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Some inclusion results of certain subclass of
analytic functions associated with Poisson

distribution series
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Abstract

The purpose of the present paper is to investigate some characterization
for Poisson distribution series to be in the new subclasses G(λ, α) and
K(λ, α) of analytic functions.
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1. Introduction and Preliminaries

Let A be the class of functions f normalized by

(1.1) f(z) = z +

∞∑
n=2

anz
n

which are analytic in the open disk U = {z : z ∈ C and |z| < 1}. As usual, we denote by
S the subclass of A consisting of functions which are normalized by f(0) = 0 = f ′(0)− 1
and also univalent in U. Denote by T [19] the subclass of A consisting of functions of
the form

(1.2) f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, n = 2, 3, . . . .
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Also, for functions f ∈ A given by (1.1) and g ∈ A given by

g(z) = z +

∞∑
n=2

bnz
n,

we de�ne the Hadamard product (or convolution) of f and g by

(1.3) (f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, (z ∈ U).

The class S∗(α) of starlike functions of order α (0 ≤ α < 1) may be de�ned as

S
∗(α) =

{
f ∈ A : <

(
zf ′(z)

f(z)

)
> α, z ∈ U

}
.

The class S∗(α) and the class K(α) of convex functions of order α (0 ≤ α < 1)

K(α) =

{
f ∈ A : <

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U

}
=
{
f ∈ A : zf ′ ∈ S

∗(α)
}

were introduced by Robertson in [17]. We also write S∗(0) = S∗, where S∗ denotes
the class of functions f ∈ A that f(U) is starlike with respect to the origin. Further,
K(0) = K is the well-known standard class of convex functions. It is an established fact
that f ∈ K(α)⇐⇒ zf ′ ∈ S∗(α).

A function f ∈ A is said to be in the class f ∈ <τ (A,B) if it satis�es the inequality∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1.

where z ∈ U, τ ∈ C\{0}, −1 ≤ B < A ≤ 1. The class <τ (A,B) was introduced earlier by
Dixit and Pal [6]. If we put

τ = 1, A = α and B = −α (0 < α ≤ 1),

we obtain the class of functions f ∈ A satisfying the inequality∣∣∣∣f ′(z)− 1

f ′(z) + 1

∣∣∣∣ < α (z ∈ U; 0 < α ≤ 1)

which was studied by (among others) Padmanabhan [12] and Caplinger and Causey [4].
Very recently, Porwal [13] introduce a power series whose coe�cients are probabilities

of Poisson distribution

K (m, z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn, (z ∈ U)

and we note that, by ratio test the radius of convergence of above series is in�nity. In
[13], Porwal also de�ned the series

F (m, z) = 2z −K(m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn, (z ∈ U).

Now, we considered the linear operator

I(m) : A→ A

de�ned by

(1.4) I(m)f = K(m, z) ∗ f(z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−manz

n.
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Motivated by results on connections between various subclasses of analytic univalent
functions by using generalized Bessel functions [1, 2, 3, 8, 11, 13, 15, 22], hypergeometric
functions by Srivastava et al. [20] (see [5, 7, 9, 10, 18]) we obtain necessary and su�cient
condition for functions F (m, z) in G∗(λ, α) and K∗(λ, α). Further due to the works of
Ramesha et al. [16], Padmanabhan [12],we estimate certain inclusion relations between
the classes <τ (A,B), and G∗(λ, α) and K∗(λ, α).

For 0 ≤ λ < 1 and 0 ≤ α < 1, we let G(λ, α) the subclass of functions f ∈ A which
satisfy the condition

(1.5) <
(
zf ′(z) + λz2f ′′(z)

f(z)

)
> α, (z ∈ U).

and also let K(λ, α) the subclass of functions f ∈ A which satisfy the condition

(1.6) <
(
z[zf ′(z) + λz2f ′′(z)]′

zf ′(z)

)
> α, (z ∈ U).

Also denote G∗(λ, α) = G(λ, α) ∩ T and K∗(λ, α) = K(λ, α) ∩ T.

1.1. Remark. It is of interest to note that for λ = 0, we have G(λ, α) ≡ S∗(α) and
K(λ, α) ≡ K(α)

To prove the main results, we need the following Lemmas.

1.2. Lemma. [21] A function f ∈ A belongs to the class G(λ, α) if

∞∑
n=2

(n+ λn(n− 1)− α)|an| ≤ 1− α.

1.3. Lemma. [21] A function f ∈ A belongs to the class K(λ, α) if

∞∑
n=2

n(n+ λn(n− 1)− α)|an| ≤ 1− α.

Further we can easily prove that the conditions are also necessary if f ∈ T.

1.4. Lemma. A function f ∈ T belongs to the class G∗(λ, α) if and only if

∞∑
n=2

(n+ λn(n− 1)− α)|an| ≤ 1− α.

1.5. Lemma. A function f ∈ T belongs to the class K∗(λ, α) if and only if

∞∑
n=2

n(n+ λn(n− 1)− α)|an| ≤ 1− α.

2. Main Results

2.1. Theorem. If m > 0, then F (m, z) is in G∗(λ, α) if and only if

em
[
λm2 + (1 + 2λ)m

]
≤ 1− α.(2.1)

Proof. Since F (m, z) = z −
∞∑
n=2

mn−1

(n−1)!
e−mzn and by virtue of Lemma 1.4, it su�ces to

show that
∞∑
n=2

(n+ λn(n− 1)− α) mn−1

(n− 1)!
e−m ≤ 1− α.
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Let

L1(m,λ, α) =

∞∑
n=2

(n2λ+ n(1− λ)− α) mn−1

(n− 1)!
e−m

Writing n2 = (n−1)(n−2)+3(n−1)+1 and n = (n−1)+1, and by simple computation,
we get

L1(m,λ, α) =

∞∑
n=2

λ(n− 1)(n− 2)
mn−1

(n− 1)!
e−m

+ (1 + 2λ)

∞∑
n=2

(n− 1)
mn−1

(n− 1)!
e−m + (1− α)

∞∑
n=2

mn−1

(n− 1)!
e−m

= λ

∞∑
n=3

mn−1

(n− 3)!
e−m + (1 + 2λ)

∞∑
n=2

mn−1

(n− 2)!
e−m

+ (1− α)
∞∑
n=2

mn−1

(n− 1)!
e−m

= e−m
[
λm2em + (1 + 2λ)mem + (1− α)(em − 1)

]
= λm2 + (1 + 2λ)m+ (1− α)(1− e−m).

But, this last expression is bounded above by 1− α if and only if (2.1) is satis�ed. �

2.2. Theorem. If m > 0, then F (m, z) is in K∗(λ, α) if and only if

em
[
λm3 + (1 + 5λ)m2 + (3 + 4λ− α)m

]
≤ 1− α.(2.2)

Proof. Since F (m, z) = z −
∑∞
n=2

mn−1

(n−1)!
e−mzn and by virtue of Lemma 1.5, it su�ces

to show that

∞∑
n=2

(n3λ+ n2(1− λ)− nα) mn−1

(n− 1)!
e−m ≤ 1− α.

Let

L2(m,λ, α) =

∞∑
n=2

(n3λ+ n2(1− λ)− nα) mn−1

(n− 1)!
e−m

Writing n3 = (n− 1)(n− 2)(n− 3) + 6(n− 1)(n− 2) + 7(n− 1) + 1,
n2 = (n−1)(n−2)+3(n−1)+1 and n = (n−1)+1, we can rewrite the above terms
as

L2(m,λ, α) = λ

∞∑
n=2

(n− 1)(n− 2)(n− 3)
mn−1

(n− 1)!
e−m

+ (1 + 5λ)

∞∑
n=2

(n− 1)(n− 2)
mn−1

(n− 1)!
e−m

+ (3 + 4λ− α)
∞∑
n=2

(n− 1)
mn−1

(n− 1)!
e−m

+ (1− α)
∞∑
n=2

mn−1

(n− 1)!
e−m
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= λ

∞∑
n=4

mn−1

(n− 4)!
e−m + (1 + 5λ)

∞∑
n=3

mn−1

(n− 3)!
e−m

+ (3 + 4λ− α)
∞∑
n=2

mn−1

(n− 2)!
e−m + (1− α)

∞∑
n=2

mn−1

(n− 1)!
e−m

= e−m
[
λm3em + (1 + 5λ)m2em + (3 + 4λ− α)mem

+ (1− α)(em − 1)]

= λm3 + (1 + 5λ)m2 + (3 + 4λ− α)m+ (1− α)(1− e−m).

But, this last expression is bounded above by 1− α if and only if (2.2) is satis�ed. �

By taking λ = 0,in Theorem 2.1and 2.2 we state the following corollaries:

2.3. Corollary. If m > 0, then F (m, z) is in S∗(α) if

mem ≤ 1− α.(2.3)

2.4. Corollary. If m > 0, then F (m, z) is in ∈ K(α) if

emm(m+ 3− α) ≤ 1− α.(2.4)

3. Inclusion Properties

Making use of the following lemma, we will study the action of the Poisson distribution
series on the classes K(λ, α).

3.1. Lemma. [6] A function f ∈ <τ (A,B) is of form (1.1), then

(3.1) |an| ≤ (A−B)
|τ |
n
, n ∈ N\{1}.

The bound given in (3.1) is sharp for

f(z) =

∫ z

0

(
1 +

(A−B)|τ |zn−1

1 +Bzn−1

)
dz (n ≥ 2; z ∈ U)

3.2. Theorem. Let m > 0. If f ∈ <τ (A,B),then I(m)f ∈ K(λ, α) if and only if

(A−B)|τ |em
[
λm2 + (1 + 2λ)m

]
1− (A−B)|τ |(1− e−m)

≤ 1− α(3.2)

where τ ∈ C\{0},−1 ≤ B < A ≤ 1.

Proof. Let f be of the form (1.1) belong to the class <τ (A,B) then by virtue of Lemma
1.5, it su�ces to show that

∞∑
n=2

n(n2λ+ n(1− λ)− α) mn−1

(n− 1)!
e−m|an| ≤ 1− α.

Let

L3(m,λ, α) =

∞∑
n=2

n(n2λ+ n(1− λ)− α) mn−1

(n− 1)!
e−m|an|.

Since f ∈ <τ (A,B) by Lemma 3.1 we have |an| ≤ (A−B) |τ |
n
, n ∈ N\{1}, hence we get

L3(m,λ, α) ≤ e−m
∞∑
n=2

(n2λ+ n(1− λ)− α) mn−1

(n− 1)!
(A−B)|τ |

≤ (A−B)|τ |e−m
∞∑
n=2

(n2λ+ n(1− λ)− α) mn−1

(n− 1)!
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Writing n2 = (n− 1)(n− 2) + 3(n− 1) + 1 and n = (n− 1) + 1, and by using the similar
arguments as in the proof of Theorem 2.1, we get

L3(m,λ, α) ≤ (A−B)|τ |
[
λm2 + (1 + 2λ)m+ (1− α)(1− e−m)

]
.

But,the last expression is bounded above by 1− α if and only if (3.2) is satis�ed. Hence
the proof is completed. �

3.3. Corollary. Let m > 0 and λ = 0. If f ∈ <τ (A,B), then I(m)f ∈ K(α) if and only
if

(A−B)|τ |m
[
1− (A−B)|τ |(1− e−m

]−1 ≤ 1− α

where τ ∈ C\{0} − 1 ≤ B < A ≤ 1.

3.4. Theorem. Let m > 0, then

G(m, z) =

∫ z

0

F (m, t)

t
)dt

is in K∗(λ, α) if and only if

(3.3) em
[
λm2 + (1 + 2λ)m

]
≤ 1− α.

Proof. Since

G(m, z) = z −
∞∑
n=2

e−mmn−1

(n− 1)!

zn

n
= z −

∞∑
n=2

e−mmn−1

n!
zn

by Lemma 1.5, we need only to show that

∞∑
n=2

n(n2λ+ n(1− λ)− α)m
n−1

n!
e−m ≤ 1− α.

Now, let

L4(m,λ, α) =

∞∑
n=2

n(n2λ+ n(1− λ)− α)m
n−1

n!
e−m

=

∞∑
n=2

(n2λ+ n(1− λ)− α) mn−1

(n− 1)!
e−m.

Hence ,writing n2 = (n− 1)(n− 2) + 3(n− 1) + 1 and n = (n− 1) + 1, and by using the
similar arguments as in the proof of Theorem 2.1, we have

L4(m,λ, α) ≤ λm2 + (1 + 2λ)m+ (1− α)(1− e−m),

which is bounded above by 1− α if and only if (3.3) holds. �

3.5. Theorem. Let m > 0, then G(m, z) =
∫ z
0

F (m,t)
t

)dt is in G∗(λ, α) if and only if

(3.4) mλ+
(
1− α

m

) (
1− e−m

)
+ αe−m ≤ 1− α.

Proof. The proof of theorem is similar to that of Theorem 3.4, hence we omit the details
involved. �

Acknowledgement: The authors thank the referee for his insightful suggestions to
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