

Also, we have:

C2
z =

σ2
y +Wσ2

S + θ2W (1−W )

(Z̄)2
and ρzx =

ρyx√
1 +W

σ2
S
σ2
y

+ θ2W (1−W )

σ2
y

(4.7)

From equation (4.6), we can get expression for the Bias of µ̂RW∗ , correct up to �rst order
of approximation, as given by

Bias(µ̂RW∗) ∼= µY

(
1− f
n

)
(C2

x − ρzxCzCx)−Wθ

(
1− f
n

)
ρzxCzCx(4.8)

Similarly from (4.6), MSE of µ̂RW∗ , correct to �rst order of approximation, is given by

MSE(µ̂RW∗) = E(µ̂RW∗ − µY )2

∼= µ2
Y E(δ2

z + δ2
x − 2δzδx) + θ2E(W − Ŵ )2E(1− 2δx + 3δ2

x)

+W 2θ2E(δ2
z) + 2µYWθE(δ2

z − δzδx)

or

MSE(µ̂RW∗) ∼=
(

1− f
n

)
µ2
Y (C2

z + C2
x − 2ρzxCzCx)

+ θ2 Var(Ŵ )

(
1 + 3

(
1− f
n

)
C2
x

)
+W 2θ2

(
1− f
n

)
C2
z

+ 2µYWθ

(
1− f
n

)
(C2

z − ρzxCzCx)(4.9)

where Var(Ŵ ) is given by (3.4) above.

4.3. Mean and Variance of the Proposed Ratio Estimator. The proposed ratio
estimator can be rewritten as

µ̂RW∗ =
( ȳ
x̄

)
µX , where ȳ = z̄ − Ŵθ(4.10)

Hence

E(µ̂RW∗) = µXE
{ ȳ
x̄

}
(4.11)

Using a Taylor series expansion of ȳ
x̄
around (µY,µX):

ȳ

x̄
∼=
~y

x̄

∣∣∣∣
(µY ,µX )

+ (ȳ − µY )
∂

∂ȳ

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+ (x̄− µX)
∂

∂x̄

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+
1

2
(ȳ − µY )2 ∂

2

∂ȳ2

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+
1

2
(x̄− µX)2 ∂

2

∂x̄2

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+ (ȳ − µY )(x̄− µX)
∂2

∂ȳ∂x̄

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+O

((
(ȳ − µY )

∂

∂ȳ
+ (x̄− µX)

∂

∂x̄

)3 ( ȳ
x̄

))
The mean of ȳ

x̄
can now be found by taking expected value, ignoring all terms higher

than 2.

E
{ ȳ
x̄

}
∼=
µY
µX

+ Var(x̄)
µY
µ3
X

− Cov(ȳ, x̄)

µ2
X

∼=
µY
µX

+
(1− f)

n

(
Var(x)

µY
µ3
X

− Cov(y, x)

µ2
X

)
(4.12)
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Substituting (4.12) in (4.11), we get

E(µ̂RW∗) ∼= µY +
(1− f)

n

(
Var(x)

µY
µ2
X

− Cov(y, x)

µX

)
(4.13)

It is clear from the above expression that µ̂RW∗ is asymptotically unbiased. Now

Var(µ̂RW∗) = µ2
X Var

( ȳ
x̄

)
(4.14)

An approximation of the variance of ȳ
x̄
is obtained by using the �rst order terms of Taylor

series expansion:

Var
( ȳ
x̄

)
= E

{( ȳ
x̄
− E

{ ȳ
x̄

})2
}

∼= E

{(
ȳ

x̄
− µY
µX

)2
}

∼=
Var(ȳ)

µ2
X

+
µ2
Y Var(x̄)

µ4
X

− 2µY Cov(ȳ, x̄)

µ3
X

∼=
(1− f)

n

(
Var(y)

µ2
X

+
µ2
Y Var(x)

µ4
X

− 2µY Cov(y, x)

µ3
X

)
(4.15)

Substituting (4.15) in (4.14), we have

Var(µ̂RW∗) ∼=
(1− f)

n

(
Var(y) +

µ2
Y Var(x)

µ2
X

− 2µY Cov(y, x)

µX

)
(4.16)

Substituting for Var(y) and using the fact that Cov(y, x) = Cov(z, x) in (4.16), we get

Var(µ̂RW∗) ∼=
(1− f)

n

(
Var(z)−W Var(S)− θ2W (1−W )(4.17)

+
µ2
Y Var(x)

µ2
X

− 2µY Cov(z, x)

µX

)
The above variance can be estimated by using:

V̂ar(z) = s2
z, Ŵ =

P̂y − (1− pb)πb
pb

, and ˆCov(z, x) = szx,

where sample covariance szx = (n− 1)−1∑n
i=1(zi − z̄)(xi − x̄).

5. Regression Estimator

5.1. Gupta et al. (2015) � Split-Sample Based Regression Estimator. Gupta
et al. (2015) suggested a regression estimator of the mean using split-sample approach,
as given by:

µ̂Areg =

(
θ2z̄1 − θ1z̄2

θ2 − θ1

)
+
{
β̂Z1X1(µX − x̄1) + β̂Z2X2(µX − x̄2)

}(1

2

)
,(5.1)

where β̂ZiXi(i = 1, 2) are the sample regression coe�cients between Zi and Xi respec-
tively, and z̄i, x̄i (i = 1, 2) are the two sub-sample means. It was shown that this
estimator performs better than the regression estimator proposed by Gupta et al. (2012)
utilizing a non-optional additive RRT model. Bias and MSE of µ̂Areg, correct up to �rst
order of approximation, are given by

Bias(µ̂Areg) ∼=
[
−1

2
βZ1X

(
1− f1

n1

)
− 1

2
βZ2X

(
1− f2

n2

)]{
µ12

µ11
− µ03

µ02

}
(5.2)
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and

MSE
(1)(µ̂Areg) =

1

(θ2 − θ1)2

[
θ2

2

(
1− f1

n1

)
σ2
Z1

+ θ2
1

(
1− f2

n2

)
σ2
Z2

]
(5.3)

+
ρ2
yxσ

2
Y

4
α− ρ2

yxσ
2
Y β,

where θ2 6= θ1; α and β are de�ned earlier and µrs = 1
N−1

∑N
i=1(zi − Z̄)r(xi − X̄)s.

5.2. Proposed Regression Estimator-New Approach. We modify the mean es-
timator in (3.8) above by using the regression estimation approach and propose the
following estimator for the population mean of Y :

µ̂RegW∗ = (z̄ − Ŵθ) + β̂zx(µX − x̄)(5.4)

We obtain the expressions for the bias and the mean square error for the proposed
regression estimator µ̂RegW∗ . If e0 = (z̄−µZ)/µZ , e1 = (x̄−µX)/µX , e2 = (σ2

x−σ2
X)/σ2

X

and e3 = (σzx − σZX)/σZX , then we have E(ei) = 0, i = 0, 1, 2, 3.
Using Taylor's approximation and retaining terms of order up to 2, (5.4) can be

rewritten as

µ̂RegW∗ − µZ ∼= µZe0 − Ŵθ − βzxµX [e1 + e1e3 − e1e2](5.5)

Substituting for µZ , (5.5) can be written as

µ̂RegW − µY ∼= µZe0 − βzxµX [e1 + e1e3 − e1e2] + (W − Ŵ )θ(5.6)

FromMukhopadhyay (1998, p. 123), we have E(e2
1) = 1−f

n
C2
x, E(e2

0) = 1−f
n
C2
z , E(e1e2) =

1−f
n

1
X̄
µ03
µ02

, E(e1e3) = 1−f
n

1
X̄
µ12
µ11

, where µrs = 1
N−1

∑N
i=1(zi − Z̄)r(xi − X̄)s and Cx, Cz

are the coe�cients of variation of x and z, respectively. Also, we have:

βzx =
σzx
σ2
x

=
σyx
σ2
x

= ρyx
σy
σx

= βyx(5.7)

where ρyx and ρzx are the coe�cients of correlation between y and x, and between z and
x, respectively.

Using this in (5.6), the Bias of µ̂RegW, to �rst order of approximation, is given by

Bias(µ̂RegW∗) ∼= −βzx
(

1− f
n

){
µ12

µ11
− µ03

µ02

}
(5.8)

The expression for MSE of µ̂RegW∗ to �rst order of approximation, is given by

MSE(µ̂RegW∗) ∼=
(

1− f
n

)[
σ2
z −

σ2
yx

σ2
x

]
+ θ2 Var(Ŵ )

=

(
1− f
n

)
σ2
y

{(
1 +

Wσ2
S + θ2W (1−W )

σ2
y

)
− ρ2

yx

}
+ θ2 Var(Ŵ )(5.9)

where Var(Ŵ ) is given by (3.4) above.
We note that µ̂RegW∗ is an unbiased estimator and hence

Var(µ̂RegW∗) = MSE(µ̂RegW∗)

∼=
(

1− f
n

)[
σ2
z −

σ2
yx

σ2
x

]
+ θ2 Var(Ŵ )(5.10)

The above variance can be estimated by using:

σ̂2
z = s2

z, σ̂
2
yx = σ̂2

zx = s2
zx and V̂ar(Ŵ ) =

(1− f)

(n− 1)

P̂y(1− P̂y)

p2
b

.
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6. E�ciency comparisons

6.1. E�ciency Comparison of µ̂RW∗ and µ̂YW∗ . We have from equations (3.9) and
(4.9), MSE(µ̂RW∗) < MSE(µ̂YW∗) if

1 +
3θ2 Var(Ŵ )

µ2
Y

< 2ρyx
Cy
Cx

(6.1)

Since 3θ2 Var(Ŵ )

µ2
Y

approaches 0 because Var(Ŵ ) approaches 0 as the sample becomes

larger, (6.1) will generally hold if

1 < 2ρyx
Cy
Cx

or ρyx >
1

2

Cx
Cy

(6.2)

If we assume (Cx ≈ Cy), we can conclude from (6.2) that

MSE(µ̂RW∗) < MSE(µ̂YW∗) if ρyx >
1

2
.(6.3)

Hence the proposed ratio estimator (µ̂RW∗) is more e�cient than the proposed ordinary
mean estimator (µ̂YW∗) when the correlation between the study variable and the auxiliary
variable is high

(
ρyx >

1
2

)
.

6.2. E�ciency Comparison of µ̂RegW∗ with µ̂RW∗ and µ̂YW∗ .

(i) It can be veri�ed from (3.9) and (5.9) that according to �rst order approximation
MSE(µ̂RegW∗) < MSE(µ̂YW∗) if(

1− f
n

)
σ2
yx

σ2
x

> 0(6.4)

(ii) It can be veri�ed from (4.9) and (5.9) that up to �rst order approximation
MSE(µ̂RegW∗) < MSE(µ̂RW∗) if

1− 2ρyx
Cy
Cx

+ ρ2
yx

C2
y

C2
x

+
3θ2 Var(Ŵ )

µ2
Y

> 0(6.5)

With (Cx ∼= Cy), (6.5) can be rewritten as

(1− ρyx)2 +
3θ2 Var(Ŵ )

µ2
Y

> 0(6.6)

Since the conditions (6.4) and (6.6) will always hold true, up to �rst order of approxima-
tion, the regression estimator µ̂RegW∗ performs better than the ordinary mean estimator
µ̂YW∗ and the ratio estimator µ̂RW∗ .

7. Simulation Study

7.1. Comparison of the Proposed Model with the Split-Sample Model in the
Presence of Auxiliary Information. The tables below provide a comparison between
the proposed model and the split-sample additive scrambling models of Kalucha et al.
(2015) and Gupta et al. (2015) in the presence of non-sensitive auxiliary information.
We choose the parameters as per the observation A1 (given below) that was obtained
in Gupta et al. (2015) under which the regression estimator µ̂Areg is more e�cient than
both additive ratio estimator µ̂AR and the ordinary mean estimator µ̂Y under the split
sample approach:

A1. We choose our scrambling variables S1 and S1 in such a way that their means θ1

and θ2 are opposite in signs and associate the one with the smaller magnitude to
the larger sub-sample and vice-versa. Also if one of the chosen means is zero then
we associate it to the larger split sample.



1828

In the simulation study, we consider a �nite population of size N = 5000 generated from a
bivariate normal distribution. The simulated bivariate normal population has theoretical
mean of [Y,X] as µ = [6, 4]. The covariance matrix (

∑
) is as given below:∑

=

[
9 4.8

4.8 4

]
, ρYX = 0.7996

We estimate the empirical MSE using 5000 samples of various sizes selected from this
population. The scrambling variables S1 and S2 are taken to be normal variates with
σ2
S1

= 2 and σ2
S2

= 1. The scrambling variable means are chosen as per A1 (given
above). The selected means are θ1 = 5, θ2 = −0.5 and n2 > n1. For the population
we consider two sample sizes: n = 500, 1000 for di�erent values of the sensitivity level
W = 0.3, 0.7, 0.9.

For the proposed model we choose θ = θ2 = −0.5 with πb = 0.25 and pb = 0.7.

Table 1. Theoretical (bold) and empirical MSE comparisons of the
mean estimator (µ̂YW∗), the ratio estimator (µ̂RW∗) and the regression
estimator (µ̂RegW∗) of the proposed model with the mean estimator
(µ̂Y ), the additive ratio estimator (µ̂AR) and the regression estimator
(µ̂Areg) of the split-sample model with ρYX = 0.7996.

MSE Estimation

n W Proposed Model Split-Sample Model

Var(Ŵ ) MSE(µ̂YW∗ ) MSE(µ̂RW∗ ) MSE(µ̂RegW∗ ) n1 n2 Var(Ŵ ) MSE(µ̂Y ) MSE(µ̂AR) MSE(µ̂Areg)

500

0.3

0.000749 0.017141 0.007283 0.006706

200 300

0.003511 0.024982 0.019001 0.017437

0.000821 0.016916 0.007221 0.006638 0.004487 0.023217 0.018106 0.01665

0.7

0.000903 0.0179 0.008041 0.007465

200 300

0.003688 0.02605 0.020069 0.018505

0.000999 0.017614 0.008264 0.007608 0.004821 0.025906 0.020948 0.019584

0.9

0.000764 0.018171 0.008313 0.007736

200 300

0.003277 0.026387 0.020406 0.018842

0.000853 0.018221 0.008534 0.008002 0.002443 0.029625 0.023441 0.022628

1000

0.3 0.000333 0.007618 0.003237 0.002981

450 550

0.001665 0.012846 0.009044 0.008528

0.000416 0.00738 0.003224 0.002915 0.003114 0.011986 0.009241 0.008602

0.7

0.000401 0.007956 0.003574 0.003318

450 550

0.001748 0.013394 0.009593 0.009076

0.000497 0.007744 0.003589 0.003319 0.002965 0.012035 0.009007 0.008506

0.9

0.000340 0.008076 0.003694 0.003438

450 550

0.001568 0.013578 0.009777 0.009260

0.000423 0.008367 0.003914 0.003693 0.001270 0.012051 0.008914 0.008395

We note from the table that consistently the regression estimator (µ̂RegW∗) is more
e�cient than the ratio (µ̂RW∗) and the mean estimator (µ̂YW∗) of the proposed model
for all values of W . Also as the sensitivity W increases, the MSE 's increase, highlighting
the usefulness of an Optional RRT model sinceW is highest (equal to 1) for non-optional
model. While comparing the proposed model with the split-sample model, we note that
MSE 's of the proposed model estimators (µ̂YW∗ , µRW∗µRegW∗) are consistently smaller
as compared to (µ̂Y , µ̂AR, µ̂Areg) estimators. We observe that for a �xed sample size
the MSE 's for the proposed model are reduced by more than two and a half times as
compared to the split-sample based model.

7.2. Comparison of the Point Estimates of Proposed Model with the Split-
Sample Model in the Presence of Auxiliary Information.
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Table 2. Empirical values of the estimators Ŵ , the mean estima-
tor (µ̂YW∗), the ratio estimator (µ̂RW∗) and the regression estimator
(µ̂RegW∗) of the proposed model and the corresponding split sample
model for W = 0.3, 0.7, 0.9 and the population mean µY = 6.

Point Estimates

n W Proposed Model Split-sample Model

Ŵ µ̂YW∗ µ̂RW∗ µ̂RegW∗ Ŵ µ̂Y µ̂AR µ̂Areg

500

0.3 0.30049 5.91234 5.90924 5.90958 0.34439 5.90478 5.90812 5.90471

0.7 0.69978 5.90947 5.91254 5.91158 0.6523 5.86084 5.86545 5.86143

0.9 0.89957 5.91218 5.90169 5.91065 0.90461 5.83561 5.83925 5.83557

1000

0.3 0.30052 5.91076 5.912 5.91161 0.34351 5.92844 5.93066 5.92885

0.7 0.69979 5.9116 5.91047 5.91053 0.65809 5.89841 5.90048 5.8986

0.9 0.89997 5.91107 5.91144 5.91125 0.90812 5.89409 5.89618 5.89436

We note that both methods produce nearly unbiased estimators of the population
mean. However, the proposed model produces better estimates of the sensitivity level.
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