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Abstract
In this paper, we study the second-order half-linear delay differential equation of the form(

r(t)
(
y′(t)

)α)′ + q(t)yα(τ(t)) = 0. (E)
We establish new oscillation criteria for (E), which improve a number of related ones in
the literature. Our approach essentially involves establishing sharper estimates for the
positive solutions of (E) than those presented in known works and a comparison principle
with first-order delay differential inequalities. We illustrate the improvement over the
known results by applying and comparing our method with the other known methods on
the particular example of Euler-type equations.
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1. Introduction
Consider the second-order half-linear delay differential equation of the form(

r(t)
(
y′(t)

)α)′ + q(t)yα(τ(t)) = 0, t ≥ t0 > 0. (E)

Throughout the paper, it is assumed that the following conditions hold:
(i) α > 0 is a quotient of odd positive integers;

(ii) τ ∈ C1([t0,∞)), τ ′(t) > 0, τ(t) ≤ t and lim
t→∞

τ(t) =∞;
(iii) q ∈ C([t0,∞)) is nonnegative and does not vanish identically on any half line of

the form [t∗,∞);
(iv) r ∈ C1([t0,∞)) is positive and satisfies

R(t, t0) :=
∫ t

t0
r−1/α(s)ds→∞ as t→∞.
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Under the solution of equation (E) we mean a function y ∈ C([ta,∞),R) with ta = τ(tb),
for some tb ≥ t0, which has the property r (y′)α ∈ C1([ta,∞),R) and satisfies (E) on [tb,∞).
We consider only those solutions of (E) which exist on some half-line [tb,∞) and satisfy
the condition sup{|x(t)| : tc ≤ t <∞} > 0 for any tc ≥ tb.

As is customary, a solution y(t) of (E) is said to be oscillatory if it is neither eventually
positive nor eventually negative. Otherwise, it is said to be nonoscillatory. The equation
itself is termed oscillatory if all its solutions oscillate.

The problem of establishing oscillation criteria for differential equations with deviating
arguments has been a very active research area over the past decades and several references
and reviews of known results can be found in the monographs by Agarwal et al. [1–4],
Došlý and Řehák [6] and Győri and Ladas [11].

The oscillation problem for (E) and its particular cases (or its generalizations on
dynamic, neutral, nonlinear equations, etc.) has been studied extensively, see, e.g.,
[5, 7, 8, 12,15–18,20–26] and the references therein.

One of the basic techniques in oscillation theory is to acquire criteria by comparing
the given differential equation with first-order delay differential equations or inequalities,
whose oscillatory behavior is known in advance.

The first results in this direction for second-order delay equations were given by Ko-
platadze [15] in 1986 and Wei [22] in 1988, who proved that the equation

y′′(t) + q(t)y(τ(t)) = 0 (1.1)

is oscillatory if

lim inf
t→∞

∫ t

τ(t)
q(s)τ(s)ds > 1

e . (1.2)

In 2000, Koplatadze, Kvinikadze and Stavroulakis [14, Theorem 1] presented an improved
oscillation criterion for (1.1), namely,

lim inf
t→∞

∫ t

τ(t)

(
τ(s) +

∫ τ(s)

t0
ξτ(ξ)q(ξ)dξ

)
ds > 1

e . (1.3)

In 1995, Kusano and Wang [16, Theorem 2] used a variant of the Mahfoud’s comparison
principle [19] with the ordinary second-order differential equation((

x′(t)
)α)′ + q(τ−1(t))

τ ′ (τ−1(t))x
α(t) = 0

and proved that (E) is oscillatory if

lim inf
t→∞

Rα(τ(t), t0)
∫ ∞
t

q(s)ds > αα

(α+ 1)α+1 . (1.4)

Condition (1.4) extends the well-known Hille’s criterion

lim inf
t→∞

t

∫ ∞
t

q(s)ds > 1
4 (1.5)

for a linear ordinary differential equation

y′′(t) + q(t)y(t) = 0.

The most oscillation results for (E) existing in the literature use the Riccati transfor-
mation to reduce the second-order equation to a first-order Riccati inequality.

In 2006, Sun and Meng [20, Theorem 2.1] improved the oscillation result of Džurina
and Stavroulakis [8] by employing the Riccati transformation

ω(t) = Rα(τ(t), t0)r(t) (y′(t))α

yα(τ(t)) , (1.6)
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which led to the following criterion for (E) to be oscillatory:∫ ∞
t0

(
Rα(τ(t), t0)q(t)−

(
α

α+ 1

)α+1 τ ′(t)
R(τ(t), t0)r1/α(τ(t))

)
dt =∞. (1.7)

Similar conditions to (1.7) have been obtained in a number of papers, see, for instance,
[9, 10, 21, 23, 24] and the references cited therein. It is useful to note (see the proof of
Theorem 2.5 below), that we can get Hille-type condition from (1.7).

Despite the fact that the above-mentioned oscillation results were proven by different
techniques, they all have in common that their strength depends on sharpness of the
estimates for nonoscillatory, say positive solutions of (E).

The purpose of this article is to further study the oscillatory behavior of solutions of
(E) and to obtain new criteria which improve the known ones mentioned above. Our
approach is essentially based on establishing sharper estimates for positive solutions of
(E) than those used in the known works [8–10,14,16,20–24], using an iterative technique,
and a comparison principle with first-order delay differential inequalities. If, in some
iteration step, the comparison result fails to apply, we are able to improve (in delay case
only) conditions of (1.7)-type.

The effectiveness of our results is illustrated by means of various examples.

2. Main results
As is customary, we state here that all the functional inequalities considered through

the rest of the paper are assumed to hold eventually, that is, they are satisfied for all t
large enough.

For a clear and compact presentation of our results, we will adopt the following notation
to be used in the whole paper. Let the number ρ be defined by

ρ := lim inf
t→∞

∫ t

τ(t)
q(s)Rα(τ(s), t0)ds,

and λ(η) be the smaller positive root of the transcendental equation
λ = eηλ, 0 < η ≤ 1/e.

Also, let us define the sequence of constants ρk as follows: set
ρ1 := ρ

and, for ρi ∈ (0, 1/e], i ∈ N, let

ρi+1 := lim inf
t→∞

∫ t

τ(t)
q(s)Rαi (τ(s), t0)ds,

where
Ri(t, t0) = R(t, t0) + λ(ρi)

α

∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds.

We start by stating a simple, but useful result for the first-order delay differential
inequality

x′(t) + q(t)x(τ(t)) ≤ 0, t ≥ t0, (2.1)
where τ and q are assumed to satisfy (ii) and (iii), respectively.

Lemma 2.1. Let the number k be defined by

k := lim inf
t→∞

∫ t

τ(t)
q(s)ds.

Suppose that k > 0 and (2.1) has an eventually positive solution. Then k ≤ 1/e and

lim inf
t→∞

x(τ(t))
x(t) ≥ λ(k).
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Proof. The proof is almost the same as that given for the corresponding delay differential
equation (see [13, Lemma 1]), hence we omit it. �

Lemma 2.2. Suppose that ρ > 0 and (E) has an eventually positive solution. Then
ρ ≤ 1/e and

lim inf
t→∞

r(τ(t)) (y′(τ(t)))α

r(t) (y′(t))α ≥ λ(ρ). (2.2)

Proof. Pick t1 ∈ [t0,∞) so that y(τ(t)) > 0 on [t1,∞). Since y(t) is a positive solution
of (E), we have (

r(t)
(
y′(t)

)α)′ = −q(t)yα(τ(t)) ≤ 0
on [t1,∞), which means that r(t) (y′(t))α is eventually nonincreasing and does not change
its sign.

We claim that r(t) (y′(t))α > 0 on [t1,∞). Indeed, for the sake of contradiction, assume
that r(t) (y′(t))α < 0 on [t1,∞). Then there exists a t′1 ≥ t1 such that

r(t)
(
y′(t)

)α ≤ r(t′1)
(
y′(t′1)

)α := c < 0 on [t′1,∞).

Integrating the above inequality from t′1 to t and taking (iv) into account, we have

y(t) ≤ y(t′1) + c1/α
∫ t

t′1

r−1/α(s)ds→ −∞ as t→∞,

which contradicts the fact that y(t) is a positive solution of (E). Thus, we have

y(t) > 0, r(t)
(
y′(t)

)α
> 0,

(
r(t)

(
y′(t)

)α)′ ≤ 0 on [t1,∞).

Since r1/α(t)y′(t) is nonincreasing, there exists a finite limit

lim
t→∞

r1/α(t)y′(t) = ` ≥ 0.

If we assume ` > 0, then r1/α(t)y′(t) ≥ ` > 0 and y(t) ≥ `R(t, t1) > 0 on [t1,∞). Noting
that ρ > 0, we have that ∫ ∞

t0
q(s)Rα(τ(s), t0)ds =∞.

Integrating (E) from t1 to t yields

r(t1)
(
y′(t1)

)α ≥ `α ∫ t

t1
q(s)Rα(τ(s), t1)ds→∞ as t→∞.

This contradiction implies that

lim
t→∞

r1/α(t)y′(t) = 0. (2.3)

On the other hand, it is obvious that

r1/α(s)y′(s) ≥ r1/α(t)y′(t) for every s ∈ [t1, t] .

Therefore,

y(t) = y(t1) +
∫ t

t1
r−1/α(s)r1/α(s)y′(s)ds

≥ y(t1) + r1/α(t)y′(t)R(t, t1)

= y(t1)− r1/α(t)y′(t)R(t1, t0) + r1/α(t)y′(t)R(t, t0).

(2.4)

Combining (2.3) and (2.4), we have

y(t) > r1/α(t)y′(t)R(t, t0) on [t2,∞), (2.5)
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for some t2 ∈ [t1,∞) large enough. Using (2.5) in (E), it is easy to see that x(t) :=
r(t) (y′(t))α is a positive solution of the first-order delay differential inequality

x′(t) + q(t)Rα(τ(t), t0)x(τ(t)) < 0. (2.6)

To complete the proof, it suffices to apply Lemma 2.1 to (2.6). �

Application of Lemma 2.2 allows us to obtain various important oscillation results.
Theorem 2.3 below is a simple generalization of (1.2) for a half-linear differential equa-
tion, while Theorems 2.4 and 2.5 essentially improve the known criteria (1.7) and (1.4),
respectively.

Theorem 2.3. If ρ > 1/e, then (E) is oscillatory.

Theorem 2.4. Assume that 0 < ρ ≤ 1/e. If

lim sup
t→∞

∫ t

t0

(
Rα(τ(s), t0)q(s)

−
(

α

α+ 1

)α+1 1
(λ(ρ)− ε)

τ ′(s)
R(τ(s), t0)r1/α(τ(s))

)
ds =∞

(2.7)

for some ε > 0, then (E) is oscillatory.

Proof. Suppose to the contrary that (E) has a nonoscillatory solution y(t) on [t0,∞).
Without loss of generality, we can assume that there exists a t1 ≥ t0 such that y(t) > 0
and y(τ(t)) > 0 on [t1,∞). Define ω(t) as in (1.6), i.e.,

ω(t) = Rα(τ(t), t0)r(t) (y′(t))α

yα(τ(t)) . (2.8)

We see that ω > 0 for t ≥ t1. Differentiating (2.8) and using (E), we get

ω′(t) = ατ ′(t)Rα−1(τ(t), t0)
r1/α(τ(t))

r(t) (y′(t))α

yα(τ(t)) −Rα(τ(t), t0)(r(t) (y′(t))α)′

yα(τ(t))

−Rα(τ(t), t0)αr(t) (y′(t))α y′(τ(t))τ ′(t)
yα+1(τ(t))

= ατ ′(t)
R(τ(t), t0)r1/α(τ(t))

ω(t)−Rα(τ(t), t0)q(t)

−Rα(τ(t), t0)αr(t) (y′(t))α y′(τ(t))τ ′(t)
yα+1(τ(t)) .

(2.9)

Lemma 2.2 implies that, for each ε > 0, there is t2 ∈ [t1,∞) large enough such that

y′(τ(t)) ≥
(

(λ(ρ)− ε) r(t)
r(τ(t))

)1/α
y′(t), on [t2,∞). (2.10)

Combining (2.8)−(2.10), we obtain

ω′(t) ≤ ατ ′(t)
R(τ(t), t0)r1/α(τ(t))

ω(t)−Rα(τ(t), t0)q(t)

− ατ ′(t)
(

λ(ρ)− ε
Rα(τ(t), t0)r(τ(t))

)1/α
ω(α+1)/α(t).

(2.11)

Using the inequality

Au−Bu(α+1)/α ≤ αα

(α+ 1)α+1
Aα+1

Bα
, A ≥ 0, B > 0, u ≥ 0
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with

A := ατ ′(t)
R(τ(t), t0)r1/α(τ(t))

and B := ατ ′(t)
(

λ(ρ)− ε
Rα(τ(t), t0)r(τ(t))

)1/α

in (2.11), we obtain

w′(t) ≤ −Rα(τ(t), t0)q(t) +
(

α

α+ 1

)α+1 1
λ(ρ)− ε

τ ′(t)
R(τ(t), t0)r1/α(τ(t))

.

Integrating the above inequality from t2 to t, we arrive at∫ t

t2

(
Rα(τ(s), t0)q(s)−

(
α

α+ 1

)α+1 1
λ(ρ)− ε

τ ′(s)
R(τ(s), t0)r1/α(τ(s))

)
ds

≤ ω(t2)− ω(t) ≤ ω(t2),
which contradicts (2.7) as t→∞. The proof is complete. �

Theorem 2.5. Assume that 0 < ρ ≤ 1/e. If

lim inf
t→∞

Rα(τ(t), t0)
∫ ∞
t

q(s)ds > 1
λ(ρ)

αα

(α+ 1)α+1 , (2.12)

then (E) is oscillatory.

Proof. It suffices to prove that (2.12) implies (2.7). If we admit that (2.7) fails, then for
all ε̃ > 0 there exists a t1 ∈ [t0,∞) such that for any t ≥ t1,∫ ∞

t

(
Rα(τ(s), t0)q(s)− 1

λ(ρ)− ε

(
α

α+ 1

)α+1 τ ′(s)
R(τ(s), t0)r1/α(τ(s))

)
ds < ε̃.

Since R(τ(t), t0) is increasing, it is easy to see that
Rα(τ(t), t0)×

×
∫ ∞
t

(
q(s)− 1

λ(ρ)− ε

(
α

α+ 1

)α+1 τ ′(s)
Rα+1(τ(s), t0)r1/α(τ(s))

)
ds < ε̃,

or
Rα(τ(t), t0)

∫ ∞
t

(
q(s) + 1

λ(ρ)− ε
αα

(α+ 1)α+1

( 1
Rα(τ(s), t0)

)′)
ds < ε̃.

Hence,
Rα(τ(t), t0)

∫ ∞
t

q(s)ds < ε̃+ 1
λ(ρ)− ε

αα

(α+ 1)α+1

for all ε̃ > 0, which contradicts (2.12). The proof is complete. �

Lemma 2.6. Suppose that ρ > 0 and (E) has an eventually positive solution. Then, for
any k ∈ N, 0 < ρk ≤ 1/e and

lim inf
t→∞

r(τ(t)) (y′(τ(t)))α

r(t) (y′(t))α ≥ λ(ρk). (2.13)

Proof. By Lemma 2.2, it is clear that the statement holds for k = 1, i.e., ρ1 ≤ 1/e and,
for each ε > 0, there is t2 ∈ [t1,∞) such that

r(τ(t)) (y′(τ(t)))α

r(t) (y′(t))α ≥ λ(ρ1)− ε, on [t2,∞). (2.14)

Now, employing the chain rule(
r(t)

(
y′(t)

)α)′ = α
(
r1/αy′(t)

)α−1 (
r1/αy′(t)

)′
in the equality (

y(t)− r1/α(t)y′(t)R(t, t0)
)′

= −R(t, t0)
(
r1/αy′(t)

)′
,
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we get (
y(t)− r1/α(t)y′(t)R(t, t0)

)′
= − 1

α
R(t, t0)

(
r1/αy′(t)

)1−α (
r(t)

(
y′(t)

)α)′
,

which, by virtue of (E), becomes(
y(t)− r1/α(t)y′(t)R(t, t0)

)′
= 1
α
R(t, t0)

(
r1/αy′(t)

)1−α
q(t)yα(τ(t)). (2.15)

Integrating (2.15) from t2 to t yields to

φ(t) = φ(t2) + 1
α

∫ t

t2
R(s, t0)

(
r1/αy′(s)

)1−α
q(s)yα(τ(s))ds, (2.16)

where we set φ(t) = y(t) − r1/α(t)y′(t)R(t, t0). It is clear from (2.5) that φ(t) is positive
on [t2,∞). Now, using (2.5) and (2.14) in (2.16), we arrive at

φ(t) ≥ φ(t2) + 1
α

∫ t

t2
R(s, t0)

(
r1/α(s)y′(s)

)1−α
×

× q(s)r(τ(s))
(
y′(τ(s))

)α
Rα(τ(s), t0)ds

≥ φ(t2) + λ(ρ1)− ε
α

∫ t

t2
R(s, t0)

(
r1/α(s)y′(s)

)1−α
×

× q(s)r(s)
(
y′(s)

)α
Rα(τ(s), t0)ds

= φ(t2) + λ(ρ1)− ε
α

∫ t

t2
R(s, t0)Rα(τ(s), t0)r1/α(s)y′(s)q(s)ds.

Using the nondecreasing character of r(t) (y′(t))α in the latter inequality, we obtain

φ(t) ≥ φ(t2) + λ(ρ1)− ε
α

r1/α(t)y′(t)
∫ t

t2
R(s, t0)Rα(τ(s), t0)q(s)ds

= φ(t2)− λ(ρ1)− ε
α

r1/α(t)y′(t)
∫ t2

t0
R(s, t0)Rα(τ(s), t0)q(s)ds

+ λ(ρ1)− ε
α

r1/α(t)y′(t)
∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds.

(2.17)

By virtue of (2.3) and the positivity of φ, we have

φ(t) > λ(ρ1)− ε
α

r1/α(t)y′(t)
∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds on [t3,∞), (2.18)

for some t3 ∈ [t2,∞) large enough. Hence,

y(t) > r1/α(t)y′(t)
(
R(t, t0) + λ(ρ1)− ε

α

∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds

)
(2.19)

or
y(t) > r1/α(t)y′(t)R1(t, t0, ε) on [t3,∞), (2.20)

where
R1(t, t0, ε) = R(t, t0) + λ(ρ1)− ε

α

∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds.

Using (2.20) in (E), we see that x(t) := r(t) (y′(t))α is a positive solution of the first-order
delay differential inequality

x′(t) +Rα1 (τ(t), t0, ε)q(t)x(τ(t)) < 0. (2.21)
Applying Lemma 2.1 to (2.21), it is clear that the conclusion holds for k = 2, that is,
ρ2 ≤ 1/e and, for each ε > 0, there is t4 ∈ [t1,∞) such that

r(τ(t)) (y′(τ(t)))α

r(t) (y′(t))α ≥ λ(ρ2)− ε, on [t4,∞). (2.22)
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Repeating the above process with (2.5) being replaced by (2.20), one can show that
y(t) > r1/α(t)y′(t)R2(t, t0, ε) on [t5,∞), (2.23)

for some t5 ∈ [t4,∞), where

R2(t, t0, ε) = R(t, t0) + λ(ρ2)− ε
α

∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds.

Using (2.20) in (E) and applying Lemma 2.1 to a resulting inequality, we see that the
Lemma conclusion holds for k = 3. By induction, it is not hard to show that the same
conclusion holds for any k ∈ N. The proof is complete. �

Using Lemma 2.6 instead of Lemma 2.2, we are ready to improve Theorems 2.3−2.5.
Since the proofs are the same, we omit them.

Theorem 2.7. If ρk > 1/e for some k ∈ N, then (E) is oscillatory.

Theorem 2.8. Assume that 0 < ρi ≤ 1/e, i = 1, 2, . . . , k, for some k ∈ N. If

lim sup
t→∞

∫ t

t0

(
Rα(τ(s), t0)q(s)

−
(

α

α+ 1

)α+1 1
(λ(ρk)− ε)

τ ′(s)
R(τ(s), t0)r1/α(τ(s))

)
ds =∞

(2.24)

for some ε > 0, then (E) is oscillatory.

Theorem 2.9. Assume that 0 < ρi ≤ 1/e, i = 1, 2, . . . , k, for some k ∈ N. If

lim inf
t→∞

Rα(τ(t), t0)
∫ ∞
t

q(s)ds > 1
λ(ρk)

αα

(α+ 1)α+1 , (2.25)

then (E) is oscillatory.

Finally, we give an example to illustrate the efficiency of our results.

Example 2.10. Consider the second-order delay differential equation of the Euler type:((
y′(t)

)α)′ + q0
tα+1 y

α(mt) = 0, t ≥ 1, (2.26)

where α is a quotient of odd positives integers, q0 > 0, m ∈ (0, 1).
Note that the known condition (1.7) (or (1.4)) requires

q0m
α >

αα

(α+ 1)α+1 (2.27)

for (2.26) to be oscillatory.
By Theorem 2.3, we have that Eq. (2.26) is oscillatory if

ρ := q0m
α ln 1

m
>

1
e . (2.28)

Now consider the case that (2.28) fails, that is, if ρ ≤ 1/e. By Theorem 2.4 (or Theorem
2.5), we deduce that (2.26) is oscillatory if

q0m
α >

1
λ(ρ)

αα

(α+ 1)α+1 . (2.29)

Since λ(ρ) ∈ [1, e), our result improves (2.27).
Next, let us illustrate how Theorems 2.7 and 2.8 apply when both condition (2.28) and

(2.29) fail. By Theorem 2.7, equation (2.26) is oscillatory if, for some k ∈ N,

ρk >
1
e , (2.30)

where
ρ1 := ρ
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and, for ρi ∈ (0, 1/e], i ∈ N,

ρi+1 := q0m
α
(

1 + λ(ρi)
α

mαq0

)α
ln 1
m
, i ∈ N.

If, in kth iteration step, condition (2.30) fails, then, by Theorem 2.8 (or Theorem 2.9), we
have that (2.26) is oscillatory if

q0m
α >

1
λ(ρk)

αα

(α+ 1)α+1 . (2.31)

Now, let us consider a particular case of (2.26), namely,((
y′(t)

)3)′ + 11
t4
y3(0.2t) = 0. (2.32)

Note that condition (2.27) is not applicable, since 0.088 ≯ 0.105469. Using the definition
of ρk, we get ρ1 = 0.141631 ≯ 1/e, ρ2 = 0.156883 ≯ 1/e. Then condition (2.31) with k = 2
gives 0.106376 > 0.105469. Hence, by Theorem 2.8, (2.32) is oscillatory.

Finally, we consider another particular case of (2.26), namely,((
y′(t)

)1/3
)′

+ 0.4
t4/3 y

1/3(0.4t) = 0. (2.33)

Note that condition (2.27) is not applicable, since 0.294723 ≯ 0.47247. Using the definition
of ρk, we get ρ1 = 0.270052 ≯ 1/e, ρ2 = 0.357776 ≯ 1/e, ρ3 = 0.386561 > 1/e. Thus,
condition (2.30) is satisfied for k = 3, and by Theorem 2.7, we conclude that (2.33) is
oscillatory.

We remark that none of the oscillation criteria presented in [8–10,14,16, 20–24] can be
applied to equation (2.32) or (2.33).

Remark 2.11. The results presented in this paper strongly depend on the properties of
first-order delay differential equations. An interesting problem for further research is to
establish different iterative techniques for testing oscillations in (E) independently on the
constant 1/e.
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