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Abstract
Many studies have investigated the lattice of fuzzy substructures of algebraic structures
such as groups and rings. In this study, we prove that the lattice of L-ideals of a ring
is distributive if and only if the lattice of its ideals is distributive, for an infinitely ∨-
distributive lattice L.
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1. Introduction
The lattice-theoretic aspects of algebraic substructures and L-algebraic substructures

have been a topic of discussion in the literature for quite some time. It follows as a con-
sequence of the subdirect product theorem formulated by Professor Tom Head in [9] that
the properties of the lattice of algebraic substructures and that of corresponding fuzzy al-
gebraic substructures are almost identical. However before the emergence of the subdirect
product theorem, the modularity of the lattice of fuzzy normal subgroups of a group and
the modularity of the lattice of fuzzy ideals of a ring have been established in [1–5,10,17].

The distributivity constitutes a very powerful property of a lattice. On the other hand,
Tarnauceanu [15] worked on finite groups and proved that a group is cyclic iff its lattice
of fuzzy subgroups is distributive. Majumdar and Sultana [13] proved that the lattice of
fuzzy ideals of a ring is distributive. However, Kumar [12] has obtained just the opposite
of this result. Also Zhang and Meng [18] gave a counter example for the result of Ma-
jumdar and Sultana. Recently in [11] the modularity of L-ideals of a ring is established,
where the subdirect product theorem of Tom Head does not apply. Finally, the lattice of
L-fuzzy extended ideals is studied in [7]. We ask: is the lattice of all L-ideals of a ring
distributive whose lattice of all ideals is distributive? This paper will answer the question
for an infinitely ∨-distributive lattice. In this paper, we propose an analogous connection
between the lattice of L-ideals and the lattice of ideals of a ring. We first describe some
properties of the lattice of L-ideals that are tools to obtain some results. Using these
results, we prove that the lattice of L-ideals is distributive when the lattice of ideals is
distributive for an infinitely ∨-distributive lattice L.
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2. Preliminaries
In this section, we briefly recall some basic concepts of lattices, L-subsets and rings.

Throughout this paper, L is a completely lattice with the least element 0 and the greatest
element 1. For every family {bi | i ∈ ∆}, we can popularize some operations such as∨

i∈∆
bi = sup{bi | i ∈ ∆},

∧
i∈∆

bi = inf{bi | i ∈ ∆}.

A complete lattice L is called infinitely ∨-distributive lattice if for all α ∈ L and ∆ ⊆ L,

α ∧ (
∨
β∈∆

β) =
∨
β∈∆

(α ∧ β).

For a nonempty set X, an L-subset is any function from X into L, which is introduced
by Goguen [8] as a generalization of the notion of Zadeh’s fuzzy subset [16]. The class of
L-subsets of X will be denoted by F (X,L). In particular, if L = [0, 1], it is appropriate to
replace fuzzy subset with L-subset. In this case the set of all fuzzy subsets of X is denoted
by F (X). Let µ and ν be L-subsets of X. We say that µ is contained in ν if µ(x) ≤ ν(x)
for every x ∈ X, denoted µ ≤ ν. Then ≤ is a partial ordering on F (X,L).

For each α ∈ L, we define the level subset

µα = {x ∈ X | α ≤ µ(x)}
Let µi (i ∈ ∆) be an L-subset of X. Define the intersection as follows:

(
⋂
i∈∆ µi)(x) =

∧
i∈∆ µi(x)

for all x ∈ X. The characteristic function of a set A ⊆ X is denoted by 1A.
Throughout this paper, R stands for a commutative ring with identity. I(R) stands for

all ideals of R, is a complete lattice with respect to set inclusion, called the ideals lattice of
R. Note that I(R) has initial element {0} and final element R, and its binary operations
∧,∨ are defined by I ∧ J = I ∩ J and I ∨ J = I + J , for all I, J ∈ I(R). I(R) may not be
a distributive lattice. For example, let R = Z× Z, Z is the ring of integers, we define the
operations as follows:

(a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (0, 0)
for any (a, b), (c, d) ∈ Z× Z. Then (R,+, ·) form a ring with zero (0, 0).

{(x, x) | x ∈ Z} ∩ ((Z× {0}) + ({0} × Z)) = {(x, x) | x ∈ Z},
whereas

({(x, x) | x ∈ Z} ∩ (Z× {0})) + ({(x, x) | x ∈ Z} ∩ ({0} × Z)) = {(0, 0)}.
The further knowledge about lattices and rings required in this paper can be found in
[6, 14].

3. L-ideals
In this section, we investigate the lattice structure of L-ideals of a ring R.

Definition 3.1. [14] Let µ be an L-subset in a ring R. Then µ is called an L-ideal of R if
µ(x− y) ≥ µ(x) ∧ µ(y) and µ(xy) ≥ µ(x) ∨ µ(y)

for all x, y ∈ R. The family of all L-ideals is denoted by FI(R,L). In particular, when
L = [0, 1], an L-ideal of R is referred to as a fuzzy ideal of R. The family of all fuzzy
ideals is denoted by FI(R).

The following lemma easly obtained from Proposition 2.2.[17].



182 D. Bayrak, S. Yamak

Lemma 3.2. Let µ ∈ F (R,L). Then µ is an L-ideal of R iff µα = ∅ or µα is a classical
ideal of R, for any α ∈ L.

Theorem 3.3. [11] Let µi (i ∈ ∆) be an L-ideal of a ring R. Then
⋂
i∈∆ µi is an L-ideal

of R.

By the Theorem 3.3., we immediately get the next corollary.

Corollary 3.4. FI(R,L) is a complete lattice under the ordering of L-set inclusion such
that

∧
i∈∆ µi =

⋂
i∈∆ µi for all µi ∈ FI(R,L) (i ∈ ∆).

Lemma 3.5. [2] Let A,B be subsets of R. Then
(1) A is an ideal of R if and only if 1A is an L-ideal of R,
(2) If A,B are ideals of R, then 1A ∨ 1B = 1A+B and 1A ∧ 1B = 1A∩B.
(3) {1A | A is an ideal of R} is a sublattice of FI(R,L)

4. The distributivity of FI(R, L)
In this section we will investigate some conditions related to distributivity of the lattice

of L-ideals of a ring R.

Definition 4.1. Let µ and ν be L-subsets of a ring R. Define µ⊕ ν as follows:

(µ⊕ ν)(x) = µ(x) ∨ ν(x) ∨
∨

x=y+z
µ(y) ∧ ν(z)

for all x ∈ R.

Lemma 4.2. Let L be an infinitely ∨-distributive lattice and µ, ν ∈ FI(L,R). Then
µ ∨ ν = µ⊕ ν.

Proof. Let x, y ∈ R. Then

µ⊕ ν(x) ∧ µ⊕ ν(y)
= [µ(x) ∨ ν(x) ∨ (

∨
x=a+b

µ(a) ∧ ν(b))] ∧ [µ(y) ∨ ν(y) ∨ (
∨

y=c+d
µ(c) ∧ ν(d))]

= [(µ(x) ∨ ν(x)) ∧ (µ(y) ∨ ν(y))] ∨ [(µ(x) ∨ ν(x)) ∧ (
∨

y=c+d
µ(c) ∧ ν(d))]

∨[(µ(y) ∨ ν(y)) ∧ (
∨

x=a+b
µ(a) ∧ ν(b))] ∨ [(

∨
y=c+d

µ(c) ∧ ν(d)) ∧ (
∨

x=a+b
µ(a) ∧ ν(b))]

= (µ(x) ∧ µ(y)) ∨ (µ(x) ∧ ν(y)) ∨ (ν(x) ∧ µ(y)) ∨ (ν(x) ∧ ν(y))
∨(

∨
y=c+d

µ(x) ∧ µ(c) ∧ ν(d)) ∨ (
∨

y=c+d
ν(x) ∧ µ(c) ∧ ν(d)) ∨ (

∨
x=a+b

µ(a) ∧ ν(b) ∧ µ(y))

∨(
∨

x=a+b
µ(a) ∧ ν(b) ∧ ν(y)) ∨ (

∨
x = a + b
y = c + d

µ(a) ∧ ν(b) ∧ µ(c) ∧ ν(d))

≤ µ(x+ y) ∨ ν(x+ y) ∨ (µ(x) ∧ ν(y)) ∨ (µ(y) ∧ ν(x)) ∨ (
∨

y=c+d
µ(x+ c) ∧ ν(d))

∨(
∨

y=c+d
µ(c) ∧ ν(d+ x)) ∨ (

∨
x=a+b

µ(a+ y) ∧ ν(b))

∨(
∨

x=a+b
µ(a) ∧ ν(b+ y)) ∨ (

∨
x = a + b
y = c + d

µ(a+ c) ∧ ν(b+ d))

≤ µ(x+ y) ∨ ν(x+ y) ∨ (
∨

x+y=u+v
µ(u) ∧ ν(v))

= µ⊕ ν(x+ y)
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Hence µ⊕ ν(x) ∧ µ⊕ ν(y) ≤ µ⊕ ν(x+ y).

µ⊕ ν(−x) = µ(−x) ∨ ν(−x) ∨ (
∨

−x=a+b
µ(a) ∧ ν(b))

= µ(−x) ∨ ν(−x) ∨ (
∨

x=(−a)+(−b)
µ(−(−a)) ∧ ν(−(−b))

≤ µ(x) ∨ ν(x) ∨ (
∨

x=u+v
µ(u) ∧ ν(v))]

= µ⊕ ν(x)
Hence µ⊕ ν(−x) ≤ µ⊕ ν(x).

µ⊕ ν(x) = µ(x) ∨ ν(x) ∨ (
∨

x=a+b
µ(a) ∧ ν(b))

≤ µ(xy) ∨ ν(xy) ∨ (
∨

x=a+b
µ(ay) ∧ ν(by))

≤ µ(xy) ∨ ν(xy) ∨ (
∨

xy=u+v
µ(u) ∧ ν(v))]

= µ⊕ ν(xy)
Similarly, we have µ⊕ν(y) ≤ µ⊕ν(xy). Thus µ⊕ν ∈ FI(R,L). It is clear that µ ≤ µ⊕ν
and ν ≤ µ⊕ ν.
Let θ ∈ FI(R,L) such that µ ≤ θ and ν ≤ θ. Then

µ(a) ∧ ν(b) ≤ θ(a) ∧ θ(b) ≤ θ(a+ b) = θ(x)
for all x = a+b. By the definition of µ⊕ν, it folows that µ⊕ν ≤ θ. Hence µ∨ν = µ⊕ν �

The following theorem gives the main results of this section.

Theorem 4.3. If L is an infinitely ∨-distributive lattice, then the following conditions are
equivalent:

(1) I(R) is a distributive lattice,
(2) FI(R,L) is a distributive lattice.

Proof. (2)⇒ (1) By Lemma 3.5, it is clear.
(1) ⇒ (2) Let µ, ν, θ ∈ FI(R). Since the distributive inequality is valid for every lattice,
we have

(µ ∧ ν) ∨ (µ ∧ θ) ≤ µ ∧ (ν ∨ θ).
And by Lemma 4.2 and Corollary 3.4,

(µ ∧ (ν ∨ θ))(x) = (µ ∧ (ν ⊕ θ))(x)
= µ(x) ∧ [ν(x) ∨ θ(x) ∨ (

∨
x=a+b

ν(a) ∧ θ(b))]

= (µ(x) ∧ ν(x)) ∨ (µ(x) ∧ θ(x)) ∨ (
∨

x=a+b
ν(a) ∧ θ(b) ∧ µ(x))

Let λ = ν(a) ∧ θ(b) ∧ µ(x) for some a, b ∈ R such that x = a+ b
Thus we have x ∈ µλ, a ∈ νλ, b ∈ θλ. Then x ∈ µλ ∩ (νλ + θλ). Due to distributivity of
I(R),

x ∈ (µλ ∩ νλ) + (µλ ∩ θλ).
It follows that there exist u, v ∈ R such that x = u+ v,

u ∈ µλ ∩ νλ and v ∈ µλ ∩ θλ.
Thus we have λ ≤ µ(u), λ ≤ ν(u), λ ≤ µ(v), λ ≤ θ(v). Hence,

λ ≤ (µ ∧ ν)(u) ∧ (µ ∧ θ)(v).
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Now it follows that
λ ≤

∨
x=u+v

(µ ∧ ν)(u) ∧ (µ ∧ θ)(v).

Hence we obtain ∨
x=a+b

ν(a) ∧ θ(b) ∧ µ(x) ≤
∨

x=u+v
(µ ∧ ν)(u) ∧ (µ ∧ θ)(v).

Therefore,
(µ ∧ (ν ∨ θ))(x) = (µ(x) ∧ ν(x)) ∨ (µ(x) ∧ θ(x)) ∨ (

∨
x=a+b

ν(a) ∧ θ(b) ∧ µ(x))

≤ (µ ∧ ν)(x) ∨ (µ ∧ θ)(x) ∨ (
∨

x=u+v
(µ ∧ ν)(u) ∧ (µ ∧ θ)(v))

= ((µ ∧ ν)⊕ (µ ∧ θ))(x)
= (µ ∧ ν) ∨ (µ ∧ θ)(x).

and the proof is completed. �

By the Theorem 4.3, we immediately get the next corollary.

Corollary 4.4. I(R) is a distributive lattice if and only if FI(R) is a distributive lattice.

5. Conclusion
Many researches studied the lattice structure (distributive or modular) of fuzzy algebraic

substructures. In future work, the same results could also be studied under a t-norm
operation on L. Also, we will try to expose some classes of algebra whose lattices of
L-subalgebras constitute distributive lattice.
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