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An optimal controlled selection procedure for
sample coordination problem using linear
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Abstract
A number of procedures have been developed for maximizing and mini-
mizing the overlap of sampling units in different/repeated surveys. The
concepts of controlled selection, transportation theory and controlled
rounding have been used to solve the sample co-ordination problem.
In this article, we proposed a procedure for sample co-ordination prob-
lem using linear programming with the concept of distance function
that facilitates variance estimation using the Horvitz-Thompson esti-
mator. The proposed procedure can be applied to any two-sample sur-
veys having identical universe and stratification. Some examples have
been considered to demonstrate the utility of the proposed procedure
in comparison to the existing procedures.
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1. Introduction

In practical life, we face situations where the same population is sampled in various
surveys so as to obtain information on variety of characters or to obtain current estimates
of a characteristic of the population. There are certain applications for which samples
are selected at the same time point, for two or more surveys for the same population. For
example, a sample can be designed for collecting information about the education status
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of the families and another sample can be designed to collect information about the in-
come of the families for the same population. On the other hand, if we have improved
data after conducting a survey, then it would be desirable to improve the stratification
and measures of size. In each survey, it is possible that both the stratification and the
measure of size (i.e. the selection probabilities) of the sampling units are different. With
the help of updated data a redesign is attempted in which the old units remain the same
but the stratification and the selection probabilities are changed. In the redesigning of
a survey for the same population, the two samples must be selected sequentially since
the designs pertain to different time points. Moreover, it may be considered desirable to
contain as many old units as possible in the new sample so that the costs associated with
hiring of new enumerators, providing training to the enumerators, etc., can be reduced.
Mostly in all the surveys, the cost of sampling is roughly proportional to the total number
of units sampled in surveys. Thus, if we select the same units twice instead of selecting
two different units, it will reduce the cost of the survey. When the cost of the survey
is limited, it is usually desirable to select the units which can be taken as a sample for
both the surveys (in case of simultaneous as well as in sequential selection). It can be
achieved by minimizing the number of different units in the union of the samples. This
is known as the problem of maximization of overlap between the sampling units or the
positive sample co-ordination problem. On the other hand, a situation also exists, where
it is desirable to withdraw or minimize the likelihood of selecting the same unit in more
than one survey. This kind of problem is known as minimization of overlap of sampling
units or the problem of negative sample co-ordination.

The problem of co-ordination of sampling units has been a topic of interest for
more than fifty years. Various procedures have been proposed by different researchers
in order to solve the sample co-ordination problem. Early developments on this topic
were due to Patterson (1950) and Keyfitz (1951). Raj (1956) introduced the sample
co-ordination problem as a transportation problem in linear programming by considering
one unit per stratum. Kish and Hess (1959), Fellegi (1963, 1966), Gray and Platek (1963)
and Kish (1963) also proposed some procedures for sample co-ordination problem but
these procedures were in general restricted to either two successive samples or to small
sample size. To solve the problem in context of a large sample size, Kish and Scott (1971)
proposed a procedure for sample co-ordination problem. Brewer et al. (1972) proposed
the concept of permanent random number (PRN) for solving the sample co-ordination
problem. Causey et al. (1985) proposed an optimum linear programming procedure
for maximizing the expected number of sampling units which are common to the two
designs, when the two sets of sample units are chosen sequentially. Ernst and Ikeda
(1995) also proposed a linear programming procedure for overlap maximization under
very general conditions. Ernst (1996) introduced a procedure for sample co-ordination
problem, with one unit per stratum designs where the two designs may have different
stratifications. Ernst (1998) also proposed a procedure for sample co-ordination problem
with no restriction on the number of sample units per stratum, but the stratification must
be identical. Both of these procedures proposed by Ernst used the controlled selection
algorithm of Causey et al. (1985) and can be used for simultaneous as well as sequential
sample surveys. Based on the procedures of Ernst (1996, 1998), Ernst and Paben (2002)
introduced a new procedure for sample co-ordination problem, which has no restriction
on the number of sample units selected per stratum and also does not require that the
two designs have identical stratification. Deville and Tille (2000) used random parti-
tion of population to solve the sample co-ordination problem in repeated sample surveys.
Matei and Tille (2006) introduced a methodology for sample co-ordination problem based



on iterative proportional fitting (IPF), to compute the probability distribution of a bi-
design. Their procedure can be applied to any type of sampling design for which it is
possible to compute the probability distribution for the two samples. Matei and Skinner
(2009) developed optimal sampling design for given unit inclusion probabilities in order
to realize maximum co-ordination. Their method is based on the concept of controlled
selection and some theoretical conditions on joint selection probability of two samples.
Tiwari and Sud (2012) introduced a procedure for solving sample co-ordination problem
using the multiple objective linear programming. There procedure is efficient but quite
cumbersome in the sense that before applying the idea of nearest proportional to size
design to obtain the desired controlled IPPS design they have to first obtain an appro-
priate uncontrolled IPPS design and then define a non-IPPS design which totally avoids
the non-preferred samples to make their probabilities zero. The procedure of Tiwari and
Sud (2012) can be used for situations where two surveys are conducted for the same
population with identical stratification and the sample units are selected simultaneously
for the two designs.

In this article, using the linear programming approach with distance function, we
propose an improved method for sample co-ordination problem which maximize (or mini-
mize) the overlap of sampling units between two designs. The proposed procedure got its
inspiration from the sample co-ordination procedure of Ernst (1998). The basic concept
of the proposed procedure is adopted from Ernst (1998), however the way of solving the
controlled selection problem is different and made quite simple in the proposed proce-
dure. The proposed procedure also facilitates variance estimation using Yates–Grundy
(1953) form of Horvitz-Thompson (1952) variance estimator, a feature not available with
the procedure of Ernst (1998). SAS 9.3 and MATLAB 10.0 windows version packages
have been used to solve this problem.

In Section 2, we describe the preliminaries and notations adopted in this arti-
cle. In Section 3, we discuss the proposed methodology for positive and negative sample
co-ordination problem. In Section 4, some numerical examples have been considered to
demonstrate the utility of the proposed procedure. Finally in Section 5, the findings of
this article are summarized.

2. The Basic Notations and Preliminaries

Let us consider a two-dimensional population array A of N units, consisting of
cells that have real numbers, aij , (i = 1, ... , R, j = 1, . . . , C). Suppose a sample of size
n is to be obtained from this population. Let y be the characteristic under study, Yij

the y-value for the ith & jth unit in the population (i = 1, ... , R, j = 1, .. ,C) and yl
the y-value for the l th unit in the sample (l = 1, ... , n). Let sij be each internal entry
of a sample (s). Then sij equals either [aij ] or [aij ]+1, where [aij ] is the integer part
of aij . We have to consider a set of samples with selection probabilities that satisfy the
constraints:

E(sij | i, j) =
∑

i,j∈s,s∈S
sijp(s) = naij (2.1)

and
∑
s∈S

p(s) = 1 (2.2)

where S is the set of all possible samples {s}, and p(s) is the selection probability of



each sample s.

There can be many sets of probability distributions p(s) satisfying Eq. (2.1) and
Eq. (2.2), although only one set of probabilities can be used to obtain a solution to the
sample co-ordination problem. We may consider an algorithm based on an appropriate
and objective principle to find the solution that reflects the closeness of each sample s
to A. For this purpose we consider the several following measures of closeness between A
and s.

The ordinary distance, which is often called the Euclidean distance, given by

ξ1(A, s) = [
R∑

i=1

C∑
j=1

(aij − sij)2]1/2 (2.3)

is the most common measure to define the distance between A and s, as it is easy to
calculate.

Two other distance measures can also be used to define the distance between A
and s. These are:

(i) Cosine Distance Function:

ξ2(A, s) = 1−
R∑

i=1

C∑
j=1

aijsij
‖A‖2‖s‖2

(2.4)

(ii) Bray-Curtis Distance Function:

ξ3(A, s) =

R∑
i=1

C∑
j=1

(aij−sij)

R∑
i=1

C∑
j=1

(aij+sij)
(2.5)

We have applied these three distance functions given in Eq.(2.3), Eq.(2.4) and
Eq.(2.5), to all co-ordination problems considered by us and found that the distance
function ξ2 given in Eq.(2.4) provides best result in terms of the value of the objective
function. Therefore, we shall be using ξ2 as the distance measure in this article.

Following the notations of Ernst (1998), we consider two sampling designs D1 and
D2, with identical population and stratification, consisting N units, with S denoting one
of the strata. We have to select the given number of sample units from the two designs.
The selection probability of each unit in S is different for the two designs. First of all
we consider the problem of maximizing the overlap of sampling units in D1 and D2 de-
signs. For this purpose, the sample units are selected subject to the following conditions
originally introduced by Ernst (1998):

(i) There are a predetermined number of units, nl, selected from S for the Dl sample,
l = 1, 2. That is, the sample size for each stratum and design combination is fixed.
(ii) The ith unit in S is selected for the Dl sample with its assigned probability, denoted
by (πi)l, l = 1, 2.
(iii) The expected value of the number of sample units common to the two designs is
maximized.
(iv) The number of sample units common to any D1 and D2 samples is always within
one of the maximum expected value.



In each stratum S, we applied the described procedure separately. First of all, we
construct a real valued tabular array W = (wij), which is a two–dimensional array. Here
(wij) represents the internal units of W. A tabular array is one in which the final row
and column contain the marginal values (marginal values are the sum of internal values
for each row and column). Array W is known as the controlled selection problem, as
it specifies the probability and expected value conditions to be satisfied for the problem
under consideration.

Ernst (1998) suggested that the problem of maximizing the overlap of sampling
units for the two designs can be converted into the “Controlled Selection” problem W =
(wij), where W is an (N+1) × 5 array with N internal rows and 4 internal columns, here
N is the number of units in the stratum universe. The internal units of W are computed
for each internal row i = 1, . . . , N as follows:

wi3 = min[(πi)1, (πi)2] (2.6)

wil = (πi)l − wi3, l = 1, 2 (2.7)

wi4 = 1−
3∑

l=1

wil (2.8)

wi5 =
4∑

l=1

wil (2.9)

Array W can be considered as controlled selection problem. The first unit wi1 in
the ith internal row of this array denotes the probability that the ith unit is in the sample
D1 but not in D2; the second unit wi2 is the probability that the ith unit is in the sample
D2 but not in D1; the third unit wi3 is the probability that the ith unit is in both the
samples D1 and D2; and the fourth element wi4 is the probability that it is in neither
sample. The marginals in the first four columns of the last row represents the expected
number of units in the corresponding category.

The controlled selection problem W can be solved by constructing a sequence of
integer valued tabular array, M 1 = (mij1), M 2= (mij2),...., M u= (miju), with the same
number of rows and columns as W and associated probabilities p1, p2,..., pu, which spec-
ify certain conditions. At last, a random array M = (mij), is then chosen among these
u arrays using the indicated probability. Now we discuss the conditions which must be
satisfied by this sequence of integer valued arrays. In each internal row of these arrays,
one of the four internal columns has the value 1 and the other three have value 0. The
value 1 in the first column indicates that the unit is only in the D1 sample; value 1 in
the second column indicates that the unit is only in the D2 sample. Similarly, value 1 in
the third column indicates that the unit is in both samples; and the value 1 in the forth
column indicates that the unit is in neither sample.

Ernst (1998) has derived a set of conditions which, if met by the random array M,
are sufficient to satisfy the conditions (i)-(iv). These conditions are as follows:

Condition (ii) will be satisfied if

p(mil = 1)+p(mi3 = 1) = wil + wi3 = (πi)l, i = 1, ..., N, l = 1, 2 (2.10)



Similarly, condition (iii) will be satisfied if

p(mi3 = 1) = wi3, i = 1, ..., N, (2.11)

If it can be established that if

E(mil) =
u∑

v=1

pvmijv = wij , i = 1, ..., N, j = 1, ..., 4 (2.12)

then conditions (ii) and (iii) will hold, since (2.12) implies (2.10) and (2.11).

To establish condition (i), one only needs to show that

m(N+1)lv +m(N+1)3v = nl, l = 1, 2 v = 1, ..., u (2.13)

Finally, to establish (iv), it is sufficient to show that

| m(N+1)3v −w(N+1)3 | <1, v = 1, ..., u (2.14)

here w(N+1)3 is the maximum expected number of units which are common to the two
samples and m(N+1)3v is the number of units common to the vth possible sample.

Now the problem reduces to the solution of the controlled selection problem W
in such a way as to satisfy the conditions (2.12)-(2.14). The solution of the controlled
selection problem W, will then maximize the overlap of sampling units in the design D1

and D2. To find the solution of the controlled selection problem W, Ernst (1998) used
the procedure of Causey et al. (1985) and showed that the solution obtained through the
procedure of Causey et al. (1985) satisfied all the conditions of maximization of overlap.
The procedure of Causey et al. (1985) is based on the theory of controlled rounding,
developed by Cox and Ernst (1982). In general, a controlled rounding of an (N+1) ×
(L+1) tabular array W = (wij) to a positive integer base b is an (N+1) × (L+1) tabular
array M = (mij) for which mij=bwij/bc or(bwij/bc + 1)b for all i,j where bxc denotes
the greatest integer not exceeding x.

One drawback of the procedure of Ernst (1998) is that it is quite tedious in imple-
mentation. At each step of the procedure one has to obtain the zero-restricted controlled
rounding of the adjusted array. Only after this the procedure of controlled selection can
be achieved. The other drawback of this procedure is that the variance estimation is
not possible in most of the cases due to non-fulfilment of the non-negativity condition
πij≤πiπj of Y-G form of the H-T variance estimator, where πi and πj denote the first
order inclusion probabilities and πij is the second order inclusion probability of the units
i and j.

Recently, Tiwari and Sud (2012) proposed a procedure for solving sample co-
ordination problem using the multiple objective linear programming. First of all, they
constructed a two dimensional real valued array W, with internal units wij , as defined
in (2.6)-(2.9). Using FORTRAN 77 program, they obtained a set A of all possible com-
binations of units according to the probabilities of the array W. The all possible com-
binations of units were nothing but the sequence of arrays, M 1, M 2,. . . , Mt. The
probabilities p1, p2,. . . , pt, satisfying the conditions (2.12)-(2.14), associated with
these arrays, were also calculated. After that, they excluded all those arrays from



the set A,which do not satisfy the condition (2.13). This set, termed as the set of non-
preferred samples, was denoted by A1. Next, they obtained an IPPS design p(s) for each
sample (s) in the set of all possible samples. This IPPS design is known as uncontrolled
IPPS design as no restrictions were imposed on the selection probabilities. Tiwari and
Sud (2012) used Sampford (1967) IPPS design to obtained the initial uncontrolled IPPS
design p(s), as this design imposed only one restriction on selection probabilities. Using
the initial IPPS design p(s), they obtained a design p0(s) given by:

p0(s) =


p(s)

1−
∑

s∈A1
p(s) fors ∈ (A−A1)

0 (otherwise)

The design p0(s) assigned zero probability to the non-preferred samples and was
termed as ‘controlled design’. This design p0(s) is no longer an IPPS design. So, Tiwari
and Sud (2012) proposed a new IPPS design p*(s), which is as near as possible to the
design p0(s). To achieve the design p*(s), they minimized the directed distance D from
the sampling design p*(s) to p0(s), given as:

D(p0, p∗) =
∑

s∈(A−A1)

p∗2(s)
p0(s)

−1

The maximization of overlap of units between the two designs was obtained through
the solution of the controlled selection problem W. To find the solution of the controlled
selection problem W, Tiwari and Sud (2012) applied the theory of multiple objective
linear programming. With the help of this multiple objective linear programming they
obtained an IPPS design that assigns zero probability to non-preferred samples. Tiwari
and Sud (2012) also modified their procedure for the situations where minimization of
overlap of sampling units was desirable. To minimize the overlap of sampling units, they
redefine the internal units of W and made some changes in the objective function of the
linear programming. Their procedure also provided the facility of variance estimation
using the HT variance estimator.

3. Optimal Controlled Procedure

We propose a procedure for positive co-ordination problem which also provides
the advantage of variance estimation using HT variance estimator. The proposed pro-
cedure is compared with the procedure of Tiwari and Sud (2012) and it was found that
it provides better results than the procedure of Tiwari and Sud (2012). The linear pro-
gramming approach in conjunction with a distance function was used in the proposed
procedure for maximizing the probability of those sample combinations which consist of
maximum number of overlapped sampling units. The non-negativity condition of HT
estimator is also achieved in the proposed procedure to facilitate variance estimation
through Horvitz-Thompson estimator. The proposed procedure is described as follows:

First of all, we obtain the (N+1) × 5 array W with internal units as discussed
in (2.6)-(2.9). Using ’combcoms’ command in MATLAB 10.0, we obtain all possible
combinations of units according to the probabilities of the array W. Let the set of all
possible pairs of D1 and D2 samples be denoted by B. The set of all possible samples ‘B ’
satisfy the conditions (2.12)-(2.14). In order to satisfy the condition (2.13), we neglect all
those arrays from the set of all possible arrays which do not satisfy the condition (2.13).
Let this set of arrays be denoted by B1. The set B1 shows the set of non-preferred
samples. Now, we obtain an appropriate controlled inclusion probability proportional



to size (IPPS) design p(s), for each sample (s) in the set of all possible samples (B),
using the values of the internal units (wij ’s) of the array W. The design p(s) assigns zero
probability to the non preferred samples and is termed as a controlled IPPS design.

The maximization of overlap of units between the two designs D1 and D2 is ob-
tained through the solution of the controlled selection problem W, which satisfies the
conditions (2.12)-(2.14). This is achieved through the solution of the following linear
programming problem:

Maximize φ =
∑
s∈B

ξ2(A, s)p(s) (3.1)

Subject to the constraints:

i)
∑

s∈B−B1

p(s) = 1

ii)
∑

s∈B−B1

p(s)mij = wij , i = 1, ...,N, j = 1, ..., 4

iii) bwijvc ≤ mijv ≤ bwijvc+1, i = 1, ..., N ; j = 1, ..., 4; v = 1, ..., u

iv) p(s) ≥ 0 (3.2)

v)
∑

s3i,j
p(s) ≤(πi)l(πj)l, i < j =1,...,N; l =1, 2

vi)
∑

s3i,j
p(s) > 0, i<j = 1, .., N

where B-B1 shows the set of sample combinations consisting of maximum number of
overlapped sampling units, s represents a sample in the set of all possible samples gener-
ated through the (N+1) × 5 array W and bxc denotes the greatest integer not exceeding
x.

In the proposed procedure, constraints (i) and (iv) in (3.2) are necessary for any
sampling design. Constraints (ii) and (iii) are required to satisfy (2.11) and (2.13), re-
spectively. Constraint (ii) also ensures that the resultant design is an IPPS design. Con-
straint (v) in (3.2) is desirable as it ensures the sufficient condition for non-negativity of
the Y-G form of the HT variance estimator and constraint (vi) is desirable as it ensures
unbiased variance estimation using HT estimator.

In many situations, it is often desirable to withdraw the selection of same unit
for two or more surveys. In these situations, we have to minimize the overlap of sam-
pling units for two or more surveys. The proposed procedure can be easily modified to
minimize the overlap of sampling units. In order to minimize the overlap of sampling
units, we have to redefine the internal units of the array W. For negative co-ordination,
condition (2.6) is replaced by

wi3 = max(πi1 + πi2 − 1, 0) (3.3)

Conditions (2.7), (2.8) and (2.9) will remain the same as for the case of maximization of
overlap of sampling units. The objective function, in the case of minimization of overlap



of sampling units is redefined as:

Maximize φ =
∑
s∈C

ξ2(A, s)p(s) (3.4)

where C denotes the set of all sample combinations, which consists of minimum number
of overlapped sampling units.

One limitation of the proposed linear programming approach is that it becomes
cumbersome when the population size is large, as the process of enumeration of all pos-
sible samples and formation of the objective function and constraints becomes quite
tedious. With the help of faster computing techniques and modern statistical tools,
there may not be much difficulty in using the proposed procedure for large populations.
The proposed plan takes lesser computing time in comparison to the procedures of Ernst
(1998) and Tiwari & Sud (2012).

The proposed procedure can be used for the situations when the two surveys are
conducted for the same population with identical stratification. These two surveys can
be conducted sequentially or simultaneously. There is no restriction on the number of
units selected per stratum. The proposed procedure is superior to the procedures of
Ernst (1998) and Tiwari and Sud (2012) as the proposed procedure maximizes the prob-
ability of those sample combinations which consists of maximum number of overlapped
sampling units (in case of positive co-ordination) or minimize the probability of those
sample combinations which consists of maximum number of overlapped sampling units
(in case of negative co-ordination). The proposed procedure also ensures variance esti-
mation using H-T variance estimator and in the situations, where the conditions of H-T
estimator could not be satisfied, some alternative variance estimator can be used.

4. Empirical Evaluation

In this section, we shall present some empirical examples to demonstrate the utility
of the proposed procedure. We also compare the proposed procedure with the procedures
of Ernst (1998) and Tiwari and Sud (2012).

Example 1.1 (Maximization Case): Let consider the following example taken from
Ernst (1998), with inclusion probabilities and values of characteristic Y (given in Table
4.1) for two sampling designs with 5 (N = 5) different units in each stratum.

Table 4.1
Inclusion probabilities of units

i 1 2 3 4 5
πi1 0.6 0.4 0.8 0.6 0.6
πi2 0.8 0.4 0.2 0.4 0.2

Consider that a sample of size 3 is to be selected for sampling design D1 and a
sample of size 2 for the sampling design D2, then find the values of internal units of W.
Using (2.6)-(2.9), the array W is obtained as:



0.0 0.2 0.6 0.2
0.0 0.0 0.4 0.6

W = 0.6 0.0 0.2 0.2
0.2 0.0 0.4 0.4
0.4 0.0 0.2 0.4

1
1
1
1
1

1.2 0.2 1.8 1.8 5

Now we have to solve the above controlled selection problem with 4N (= 20) in-
ternal units in W and n = 5, where n denotes the total number of sample units to be
selected from the two designs. The set of all possible samples (B) consists of 15,504 sam-
ples. Out of these 15,504 samples, only 24 samples satisfy the condition (2.13). Therefore,
all arrays M l that belongs to the set (B-B1) consists of 24 samples given as:

Sample 1
0.0 0.2 0.0 0.0
0.0 0.0 0.4 0.0
0.6 0.0 0.0 0.0
0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.4

Sample 2
0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.6
0.6 0.0 0.0 0.0
0.2 0.0 0.0 0.0
0.0 0.0 0.2 0.0

Sample 3
0.0 0.2 0.0 0.0
0.0 0.0 0.4 0.0
0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.4
0.4 0.0 0.0 0.0

Sample 4
0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.6
0.6 0.0 0.0 0.0
0.0 0.0 0.4 0.0
0.4 0.0 0.0 0.0

Sample 5
0.0 0.0 0.6 0.0
0.0 0.0 0.4 0.0
0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.4
0.0 0.0 0.0 0.4

Sample 6
0.0 0.0 0.6 0.0
0.0 0.0 0.0 0.6
0.6 0.0 0.0 0.0
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.4

Sample 7
0.0 0.0 0.6 0.0
0.0 0.0 0.0 0.6
0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.4
0.0 0.0 0.2 0.0

Sample 8
0.0 0.0 0.0 0.2
0.0 0.0 0.4 0.0
0.6 0.0 0.0 0.0
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.4

Sample 9
0.0 0.0 0.0 0.2
0.0 0.0 0.4 0.0
0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.4
0.0 0.0 0.2 0.0

Sample 10
0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.6
0.6 0.0 0.0 0.0
0.0 0.0 0.4 0.0
0.0 0.0 0.2 0.0

Sample 11
0.0 0.2 0.0 0.0
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.2
0.2 0.0 0.0 0.0
0.4 0.0 0.0 0.0

Sample 12
0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.6
0.0 0.0 0.2 0.0
0.2 0.0 0.0 0.0
0.4 0.0 0.0 0.0

Sample 13
0.0 0.0 0.6 0.0
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.2
0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.4

Sample 14
0.0 0.0 0.6 0.0
0.0 0.0 0.0 0.6
0.0 0.0 0.2 0.0
0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.4

Sample 15
0.0 0.0 0.6 0.0
0.0 0.0 0.0 0.6
0.0 0.0 0.0 0.2
0.2 0.0 0.0 0.0
0.0 0.0 0.2 0.0

Sample 16
0.0 0.0 0.0 0.2
0.0 0.0 0.4 0.0
0.0 0.0 0.2 0.0
0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.4

Sample 17
0.0 0.0 0.0 0.2
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.2
0.2 0.0 0.0 0.0
0.0 0.0 0.2 0.0

Sample 18
0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.6
0.0 0.0 0.2 0.0
0.2 0.0 0.0 0.0
0.0 0.0 0.2 0.0

Sample 19
0.0 0.0 0.6 0.0
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.4
0.4 0.0 0.0 0.0

Sample 20
0.0 0.0 0.6 0.0
0.0 0.0 0.0 0.6
0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.4
0.4 0.0 0.0 0.0



Sample 21
0.0 0.0 0.6 0.0
0.0 0.0 0.0 0.6
0.0 0.0 0.0 0.2
0.0 0.0 0.4 0.0
0.4 0.0 0.0 0.0

Sample 22
0.0 0.0 0.0 0.2
0.0 0.0 0.4 0.0
0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.4
0.4 0.0 0.0 0.0

Sample 23
0.0 0.0 0.0 0.2
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.2
0.0 0.0 0.4 0.0
0.4 0.0 0.0 0.0

Sample 24
0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.6
0.0 0.0 0.2 0.0
0.0 0.0 0.4 0.0
0.4 0.0 0.0 0.0

Here B-B1 consists of the set of sample combinations which have two over-
lapped sampling units, that is, sample numbers 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, and 24. Thus, the objective function (3.1) becomes:

Maximize φ = 0.2476*x [5] + 0.1874*x [6] + 0.223*x [7] + 0.3557*x [8] + 0.4013*x [9] +
0.3271*x [10] + 0.4013*x [13] + 0.3271*x [14] + 0.3705*x [15] + 0.5444*x [16] + 0.6115*x [17]
+ 0.5047*x [18] + 0.3557*x [19] + 0.2863*x [20] + 0.2863*x [21] + 0.4860*x [22] + 0.4860*x [23]
+ 0.4013*x [24]

Applying the method discussed in Section 3 and solving the resultant linear pro-
gramming problem through the SAS 9.3 and MATLAB 10.0 windows version packages,
we obtain the controlled IPPS plan given in Table 4.2.

The objective function has the value: φ = 0.260624

Table 4.2

Optimal controlled IPPS plan corresponding to proposed procedure

s p(s) s p(s) s p(s) s p(s)
1 0.0 7 0.12 13 0.08 19 0.04
2 0.0 8 0.04 14 0.0 20 0.12
3 0.0 9 0.0 15 0.0 21 0.0
4 0.20 10 0.0 16 0.04 22 0.0
5 0.12 11 0.0 17 0.08 23 0.0
6 0.12 12 0.0 18 0.0 24 0.0

Ernst (1998) obtained the following solution for this problem:

p3= 0.2, p6= 0.4, p18= 0.2, p19= 0.2

Tiwari and Sud (2012) obtained the following solution for this problem:

p1= 0.08, p3= 0.04, p4= 0.08, p5= 0.08, p6= 0.24, p9= 0.08,
p15= 0.12, p20= 0.16, p22= 0.04, p23= 0.08

Using the procedures of Ernst (1998) and Tiwari and Sud (2012), we find the value
of φ is 0.8 and 0.8, respectively. Thus, we observe that the value of φ for the proposed
procedure is very small in comparison to the procedures of Ernst (1998) and Tiwari and
Sud (2012). With the help of proposed procedure we can also estimate the value of vari-
ance using the Horvitz-Thompson variance estimator.

Example 1.2 (Minimization Case): Let us suppose the inclusion probabilities of
Example 1.1 for the two sampling designs for 5 different units. For the sampling design



D1, we have to select a sample size of 3, and a sample of size 2 for the sampling design
D2, in such a way that the overlap between the two designs is minimized. First of all we
find the values of internal units of W. Using (2.7)-(2.9) and (3.3), W is obtained as:

0.2 0.4 0.4 0.0
0.4 0.4 0.0 0.2

W = 0.8 0.2 0.0 0.0
0.6 0.4 0.0 0.0
0.6 0.2 0.0 0.2

1
1
1
1
1

2.6 1.6 0.4 0.4 5

Solving the controlled selection problem with N = 20 and n = 5 the possible com-
binations satisfying condition (2.13) are given in Appendix. After solving this example
with the help of proposed scheme, we obtain the controlled IPPS sampling plan given in
Table 4.3.

Table 4.3

Optimal controlled IPPS plan corresponding to proposed scheme

s p(s) s p(s) s p(s) s p(s)
1 0.12 5 0.0 9 0.04 13 0.0
2 0.0 6 0.08 10 0.0 14 0.20
3 0.08 7 0.16 11 0.0 15 0.0
4 0.12 8 0.0 12 0.2 16 0.0

The value of the objective function is: φ = 0.165016

We also solve this example by the procedure of Ernst (1998), we get the following
result:

p1= 0.4, p6= 0.2, p13= 0.2, p16= 0.2

Tiwari and Sud (2012) obtained the following solution for this problem:

p2= 0.08, p3= 0.04, p4= 0.16, p5= 0.12, p7= 0.16, p8= 0.04,

p11= 0.08, p12= 0.12, p14= 0.20;

Following the procedures of Ernst (1998) and Tiwari and Sud (2012), the value of
φ is same for both the procedures is 0.6.

5. Conclusion

In this article, we have proposed a linear programming approach with distance
function as a weight for each sample, to obtain an optimum solution for the sample
co-ordination problem. The proposed procedure is superior to the procedures of Ernst
(1998) and Tiwari and Sud (2012) as it maximizes the probability of sample combinations
having maximum number of overlapped samplin units (in case of positive co-ordination)
or minimize the probability of sample combinations having maximum number of over-
lapped sampling units (in case of negative co-ordination). The proposed procedure also
ensures variance estimation using Y-G (1953) form of H-T (1952) variance estimator as
it satisfies the non-negativity condition of Horvitz-Thompson variance estimator through



constraint (v) in Eq. (3.2). The proposed procedure takes lesser computing time in
comparison to the procedures of Ernst (1998) and Tiwari and Sud (2012) and is found
to be more advantageous than these procedures.
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Appendix

Example 1.2 (Minimization Case). For this example the all possible combinations
are as follows:

Sample 1
0.0 0.4 0.0 0.0
0.0 0.4 0.0 0.0
0.8 0.0 0.0 0.0
0.6 0.0 0.0 0.0
0.6 0.0 0.0 0.0

Sample 2
0.0 0.4 0.0 0.0
0.4 0.0 0.0 0.0
0.0 0.2 0.0 0.0
0.6 0.0 0.0 0.0
0.6 0.0 0.0 0.0

Sample 3
0.2 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.0 0.2 0.0 0.0
0.6 0.0 0.0 0.0
0.6 0.0 0.0 0.0

Sample 4
0.0 0.4 0.0 0.0
0.4 0.0 0.0 0.0
0.8 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.6 0.0 0.0 0.0

Sample 5
0.2 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.8 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.6 0.0 0.0 0.0

Sample 6
0.2 0.0 0.0 0.0
0.4 0.0 0.0 0.0
0.0 0.2 0.0 0.0
0.0 0.4 0.0 0.0
0.6 0.0 0.0 0.0

Sample 7
0.0 0.4 0.0 0.0
0.4 0.0 0.0 0.0
0.8 0.0 0.0 0.0
0.6 0.0 0.0 0.0
0.0 0.2 0.0 0.0

Sample 8
0.2 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.8 0.0 0.0 0.0
0.6 0.0 0.0 0.0
0.0 0.2 0.0 0.0

Sample 9
0.2 0.0 0.0 0.0
0.4 0.0 0.0 0.0
0.0 0.2 0.0 0.0
0.6 0.0 0.0 0.0
0.0 0.2 0.0 0.0

Sample 10
0.2 0.0 0.0 0.0
0.4 0.0 0.0 0.0
0.8 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.0 0.2 0.0 0.0

Sample 11
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.2
0.0 0.2 0.0 0.0
0.6 0.0 0.0 0.0
0.6 0.0 0.0 0.0

Sample 12
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.2
0.8 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.6 0.0 0.0 0.0

Sample 13
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.2
0.8 0.0 0.0 0.0
0.6 0.0 0.0 0.0
0.0 0.2 0.0 0.0

Sample 14
0.0 0.0 0.4 0.0
0.0 0.4 0.0 0.0
0.8 0.0 0.0 0.0
0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.2

Sample 15
0.0 0.0 0.4 0.0
0.4 0.0 0.0 0.0
0.0 0.2 0.0 0.0
0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.2

Sample 16
0.0 0.0 0.4 0.0
0.4 0.0 0.0 0.0
0.8 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.0 0.0 0.0 0.2

Now we apply the proposed model as follows:

Max. φ = 0.1563*x [1] + 0.3235*x [2] + 0.3622*x [3] + 0.2081*x [4] + 0.2409*x [5] +
0.4325*x [6] + 0.2409*x [7] + 0.2751*x [8] + 0.4792*x [9] + 0.3362*x [10];

After solving the above model, we find the desired results shown in example 1.2.
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