
Hacettepe Journal of Mathematics and Statistics
Volume 45 (3) (2016), 957 � 972

Estimation of P (Y < X) for the Lévy distribution
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Abstract

Three point estimators and two interval estimators of P (Y < X) are
derived when X and Y are independent Lévy random variables. Their
performance with respect to relative biases, relative mean squared er-
rors, coverage probabilities, and coverage lengths is assessed by simu-
lation studies and a real data application.
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1. Introduction

Let X be a Lévy random variable with scale parameter σx. Then the probability
density function (pdf) and the cumulative distribution function (cdf) of X are:

f (x, σx) =

√
σx
2π
x−

3
2 exp

(
−σx

2x

)
and

F (x, σx) = 2

[
1− Φ

(√
σx
x

)]
,

respectively, for x > 0 and σx > 0, where Φ(·) denotes the standard normal cdf. Accord-
ing to O'Reilly and Rueda [28], 1

X
is a gamma random variable with shape parameter 1

2

and scale parameter 2
σ
. Lévy distribution has no moments.
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Lévy distribution and the more general alpha-stable distribution have received ap-
plications in many areas, including dispersive transport in disordered semiconductors,
stock and stock-indexes returns, linear dynamical systems, income distribution, stochas-
tic arti�cial neural networks, many-particle quantum systems, oil pricing time-series,
distributions of stochastic payo� variations, real tra�c �ow, satellite magnetic �eld mea-
surements, models for circular data, models of asset trading, directed percolation with
incubation times, earthquake slip spatial distributions, models for �nancial markets with
central regulation, long correlation times in supermarket sales, edge turbulence of fu-
sion devices, network tra�c behavior in switched Ethernet systems, modeling individual
behavior in a large marine predator, evolutionary programming using mutations, distri-
bution of marks in high school, fractal structures, models for �sh locomotion, distribution
of economical indices, south Spain seismic series, geophysical data analysis, supermarket
sales, velocity di�erence in systems of vortex elements, currency exchange market, ran-
dom �eld models for geological heterogeneity, structural reorganization in rice piles, and
wave scattering from self-a�ne surfaces. Three of the most recent applications relate
to daily price �uctuations in the Mexican �nancial market index (Alfonso et al. [1]),
observations of anomalous di�usion (Sagi et al., 2012), and bistable systems (Srokowski
[33]).

In the stated areas, it is of interest to estimate the probability R = P (Y < X) when X
and Y are independent Lévy random variables. For example, X and Y could represent:
stock returns for two di�erent commodities; oil prices in two di�erent countries; tra�c at
two di�erent locations; earthquake magnitudes at two di�erent locations; marks at two
di�erent high schools; and, so on.

Estimation of P (Y < X) is widely known as stress-strength modeling: if X denotes
the stress that a system is subjected to and Y the strength of the system then P (Y < X)
is the probability of the failure of the system. Many papers have investigated estimation
of P (Y < X) when X and Y arise from a speci�c distribution. For details, see Awad and
Gharraf [4], Surles and Padgett [34] for the case X,Y are Burr distributed; Constantine
et al. [11], Ismail et al. [20] for the case X,Y are gamma distributed; Obradovic et al.

[27] for the case X,Y are geometric-Poisson distributed; Babayi et al. [5] for the case
X,Y are generalized logistic distributed; Kundu and Raqab [22] for the case X,Y are
generalized Rayleigh distributed; Saracoglu et al. [32] for the case X,Y are Gompertz
distributed; Nadar et al. [25] for the case X,Y are Kumaraswamy distributed; Downtown
[14], Reiser and Guttman [30] for the case X,Y are normal distributed; Genc [17] for
the case X,Y are Topp-Leone distributed; McCool [24] for the case X,Y are Weibull
distributed. There are also semiparametric and nonparametric methods for estimating
P (Y < X). Kotz et al. [21] provide an excellent review of known work.

There has not been much work on the estimation of R = P (Y < X) when X and Y
are independent Lévy random variables. The only paper we are aware of is Ali and Woo
[3]. But the estimators given in Ali and Woo [3] are not those for R. A related paper by
Ali et al. [2] studies the distribution of X/(X + Y ).

In this note, we provide point as well as interval estimators for R = P (Y < X). The
point estimators considered are: maximum likelihood estimator, uniformly minimum
variance unbiased estimator (UMVUE) and Bayes estimator taken as the mean of the
posterior distribution of R given suitable priors. The interval estimators considered are:
asymptotic maximum likelihood estimator and bootstrap based percentile estimator. The
performance of these estimators is assessed by simulation studies as well as by a real data
application.
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2. Point estimators of R

In this section, we give three point estimators for R. Their performances are com-
pared by a simulation study in Section 5.1. Throughout, we suppose X1, X2, . . . , Xn and
Y1, Y2, . . . , Ym are independent random samples from the Lévy distribution with scale
parameters σx and σy, respectively.

2.1. Maximum likelihood estimator of R. The maximum likelihood estimators of
σx and σy are:

σ̂x =
n

n∑
i=1

1

Xi

and

σ̂y =
m

m∑
j=1

1

Yj

,

respectively. Ali and Woo [3] show that:

R =
2

π
sin−1 1√

1 +
σy
σx

.

Thus, the maximum likelihood estimator of R follows by the invariance property:

R̂ =
2

π
sin−1 1√

1 +
σ̂y
σ̂x

.(2.1)

2.2. UMVUE of R. To �nd the UMVUE of R, we use results in Ismail et al. [20]. It

is easy to see that

(
n∑
i=1

1/Xi,

m∑
j=1

1/Yj

)
is complete and su�cient for (σx, σy). Let

Φ(X,Y ) =

{
1, if 1

X
< 1

Y
,

0, if 1
X
> 1

Y
.

Then, one can see that Φ(X,Y ) is an unbiased estimator of R. It follows by Lehmann-
Sche�e theorem (see page 369 in Casella [8]) that:

R̃ = E

(
Φ(X,Y )

∣∣∣∣∣
n∑
i=1

1

Xi
,

m∑
j=1

1

Yj

)

is an UMVUE. Since 1
X
, 1
Y
,

n∑
i=1

1

Xi
,
m∑
j=1

1

Yj
are gamma random variables, we have from

Ismail et al. [20] that

R̃ =



∫ 1

0

FW2

(
U

V
w1

)
fW1 (w1) dw1, if U ≤ V,

∫ V
U

0

FW2

(
U

V
w1

)
fW1 (w1) dw1 + 1− FW1

(
V

U

)
, if U > V,

(2.2)
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where W1 ∼ Beta
(
1
2
, n−1

2

)
and W2 ∼ Beta

(
1
2
, m−1

2

)
are beta random variables, U =

n∑
i=1

1

Xi
and V =

m∑
j=1

1

Yj
. If W ∼ Beta(a, b) then its cdf is the incomplete beta function

ratio de�ned by Iw(a, b) =

∫ w

0

ta−1(1 − w)b−1dt/B(a, b), where B(a, b) =

∫ 1

0

ta−1(1 −

w)b−1dt denotes the beta function. So, (2.2) can be expressed as

R̃ =



1

B (1/2, (n− 1)/2)

∫ 1

0

IUw/V

(
1

2
,
m− 1

2

)
w−1/2(1− w)(n−3)/2dw,

if U ≤ V,

1

B (1/2, (n− 1)/2)

∫ V/U

0

IUw/V

(
1

2
,
m− 1

2

)
w−1/2(1− w)(n−3)/2dw

+1− IV/U
(

1

2
,
n− 1

2

)
,

if U > V.

(2.3)

An alternative expression using the series expansion

Iw(a, b) =
wa

B(a, b)

∞∑
k=0

(1− b)kwk

(a+ k)k!
,

where (e)k = e(e+ 1) · · · (e+ k − 1) denotes the ascending factorial, is

R̃ =



1

B (1/2, (n− 1)/2)B (1/2, (m− 1)/2)

·
∞∑
k=0

((3−m)/2)k
(k + 1/2) k!

B

(
k + 1,

n− 1

2

)(
U

V

)k+1/2

,

if U ≤ V,

1

B (1/2, (n− 1)/2)B (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

((3−m)/2)k ((3− n)/2)`
(k + 1/2) (k + `+ 1) k!`!

(
V

U

)`
+1− 1

B (1/2, (n− 1)/2)

∞∑
k=0

((3− n)/2)k
(k + 1/2) k!

(
V

U

)k+1/2

,

if U > V.

(2.4)

This expression can be used to compute measures like the variance, skewness and kurtosis

of R̃. For example, using equation (6.455.1) in Gradshteyn and Ryzhik [18], one can show
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that

E
(
R̃2
)

=
1

B2 (1/2, (n− 1)/2)B2 (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

((3−m)/2)k ((3−m)/2)`
(k + 1/2) k! (`+ 1/2) `!

·B
(
k + 1,

n− 1

2

)
B

(
`+ 1,

n− 1

2

)
·I (k + `+ 1,−k − `− 1)

+
1

B2 (1/2, (n− 1)/2)B2 (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

∞∑
p=0

∞∑
q=0

((3−m)/2)k
(k + 1/2) k!

·
((3− n)/2)` ((3−m)/2)p ((3− n)/2)q
(k + `+ 1) `! (p+ 1/2) (p+ q + 1) p!q!

J (`+ q,−`− q)

+1 +
1

B2 (1/2, (n− 1)/2)

∞∑
k=0

∞∑
`=0

((3− n)/2)k
(k + 1/2) k!

·
((3− n)/2)`
(`+ 1/2) `!

J (k + `+ 1,−k − `− 1)

+
2

B (1/2, (n− 1)/2)B (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

((3−m)/2)k
(k + 1/2) k!

·
((3− n)/2)`
(k + `+ 1) `!

J (`,−`)

− 2

B2 (1/2, (n− 1)/2)B (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

∞∑
p=0

((3−m)/2)k
(k + 1/2))k!

·
((3− n)/2)` ((3− n)/2)p
(k + `+ 1) `! (p+ 1/2) p!

J

(
`+ p+

1

2
,−`− p− 1

2

)
− 2

B (1/2, (n− 1)/2)

∞∑
k=0

((3− n)/2)k
(k + 1/2) k!

J

(
k +

1

2
,−k − 1

2

)
,

where

I(α, β) =
2α+βσ

n/2
x σ

m/2
y Γ (α+ β + (m+ n)/2)

(σx + σy)α+β+(m+n)/2 (α+ n/2) Γ(m/2)Γ(n/2)

·2F1

(
1, α+ β +

m+ n

2
;α+

n

2
+ 1;

σx
σx + σy

)
and

J(α, β) =
2α+βΓ (α+ n/2) Γ (β +m/2)

σαxσ
β
yΓ(m/2)Γ(n/2)

− I(α, β),
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where

Γ (a) =

∫ ∞
0

ta−1 exp(−t)dt

and

2F1 (a, b; c;x) =

∞∑
k=0

(a)k (b)k
(c)k

xk

k!

denote the gamma and Gauss hypergeometric functions, respectively. So, the variance of

R̃2 is E
(
R̃2
)
−R2.

2.3. Bayes estimator of R. Suppose the scale parameters, σx and σy, have the fol-
lowing gamma priors:

σx ∼ Γ
(r1

2
, λ1

)
and σy ∼ Γ

(r2
2
, λ2

)
.

There are several reasons why we have chosen gamma priors: i) the resulting posterior
pdfs of σx and σy,

σx|x ∼ Γ

(
n+ r1

2
, λ1 +

1

2
u

)
and σy|y ∼ Γ

(
m+ r2

2
, λ1 +

1

2
v

)
,

where u =

n∑
i=1

1

Xi
and v =

m∑
i=1

1

Yi
, belong to the same class; ii) According to Felsenstein

[16], assuming a prior distribution �of rates such as a gamma distribution or lognormal
distribution has deservedly been popular�; iii) According to Lambert et al. [23], gamma
priors are �the most common used prior distribution for variance parameters, not least
because it is used in many of the examples provided with the WinBUGS software�;
iv) According to page 69 in Congdon [10], there has �been considerable debate about
appropriate priors for variance and precision parameters . . . the most common option
is a gamma�; v) According to Dorfman and Karali [13], the gamma prior �on the error
variance term is a standard one�.

If we suppose σx and σy are independent then the joint posterior pdf of σx and σy is:

f (σx, σy|x, y) = σ
r1+n

2
−1

x

(
1

2
u+ λ1

) r1+n
2

Γ
(r1 + n

2

) exp

(
−σx

[
1

2
u+ λ1

])

· exp

(
−σy

[
1

2
v + λ2

])
σ

r2+m
2
−1

y

(
1

2
v + λ2

) r2+m
2

Γ
(r2 +m

2

) .

Thus, the posterior pdf of R is:

fR (r|x, y) = C

cot
(π

2
r
)r2+m−1

[
1 + cot

(π
2
r
)2]

[(
1

2
u+ λ1

)
+

(
1

2
v + λ2

)
cot
(π

2
r
)2]n+m+r1+r2

2

,

where

C = π

(
1

2
u+ λ1

) r1+n
2

Γ
(r1 + n

2

)
(

1

2
v + λ2

) r2+m
2

Γ
(r2 +m

2

) Γ
(r1 + r2 +m+ n

2

)
.
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Under the mean squared error loss function, the Bayes estimator of R is:

R̂Bayes =

∫ 1

0

rfR (r|x, y) d

= C

∫ 1

0

r

cot
(π

2
r
)r2+m−1

[
1 + cot

(π
2
r
)2]

[(
1

2
u+ λ1

)
+

(
1

2
v + λ2

)
cot
(π

2
r
)2]n+m+r1+r2

2

dr.(2.5)

Analytical solutions for the above integral are not available.

3. Interval estimators of R

In this section, we give two interval estimators for R. Their performances are com-
pared by a simulation study in Section 5.2. Throughout, we suppose X1, X2, . . . , Xn and
Y1, Y2, . . . , Ym are independent random samples from the Lévy distribution with scale
parameters σx and σy, respectively.

3.1. Asymptotic con�dence interval. For large sample sizes, a con�dence interval
for R can be obtained based on maximum likelihood estimation. For this purpose, we
�rst obtain an asymptotic distribution of the maximum likelihood estimators, σ̂x and σ̂y.

1. Theorem. If n→∞ and m→∞ such that n
m
→ p then(√

n (σ̂x − σy) ,
√
m (σ̂y − σy)

)
→ N (0,Σ) ,

where

Σ =

(
2σ2

x 0
0 2σ2

y

)
.

Proof. The proof is straightforward using asymptotic normality of σ̂x and σ̂y. �

The asymptotic distribution of R̂ can now be easily deduced.

2. Theorem. If n = m and n→∞ then

√
n
(
R̂−R

)
→ N(0, D),

where

D =
4σxσy

π2 (σx + σy)2
.

Hence, a 95 percent asymptotic con�dence interval for R is(
R̂− 1.96

√
D

n
, R̂+ 1.96

√
D

n

)
.(3.1)

Proof. Follows by the delta method (see pages 33-35 of Davison [12]). �
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3.2. Bootstrap con�dence interval. Bootstrap con�dence intervals are useful for
small sample sizes. Here, we propose a percentile based bootstrap con�dence interval
due to Efron [15]. It can be constructed by the following scheme:

(1) From the samples X1, X2, . . . , Xn and Y1, Y2, . . . , Ym, compute the maximum
likelihood estimates, σ̂x and σ̂y;

(2) Using σ̂x, generate a bootstrap sample X∗1 , X
∗
2 , . . . , X

∗
n and similarly using σ̂y

generate a bootstrap sample Y ∗1 , Y
∗
2 , . . . , Y

∗
m. The inversion method was used to

generate samples: this entails inverting the standard normal cdf and routines for
this inversion are widely available even in pocket calculators. From the samples
X∗1 , X

∗
2 , . . . , X

∗
n and Y ∗1 , Y

∗
2 , . . . , Y

∗
m, compute the maximum likelihood estimate

of R, say R̂∗;

(3) Repeat step 2, B times, giving the estimates, say R̂∗1, R̂
∗
2, . . . , R̂

∗
B , of R;

(4) Compute the empirical cdf, say Ĝ(·), of R̂∗1, R̂∗2, . . . , R̂∗B . Then an approximate
95 percent con�dence interval of R is[

Ĝ−1(0.025), Ĝ−1(0.975)
]
,(3.2)

where Ĝ−1(·) denotes the inverse function of Ĝ(·).
Another bootstrap based interval is the bootstrap-t con�dence interval for R. We shall
not consider this here as it performed similarly to the percentile based bootstrap con�-
dence interval.

4. A real data application

As mentioned in Section 1, one application of the Lévy distribution is to model stock
index data. Here, we discuss such an application.

The data are S&P/IFC (Standard & Poor's / International Finance Corporation)
global daily price indices in United States dollars for Egypt and South Africa, the two
largest economies in Africa. The data cover the period from the 1st of January 1996 to
the 31st of October 2008. The data were obtained from the database Datastream.

Following common practice, daily log returns were computed as �rst order di�erences
of logarithms of daily price indices. Let X denote the daily log returns from South Africa
and Y the daily log returns from Egypt. Some summary statistics for the data on X
are: range = 0.078847, �rst quartile = 0.020640, median = 0.026720, and third quartile
= 0.034270. Some summary statistics for the data on Y are: range = 0.086333, �rst
quartile = 0.017030, median = 0.024120, and third quartile = 0.036920. The sample size
for both data sets is 153.

The Lévy distribution was �tted to the data on X and Y by the method of maximum
likelihood. We obtained the estimates σ̂x = 0.02392927 and σ̂y = 0.01898238. The
chisquare and Kolmogorov-Smirnov tests for the �t to the log returns from South Africa
gave the p-values 0.061 and 0.063. The chisquare and Kolmogorov-Smirnov tests for the
�t to the log returns from Egypt gave the p-values 0.051 and 0.077. Since the Kolmogorov-
Smirnov test assumes that the �tted distribution gives the �true� parameter values, the
p-values were computed using Monte Carlo simulation.

Using the �tted estimates of σx and σy, we were able to compute R = P (X < Y ) using
the three point estimation methods. For the maximum likelihood method, we obtained

R̂ = 0.5367768. For the UMVUE, we obtained R̂ = 0.5368976. For the Bayes method,

we obtained R̂ = 0.5367891. It is remarkable that all three estimates are identical up
to the �rst three decimal places. We took λ1 = λ2 = 1 and r1 = r2 = 1 for the Bayes
method. Other choices gave similar results.
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Using the �tted estimates of σx and σy, we were also able to compute R = P (X < Y )
using the two interval estimation methods. Using the asymptotic method, we obtained
the 95 percent con�dence interval (0.4866747, 0.5868788). Using the bootstrap method,
we obtained the 95 percent con�dence interval (0.4969806, 0.577812). The coverage
length is smaller for the bootstrap method. We took B = 500 for the bootstrap method.
Other choices gave similar results.

Both the con�dence intervals contain R = 0.5 as a real value. Hence, there is no
evidence that the daily log returns di�er signi�cantly between South Africa and Egypt.
Further statistical analysis of the data set can be found in Nadarajah et al. [26].

5. Simulation studies

5.1. Simulation study for point estimators of R. Here, we perform a simulation
study to compare the performances of the maximum likelihood estimator, the UMVUE
and the Bayes estimator of R. The performance was assessed in terms of relative biases
and relative mean squared errors. The following scheme was used:

(1) Generate ten thousand samples of {X1, X2, . . . , Xn, Y1, Y2, . . . , Ym};
(2) Compute the estimators, (2.1), (2.2) and (2.5), for each of the ten thousand

samples, say R1i, R2i, R3i for i = 1, 2, . . . , 10000. (2.2) and (2.5) were computed
using the function integrate in R (R Development Core Team [29]);

(3) Compute the relative biases for the three estimators as

Biasj =
1

10000

10000∑
i=1

(Rji −R) /R

for j = 1, 2, 3;
(4) Compute the relative mean squared errors for the three estimators as

MSEj =
1

10000

10000∑
i=1

(Rji −R)2 /R

for j = 1, 2, 3.

We repeated this scheme for m = n = 2, 3, . . . , 100 and (σx, σy) = (1, 1), (1, 2), (1, 5),
(2, 2), (2, 5), (5, 5). For the Bayes estimator, we took λ1 = λ2 = 1 and r1 = r2 = 1, as
in Section 4. Plots of the relative biases, bias1, bias2 and bias3, versus n are shown in
Figure 1. Plots of the relative mean squared errors, MSE1, MSE2 and MSE3, versus n
are shown in Figure 2. The red line in Figure 1 represents the relative biases being zero.

The following observations can be drawn from Figures 1 and 2:

(1) the magnitudes of the relative biases and relative mean squared errors generally
decrease to zero with increasing n. Also the relative biases appear to take both
positive and negative values when σx = σy;

(2) the relative biases for (2.1), (2.2) and (2.5) appear not too di�erent when σx =
σy;

(3) the relative biases for (2.1) and (2.5) appear generally positive when σx < σy;
(4) the relative biases for (2.1) and (2.2) appear smallest when σx < σy;
(5) the relative biases for (2.5) appear largest when σx < σy;
(6) the relative mean squared errors appear smallest, second smallest and largest

for (2.5), (2.1) and (2.2), respectively, for small n;
(7) the relative biases and relative mean squared errors for all three estimators

appear reasonable for all n and parameter values.

We have presented results for limited choices of (σx, σy) and for only one choice of
(λ1, λ2, r1, r2). But the results were the same for a wide range of other choices for
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Figure 1. Relative biases of (2.1) in black, (2.2) in blue and (2.5) in
brown. Top left is for (σx, σy) = (1, 1), top right is for (σx, σy) = (1, 2),
middle left is for (σx, σy) = (1, 5), middle right is for (σx, σy) = (2, 2),
bottom left is for (σx, σy) = (2, 5), and bottom right is for (σx, σy) =
(5, 5).

(σx, σy) and (λ1, λ2, r1, r2), including choices where λ1 6= λ2 and r1 6= r2. Similar results
were also obtained when the gamma priors were replaced by non informative priors. In
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Figure 2. Relative mean squared errors of (2.1) in black, (2.2) in blue
and (2.5) in brown. Top left is for (σx, σy) = (1, 1), top right is for
(σx, σy) = (1, 2), middle left is for (σx, σy) = (1, 5), middle right is for
(σx, σy) = (2, 2), bottom left is for (σx, σy) = (2, 5), and bottom right
is for (σx, σy) = (5, 5).

particular, the magnitude of the relative biases generally decreased to zero with increas-
ing n, the relative mean squared errors generally decreased to zero with increasing n,
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the relative biases for all three estimators appeared reasonable for all n, and the relative
mean squared errors for all three estimators appeared reasonable for all n.

5.2. Simulation study for interval estimators of R. Here, we perform a simulation
study to compare the performances of the asymptotic maximum likelihood and percentile
based bootstrap con�dence intervals for R. The performance was assessed in terms of
coverage probabilities and coverage lengths. The following scheme was used:

(1) Generate ten thousand samples of {X1, X2, . . . , Xn, Y1, Y2, . . . , Ym};
(2) Compute the con�dence intervals, (3.1) and (3.2), for each of the ten thousand

samples, say (L1i, U1i) and (L2i, U2i) for i = 1, 2, . . . , 10000;
(3) Compute the coverage probabilities for the two intervals as

Pj =
1

10000

10000∑
i=1

I

Lji <
2

π
sin−1 1√

1 +
σy
σx

< Uji


for j = 1, 2;

(4) Compute the coverage lengths for the two intervals as

Lj =
1

10000

10000∑
i=1

(Uji − Lji)

for j = 1, 2.

We repeated this scheme for m = n = 1, 2, . . . , 100 and (σx, σy) = (1, 1), (1, 2), (1, 5),
(2, 2), (2, 5), (5, 5). For the bootstrap con�dence interval, we took B = 500, as in Section
4. Plots of the coverage probabilities, P1 and P2, versus n are shown in Figure 3. Plots of
the coverage lengths, L1 and L2, versus n are shown in Figure 4. The red line in Figure
3 represents the 95 percent nominal level.

The following observations can be drawn from Figures 3 and 4:

(1) coverage probabilities generally approach the nominal level with increasing n
and coverage lengths generally decrease with increasing n;

(2) coverage probabilities for (3.2) appear closer to the nominal level for all n < 40.
Thereafter (3.1) and (3.2) appear to perform equally well.

We have presented results for limited choices of (σx, σy) and for only one choice of B.
But the results were the same for a wide range of other choices for (σx, σy) and B > 500.
In particular, the coverage probabilities generally approached the nominal level with
increasing n and the coverage lengths generally decreased with increasing n.

6. Conclusions

In this note, we have studied estimation of R = P (Y < X) when X and Y are
independent Lévy random variables. We have considered three di�erent point estimators
for R: maximum likelihood estimator, UMVUE and Bayes estimator. We have considered
two di�erent interval estimators for R: asymptotic maximum likelihood estimator and
bootstrap based percentile estimator.

Among the three point estimators, the Bayes estimator has the smallest relative mean
squared errors but also the largest relative biases. The maximum likelihood estimator
and the UMVUE have the smallest relative biases. But they do not have the smallest
relative mean squared errors.

Among the two interval estimators, the bootstrap estimator has better coverage prob-
abilities for small n. Both estimators perform equally well for all su�ciently large n.



969

0 20 40 60 80 100

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

n

C
ov

er
ag

e 
pr

ob
ab

ili
ty

0 20 40 60 80 100

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

MLE
Bootstrap

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

n

C
ov

er
ag

e 
pr

ob
ab

ili
ty

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

MLE
Bootstrap

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

n

C
ov

er
ag

e 
pr

ob
ab

ili
ty

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

MLE
Bootstrap

0 20 40 60 80 100

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

n

C
ov

er
ag

e 
pr

ob
ab

ili
ty

0 20 40 60 80 100

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

MLE
Bootstrap

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

n

C
ov

er
ag

e 
pr

ob
ab

ili
ty

0 20 40 60 80 100

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

MLE
Bootstrap

0 20 40 60 80 100

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

n

C
ov

er
ag

e 
pr

ob
ab

ili
ty

0 20 40 60 80 100

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

MLE
Bootstrap

Figure 3. Coverage probabilities of (3.1) and (3.2). Top left is for
(σx, σy) = (1, 1), top right is for (σx, σy) = (1, 2), middle left is for
(σx, σy) = (1, 5), middle right is for (σx, σy) = (2, 2), bottom left is for
(σx, σy) = (2, 5), and bottom right is for (σx, σy) = (5, 5).

In Sections 5.1 and 5.2, we have taken m = n for simplicity. But the stated observa-
tions were the same when m 6= n.
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Figure 4. Coverage lengths of (3.1) and (3.2). Top left is for
(σx, σy) = (1, 1), top right is for (σx, σy) = (1, 2), middle left is for
(σx, σy) = (1, 5), middle right is for (σx, σy) = (2, 2), bottom left is for
(σx, σy) = (2, 5), and bottom right is for (σx, σy) = (5, 5).

This is the �rst time estimation of R = P (Y < X) for Lévy random variables has been
studied in a comprehensive manner. Previously only maximum likelihood estimation of
R has been considered for Lévy random variables.
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A more comprehensive study of the estimation of R = P (Y < X) for Lévy random
variables could consider other point as well as interval estimators. These could include
Bayesian highest posterior density intervals (Chen and Shao [9]), interval estimators
based on the signed log-likelihood ratio due to Barndor�-Nielsen [6], interval estimators
based on the modi�ed signed log-likelihood ratio due to Barndor�-Nielsen [7], and robust
estimators based on the theory of bounded in�uence M -estimators (Greco and Ventura
[19]).

Acknowledgments

The authors would like to thank the Editor and the two referees for careful reading
and comments which greatly improved the paper.

References

[1] Alfonso, L., Mansilla, R., Terrero-Escalante, C.A. On the scaling of the distribution of daily

price �uctuations in the Mexican �nancial market index, Physica A�Statistical Mechanics
and Its Applications, 391, 2990-2996, 2012.

[2] Ali, M.M., Nadarajah, S., Woo, J.S. On the ratio X/(X + Y ) for Weibull and Lévy distri-

butions, Journal of the Korean Statistical Society, 34, 11-20, 2005.
[3] Ali, M.M., Woo, J.S. Inference on reliability P (X < Y ) in the Lévy distribution, Mathe-

matical and Computer Modeling, 41, 965-971, 2005.
[4] Awad, A.M., Gharraf, M.K. Estimation of P (Y < X) in the Burr case: A comparative

study, Communications in Statistics - Simulation and Computation, 15, 389-403, 1986.
[5] Babayi, S., Khorram, E., Tondro, F. Inference of R = P [X < Y ] for generalized logistic

distribution, Statistics, 48, 862-871, 2014.
[6] Barndor�-Nielsen, O.E. Inference on full and partial parameters, based on the standardized

signed log-likelihood ratio, Biometrika, 73, 307-322, 1986.
[7] Barndor�-Nielsen, O.E. Modi�ed signed log-likelihood ratio, Biometrika, 78, 557-563, 1991.
[8] Casella, G. Statistical Inference, second edition. Duxbury Press, 2001.
[9] Chen, M.-H., Shao, Q.-M.Monte Carlo estimation of Bayesian credible and HPD intervals,

Journal of Computational and Graphical Statistics, 8, 69-92, 1999.
[10] Congdon, P. Bayesian Statistical Modelling. John Wiley and Sons, New York, 2007.
[11] Constantine, K., Tse, S.K., Karson, M. Estimation of P (Y < X) in the gamma case,

Communications in Statistics - Simulation and Computation, 15, 365-388, 1986.
[12] Davison, A.C. Statistical Models. Cambridge University Press, Cambridge, 2003.
[13] Dorfman, J.H., Karali, B. Do farmers hedge optimally or by habit? A Bayesian partial-

adjustment model of farmer hedging, Journal of Agricultural and Applied Economics, 42,
791-803, 2010.

[14] Downtown, F. The estimation of Pr(Y < X) in the normal case, Technometrics, 15,
551-558, 1973.

[15] Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Re-
gional Conference Series in Applied Mathematics, 38, Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania, 1982.

[16] Felsenstein, J. Taking variation of evolutionary rates between sites into account in inferring

phylogenies, Journal of Molecular Evolution, 53, 447-455, 2001.
[17] Genc, A.I. Estimation of P (X > Y ) with Topp-Leone distribution, Journal of Statistical

Computation and Simulation, 83, 326-339, 2013.
[18] Gradshteyn, I.S., Ryzhik, I.M. Table of Integrals, Series, and Products, sixth edition.

Academic Press, San Diego, 2000.
[19] Greco, L., Ventura, L. Robust inference for the stress-strength reliability, Statistical Papers,

52, 773-788, 2011.
[20] Ismail, R., Jeyaratnam, S., Panchapakesan, S. Estimation of Pr[X > Y ] for gamma dis-

tributions, Journal of Statistical Computation and Simulation, 26, 253-267, 1986.



972

[21] Kotz, S., Lumelskii, Y., Pensky, M. The Stress-Strength Model and Its Generalizations:

Theory and Applications. World Scienti�c, Singapore, 2003.
[22] Kundu, D., Raqab, M.Z. Estimation of R = P [Y < X] for three-parameter generalized

Rayleigh distribution, Journal of Statistical Computation and Simulation, 85, 725-739,
2015.

[23] Lambert, P.C., Sutton, A.J., Burton, P.R., Abrams, K.R., Jones, D.R. How vague is vague?

A simulation study of the impact of the use of vague prior distributions in MCMC using

WinBUGS, Statistics in Medicine, 24, 2401-2428, 2005.
[24] McCool, J.I. Inference on P (Y < X) in the Weibull case, Communications in Statistics -

Simulation and Computation, 20, 129-148, 1991.
[25] Nadar, M., Kyzylaslan, F., Papadopoulos, A. Classical and Bayesian estimation of P (Y <

X) for Kumaraswamy's distribution, Journal of Statistical Computation and Simulation,
84, 1505-1529, 2014.

[26] Nadarajah, S., Chan, S., Afuecheta, E. Extreme value analysis for emerging African mar-

kets, Quality and Quantity, 48, 1347-1360, 2014.
[27] Obradovic, M., Jovanovic, M., Milosevic, B., Jevremovic, V. Estimation of P{X ≤ Y }

for Geometric-Poisson model, Hacettepe Journal of Mathematics and Statistics, in press,
2015.

[28] O'Reilly, F.J., Rueda, H. A note on the �t for the Lévy distribution, Communications in
Statistics�Theory and Methods, 27, 1811-1821, 1998.

[29] R Development Core Team. A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. Vienna, Austria, 2015.
[30] Reiser, B., Guttman, I. A comparison of three point estimators for P (Y < X) in the

normal case, Computational Statistics and Data Analysis, 5, 59-66, 1987.
[31] Sagi, Y., Brook, M., Almog, I., Davidson, N. Observation of anomalous di�usion and

fractional self-similarity in one dimension, Physical Review Letters, 108, Article Number
093002, 2012.

[32] Saracoglu, B., Kaya, M.F., Abd-Elfattah, A.M. Comparison of estimators for stress-

strength reliability in the Gompertz case, Hacettepe Journal of Mathematics and Statistics,
38, 339-349, 2009.

[33] Srokowski, T. Multiplicative Lévy noise in bistable systems, European Physical Journal, B,
85, Article Number 65, 2012.

[34] Surles, J.G. and Padgett, W.J. Inference for P (Y < X) in the Burr type X model, Journal
of Applied Statistical Science, 7, 225-238, 1998.


