Some subclasses of meromorphic functions involving the Hurwitz-Lerch Zeta function

Zhi-Gang Wang*† and Lei Shi‡

Abstract
The main purpose of this paper is to investigate some subclasses of meromorphic functions involving the meromorphic modified version of the familiar Srivastava-Attiya operator. Such results as inclusion relationships, convolution properties, coefficient inequalities, integral-preserving properties, subordination and superordination properties are proved.

Keywords: Analytic function; Meromorphic function; Hurwitz-Lerch Zeta function; Srivastava-Attiya operator; Differential subordination.

2000 AMS Classification: Primary 30C45; Secondary 30C80.

Received: 01.03.2015 Accepted: 23.11.2015 Doi: 10.15672/HJMS.20164514284

1. Introduction
Let \(\Sigma \) denote the class of functions of the form
\[
(1.1) \quad f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k,
\]
which are analytic in the punctured open unit disk
\[
\mathbb{U}^* := \{ z : z \in \mathbb{C} \text{ and } 0 < |z| < 1 \} =: \mathbb{U} \setminus \{0\}.
\]
Let \(f, g \in \Sigma \), where \(f \) is given by (1.1) and \(g \) is defined by
\[
g(z) = \frac{1}{z} + \sum_{k=1}^{\infty} b_k z^k.
\]

*Corresponding Author.
†School of Mathematics and Computing Science, Hunan First Normal University, Changsha 410205, Hunan, People’s Republic of China. Email: wangmath@163.com
‡School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, Henan, People’s Republic of China. Email: shimath@163.com
Then the Hadamard product (or convolution) $f * g$ of the functions f and g is defined by

$$(f * g)(z) := \frac{1}{z} + \sum_{k=1}^{\infty} a_k b_k z^k =: (g * f)(z).$$

Let \mathcal{P} denote the class of functions of the form

$$p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k,$$

which are analytic and convex in U, and satisfy the condition

$$\Re(p(z)) > 0 \quad (z \in U).$$

For two functions f and g, analytic in U, the function f is said to be subordinate to g in U, or the function g is said to be superordinate to f in U, and write

$$f(z) \prec g(z) \quad (z \in U),$$

if there exists a Schwarz function ω, which is analytic in U with

$$\omega(0) = 0 \text{ and } |\omega(z)| < 1 \quad (z \in U)$$

such that

$$f(z) = g(\omega(z)) \quad (z \in U).$$

Indeed, it is known that

$$f(z) \prec g(z) \quad (z \in U) \implies f(0) = g(0) \text{ and } f(U) \subset g(U).$$

Furthermore, if the function g is univalent in U, then we have the following equivalence:

$$f(z) \prec g(z) \quad (z \in U) \iff f(0) = g(0) \text{ and } f(U) \subset g(U).$$

The following we recall a general Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ defined by (cf., e. g., [20, p. 121 et sep.])

$$\Phi(z, s, a) := \sum_{k=0}^{\infty} \frac{z^k}{(k + a)^s}$$

$$a \in \mathbb{C} \setminus \mathbb{Z}_0^-; s \in \mathbb{C} \text{ when } |z| < 1; \Re(s) > 1 \text{ when } |z| = 1,$$

where, as usual,

$$\mathbb{Z}_0^- := \mathbb{Z} \setminus \mathbb{N} \quad (\mathbb{Z} := \{0, \pm 1, \pm 2, \ldots\}; \mathbb{N} := \{1, 2, 3, \ldots\}).$$

Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ can be found in the recent investigations by (for example) Choi and Srivastava [1], Ferreira and López [4], Garg et al. [5], Lin et al. [7], Luo and Srivastava [10], Srivastava et al. [21], Ghanim [6] and others.

By making use of the Hurwitz-Lerch Zeta function $\Phi(z, s, a)$, Srivastava and Attiya [19] (see also [8, 9, 14, 17, 22, 23, 24, 27, 28, 29, 30]) recently introduced and investigated the integral operator

$$J_{s,b}(z) = z + \sum_{k=2}^{\infty} \left(1 + \frac{b}{k + b}\right)^s c_k z^k \quad (b \in \mathbb{C} \setminus \mathbb{Z}^-; s \in \mathbb{C}; z \in U).$$

Motivated essentially by the above-mentioned Srivastava-Attiya operator $J_{s,b}$, we now introduce the linear operator

$$W_{s,b} : \Sigma \longrightarrow \Sigma$$

defined, in terms of the Hadamard product (or convolution), by

$$(1.3) \quad W_{s,b} f(z) := \Theta_{s,b}(z) * f(z) \quad (b \in \mathbb{C} \setminus \mathbb{Z}_0^- \cup \{1\}; s \in \mathbb{C}; f \in \Sigma; z \in U^*).$$
where, for convenience,

\[(1.4) \quad \Theta_{s,b}(z) := (b - 1)^s \left[\Phi(z, s, b) - b^{-s} + \frac{1}{z (b - 1)^s} \right] \quad (z \in \mathbb{U}^*). \]

It can easily be seen from (1.1) to (1.4) that

\[(1.5) \quad W_{s,b}f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{b - 1}{b + k} \right)^s a_k z^k. \]

Indeed, the operator \(W_{s,b} \) can be defined for \(b \in \mathbb{C} \setminus \{ \mathbb{Z}^- \cup \{ 1 \} \} \), where

\[W_{s,0}f(z) := \lim_{b \to 0} \{ W_{s,b}f(z) \}. \]

We observe that

\[(1.6) \quad W_{0,b}f(z) = f(z), \]

and

\[(1.7) \quad W_{1,\gamma}f(z) = \frac{\gamma - 1}{z^\gamma} \int_0^z \tau^{\gamma-1} f(t)dt \quad (\Re(\gamma) > 1). \]

Furthermore, from the definition (1.5), we find that

\[(1.8) \quad W_{s+1,b}f(z) = \frac{b - 1}{z^b} \int_0^z t^{b-1} W_{s,b}f(t)dt \quad (\Re(b) > 1). \]

Differentiating both sides of (1.8) with respect to \(z \), we get the following useful relationship:

\[(1.9) \quad z \left(W_{s+1,b}f \right)'(z) = (b - 1) W_{s,b}f(z) - b W_{s+1,b}f(z). \]

By using the integral operator (1.5), we now introduce the following subclasses of the class \(\Sigma \) of meromorphic functions.

1.1. Definition. A function \(f \in \Sigma \) is said to be in the class \(\mathcal{MS}_{s,b}(\eta; \phi) \) if it satisfies the subordination

\[(1.10) \quad \frac{1}{1 - \eta} \left(- \frac{z \left(W_{s,b}f \right)'(z)}{W_{s,b}f(z)} - \eta \right) < \phi(z) \quad (s \in \mathbb{C}; \Re(b) > 1; \eta \in [0,1); \phi \in \mathcal{P}; z \in \mathbb{U}). \]

1.2. Definition. A function \(f \in \Sigma \) is said to be in the class \(\mathcal{MC}_{s,b}(\lambda; \phi) \) if it satisfies the condition

\[(1.11) \quad (1 - \lambda)z W_{s+1,b}f(z) + \lambda z W_{s,b}f(z) < \phi(z) \quad (s, \lambda \in \mathbb{C}; \Re(b) > 1; \phi \in \mathcal{P}; z \in \mathbb{U}). \]

For some recent investigations on meromorphic functions, see (for example) the earlier works [2, 3, 15, 16, 25, 26, 31] and the references cited therein. In this paper, we aim at deriving the inclusion relationships, convolution properties, coefficient inequalities, integral-preserving properties, subordination and superordination properties for the function classes \(\mathcal{MS}_{s,b}(\eta; \phi) \) and \(\mathcal{MC}_{s,b}(\lambda; \phi) \).
2. Preliminary results

The following lemmas will be required in the proof of our main results.

2.1. Lemma. ([11]) Let \(\vartheta, \gamma \in \mathbb{C} \). Suppose that \(\psi \) is convex and univalent in \(\mathbb{U} \) with \(\psi(0) = 1 \) and \(\Re(\partial \psi + \gamma) > 0 \) \((z \in \mathbb{U})\).

If \(\psi \) is analytic in \(\Omega(0) = 1 \) and \(\Theta(z) \), then the following subordination

\[
p(z) + \frac{z \psi'(z)}{\psi(z) + \gamma} < \psi(z) \quad (z \in \mathbb{U})
\]

implies that

\[
p(z) < \psi(z) \quad (z \in \mathbb{U}).
\]

2.2. Lemma. Let \(0 \leq \alpha < 1, s \in \mathbb{C} \) and \(\Re(b) > 1 \). Suppose also that the sequence \(\{A_k\}_{k=1}^{\infty} \) is defined by

\[
A_1 = (1 - \alpha) \left| \frac{b + 1}{b - 1} \right|^s, \quad A_{k+1} = 2(1 - \alpha) \left(1 + \sum_{m=1}^{k} \left| \frac{b - 1}{b + m} \right|^s A_m \right) \quad (k \in \mathbb{N}).
\]

Then

\[
A_k = (1 - \alpha) \left| \frac{b + 1}{b - 1} \right|^s \prod_{j=1}^{k-1} \left| \frac{j - 2\alpha + 3}{j + 2} \right| \left| \frac{b + j + 1}{b + j} \right|^s.
\]

Proof. From (2.1), we find that

\[
(k + 2) \left| \frac{b - 1}{b + k + 1} \right|^s A_{k+1} = 2(1 - \alpha) \left(1 + \sum_{m=1}^{k} \left| \frac{b - 1}{b + m} \right|^s A_m \right),
\]

and

\[
(k + 1) \left| \frac{b - 1}{b + k} \right|^s A_k = 2(1 - \alpha) \left(1 + \sum_{m=1}^{k-1} \left| \frac{b - 1}{b + m} \right|^s A_m \right).
\]

Combining (2.3) and (2.4), we get

\[
\frac{A_{k+1}}{A_k} = \frac{k - 2\alpha + 3}{k + 2} \left| \frac{b + k + 1}{b + k} \right|^s.
\]

Thus, for \(k \geq 2 \), we deduce from (2.5) that

\[
A_k = \frac{A_k}{A_{k-1}} \cdots \frac{A_3}{A_2} A_1 = (1 - \alpha) \left| \frac{b + 1}{b - 1} \right|^s \prod_{j=1}^{k-1} \left| \frac{j - 2\alpha + 3}{j + 2} \right| \left| \frac{b + j + 1}{b + j} \right|^s.
\]

The proof of Lemma 2.2 is completed. \(\square \)

2.3. Lemma. ([12]) Let the function \(\Omega \) be analytic and convex (univalent) in \(\mathbb{U} \) with \(\Omega(0) = 1 \). Suppose also that the function \(\Theta \) given by

\[
\Theta(z) = 1 + d_n z^n + d_{n+1} z^{n+1} + \cdots
\]

is analytic in \(\mathbb{U} \). If

\[
\Theta(z) + \frac{z \Theta'(z)}{\zeta} < \Omega(z) \quad (\Re(\zeta) > 0; \; \zeta \neq 0; \; z \in \mathbb{U}),
\]

then

\[
\Theta(z) < \varpi(z) = \frac{\zeta}{n} z^{-\frac{n}{\zeta}} \int_0^{\varpi} t^{n-1} \Omega(t) dt \quad (z \in \mathbb{U}),
\]

\[
\Theta(z) < \varpi(z) = \frac{\zeta}{n} z^{-\frac{n}{\zeta}} \int_0^{\varpi} t^{n-1} \Omega(t) dt \quad (z \in \mathbb{U}),
\]

\[
\Theta(z) < \varpi(z) = \frac{\zeta}{n} z^{-\frac{n}{\zeta}} \int_0^{\varpi} t^{n-1} \Omega(t) dt \quad (z \in \mathbb{U}),
\]
and \(\omega\) is the best dominant of (2.6).

2.4. Lemma. ([18]) Let \(q\) be a convex univalent function in \(U\) and let \(\sigma, \eta \in \mathbb{C}\) with

\[
\Re\left(1 + \frac{q''(z)}{q'(z)}\right) > \max\left\{0, -\frac{\sigma}{\eta}\right\}.
\]

If \(p\) is analytic in \(U\) and

\[\sigma p(z) + \eta z p'(z) \prec \sigma q(z) + \eta z q'(z),\]

then \(p \prec q\) and \(q\) is the best dominant.

Denote by \(Q\) the set of all functions \(f\) that are analytic and injective on \(U - E(f)\), where

\[E(f) = \left\{\varepsilon \in \partial U : \lim_{z \to \varepsilon} f(z) = \infty\right\},\]

and such that \(f'(\varepsilon) \neq 0\) for \(\varepsilon \in \partial U - E(f)\). Let \(\mathcal{H}(U)\) denote the class of analytic functions in \(U\) and let \(\mathcal{H}[a, p]\) denote the subclass of the functions \(f \in \mathcal{H}(U)\) of the form:

\[f(z) = a + a_p z^p + a_{p+1} z^{p+1} + \cdots \quad (a \in \mathbb{C}; \ p \in \mathbb{N}).\]

2.5. Lemma. ([13]) Let \(q\) be convex univalent in \(U\) and \(\kappa \in \mathbb{C}\). Further assume that \(\Re(\kappa) > 0\). If

\[p \in \mathcal{H}[q(0), 1] \cap Q,\]

and \(p + \kappa z p'\) is univalent in \(U\), then

\[q(z) + \kappa z q'(z) \prec p(z) + \kappa z p'(z)\]

implies \(q \prec p\) and \(q\) is the best subdominant.

3. Main results

Firstly, we derive the following inclusion relationship for the function class \(\mathcal{M}S_{s, b}(\eta; \phi)\).

3.1. Theorem. Let \(0 \leq \eta < 1\) and \(\phi \in \mathcal{P}\) with

\[(1 - \eta)\phi(z) + \eta - b < 0 \quad (z \in U).\]

Then

\[\mathcal{M}S_{s, b}(\eta; \phi) \subset \mathcal{M}S_{s+1, b}(\eta; \phi).\]

Proof. Let \(f \in \mathcal{M}S_{s, b}(\eta; \phi)\) and suppose that

\[(1 - \eta)\phi(z) + \eta - b < 0 \quad (z \in U).\]

Then \(\phi\) is analytic in \(U\) with \(\phi(0) = 1\). By virtue of (1.9) and (3.3), we get

\[(b - 1)\left(z W_{s, b}(f(z)) W_{s+1, b}(f(z))\right) = -(1 - \eta)\phi(z) - \eta + b.\]

Differentiating both sides of (3.4) with respect to \(z\) logarithmically and using (3.3), we have

\[
\frac{1}{1 - \eta} \left(-z \frac{W_{s+1, b}(f(z))'}{W_{s, b}(f(z))} - \eta\right) = \phi(z) + \frac{z \phi'(z)}{(1 - \eta)\phi(z) - \eta + b} < \phi(z).
\]

By means of (3.1), an application of Lemma 2.1 to (3.5) yields

\[
\phi(z) = \frac{1}{1 - \eta} \left(-z \frac{W_{s+1, b}(f(z))'}{W_{s, b}(f(z))} - \eta\right) < \phi(z),
\]

that is \(f \in \mathcal{M}S_{s+1, b}(\eta; \phi)\), which implies that the assertion (3.2) of Theorem 3.1 holds. \(\square\)
Next, we derive some convolution properties of the class \(MS_{s,b}(\eta;\phi) \).

3.2. Theorem

Let \(f \in MS_{s,b}(\eta;\phi) \). Then

\[
(3.6) \quad f(z) = \left[z^{-1} \cdot \exp \left((\eta - 1) \int_0^z \phi(\omega(\xi)) - 1 \frac{d\xi}{\xi} \right) \right] \ast \left(\frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{b+k}{b+1} \right)^s z^k \right),
\]

where \(\omega \) is analytic in \(U \) with
\[
\omega(0) = 0 \text{ and } |\omega(z)| < 1 \quad (z \in \mathbb{U}).
\]

Proof. Suppose that \(f \in MS_{s,b}(\eta;\phi) \). We find from (1.10) that

\[
(3.7) \quad \frac{z (W_{s,b}f)'(z)}{W_{s,b}f(z)} = (\eta - 1)\phi(\omega(z)) - \eta,
\]

where \(\omega \) is analytic in \(U \) with \(\omega(0) = 0 \) and \(|\omega(z)| < 1 \) \((z \in \mathbb{U})\). From (3.7), we get

\[
(3.8) \quad \frac{(W_{s,b}f)'(z)}{W_{s,b}f(z)} + \frac{1}{z} = (\eta - 1)\phi(\omega(z)) - 1,
\]

which, upon integration, yields

\[
(3.9) \quad \log(z W_{s,b}f(z)) = (\eta - 1) \int_0^z \phi(\omega(\xi)) - 1 \frac{d\xi}{\xi}.
\]

It follows from (3.9) that

\[
(3.10) \quad W_{s,b}f(z) = z^{-1} \cdot \exp \left((\eta - 1) \int_0^z \phi(\omega(\xi)) - 1 \frac{d\xi}{\xi} \right).
\]

The assertion (3.6) of Theorem 3.2 can directly be derived from (1.5) and (3.10). \(\square \)

3.3. Theorem

Let \(f \in \Sigma \) and \(\phi \in \mathcal{P} \). Then \(f \in MS_{s,b}(\eta;\phi) \) if and only if

\[
(3.11) \quad \frac{1}{z} \left\{ f \ast \left\{ -\frac{1}{z} + \sum_{k=1}^{\infty} k \left(\frac{b-1}{b+k} \right)^s z^k - [(\eta - 1)\phi(e^{i\theta}) - \eta] \left(\frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{b-1}{b+k} \right)^s z^k \right) \right\} \right\} \neq 0
\]

\((z \in \mathbb{U}^*; \ 0 \leq \theta < 2\pi)\).

Proof. Suppose that \(f \in MS_{s,b}(\eta;\phi) \). We know that (1.6) is equivalent to

\[
(3.12) \quad \frac{1}{1 - \eta} \left(-\frac{z (W_{s,b}f)'(z)}{W_{s,b}f(z)} - \eta \right) \neq \phi(e^{i\theta}) \quad (z \in \mathbb{U}; \ 0 \leq \theta < 2\pi).
\]

It is easy to see that the condition (3.12) can be written as follows:

\[
(3.13) \quad \frac{1}{z} \left\{ z (W_{s,b}f)'(z) - [(\eta - 1)\phi(e^{i\theta}) - \eta] W_{s,b}f(z) \right\} \neq 0 \quad (z \in \mathbb{U}^*; \ 0 \leq \theta < 2\pi).
\]

On the other hand, we find from (1.5) that

\[
(3.14) \quad z (W_{s,b}f)'(z) = -\frac{1}{z} + \sum_{k=1}^{\infty} k \left(\frac{b-1}{b+k} \right)^s a_k z^k.
\]

Combining (1.5), (3.13) and (3.14), we get the assertion (3.11) of Theorem 3.3. \(\square \)
3.4. Theorem. If \(f \in \mathcal{M}S_{a,b}(0; [1 + (1 - 2\alpha)z]/(1 - z)) \), then

\[
|a_1| \leq (1 - \alpha) \left| \frac{b + 1}{b - 1} \right|^s,
\]

and

\[
|a_k| \leq (1 - \alpha) \left| \frac{b + 1}{b - 1} \right|^s \prod_{j=1}^{k-1} \left| \frac{j - 2\alpha + 3}{j + 2} \right| \left| \frac{b + j + 1}{b + j} \right|^s \quad (k \in \mathbb{N}\setminus\{1\}).
\]

Proof. Suppose that

\[
(3.15) \quad h(z) := -\frac{s(W_{a,b})'(z)}{W_{a,b}(z)} = 1 + c_1z + c_2z^2 + \cdots.
\]

It follows from \(f \in \mathcal{M}S_{a,b}(0; [1 + (1 - 2\alpha)z]/(1 - z)) \) that \(h \in \mathcal{P} \), and subsequently one has \(|c_k| \leq 2 \) for \(k \in \mathbb{N} \).

By virtue of (3.15), we know that

\[
(3.16) \quad z(W_{a,b})'(z) = [(\alpha - 1)h(z) - \alpha]}W_{a,b}(z).
\]

It now follows from (1.5), (3.15) and (3.16) that

\[
(3.17) \quad \frac{1}{z} \sum_{k=1}^{\infty} k \left(\frac{b - 1}{b + k} \right)^s a_k z^k = -1 + (\alpha - 1) (c_1z + c_2z^2 + \cdots) \left[\frac{1}{z} \sum_{k=1}^{\infty} \left(\frac{b - 1}{b + k} \right)^s a_k z^k \right].
\]

By evaluating the coefficients of \(z^k \) in both sides of (3.17), we get

\[
(3.18) \quad k \left(\frac{b - 1}{b + k} \right)^s a_k = -\left(\frac{b - 1}{b + k} \right)^s a_k + (\alpha - 1) \left[c_{k+1} + \sum_{l=1}^{k-1} c_l \left(\frac{b - 1}{b + k - l} \right)^s a_{k-l} \right].
\]

By observing the fact that \(|c_k| \leq 2 \) for \(k \in \mathbb{N} \), we find from (3.18) that

\[
(3.19) \quad |a_k| \leq \frac{2(1 - \alpha)}{k + 1} \left| \frac{b + k}{b - 1} \right|^s \left(1 + \sum_{m=1}^{k-1} \left| \frac{b - 1}{b + m} \right|^s |a_m| \right).
\]

Now, we define the sequence \(\{A_k\}_{k=1}^{\infty} \) as follows:

\[
(3.20) \quad A_1 = (1 - \alpha) \left| \frac{b + 1}{b - 1} \right|^s, \quad A_{k+1} = \frac{2(1 - \alpha)}{k + 2} \left| \frac{b + k + 1}{b - 1} \right|^s \left(1 + \sum_{m=1}^{k} \left| \frac{b - 1}{b + m} \right|^s A_m \right) \quad (k \in \mathbb{N}).
\]

In order to prove that

\[
|a_k| \leq A_k \quad (k \in \mathbb{N}),
\]

we make use of the principle of mathematical induction. By noting that

\[
|a_1| \leq A_1 = (1 - \alpha) \left| \frac{b + 1}{b - 1} \right|^s.
\]

Therefore, assuming that

\[
|a_m| \leq A_m \quad (m = 1, 2, 3, \ldots, k; \ k \in \mathbb{N}).
\]
Combining (3.19) and (3.20), we get
\[|a_{k+1}| \leq \frac{2(1-\alpha)}{k+2} \left| \frac{b+k+1}{b-1} \right|^\kappa \left(1 + \sum_{m=1}^{k} \left| \frac{b-1}{b+m} \right|^\kappa |a_m| \right) \]
\[\leq \frac{2(1-\alpha)}{k+2} \left| \frac{b+k+1}{b-1} \right|^\kappa \left(1 + \sum_{m=1}^{k} \left| \frac{b-1}{b+m} \right|^\kappa A_m \right) \]
\[= A_{k+1}. \]

Hence, by the principle of mathematical induction, we have
\[(3.21) \quad |a_k| \leq A_k \quad (k \in \mathbb{N}) \]
as desired.

By virtue of Lemma 2.2 and (3.20), we know that (2.2) holds. Combining (3.21) and (2.2), we readily get the coefficient estimates asserted by Theorem 3.4. □

In what follows, we derive some integral-preserving properties for the class \(MS_{s,b}(\eta; \phi) \).

3.5. Theorem. Let \(f \in MS_{s,b}(\eta; \phi) \) with
\[\Re((1-\eta)\phi(z) + \eta - \mu) < 0 \quad (z \in U; \quad \Re(\mu) > 1). \]
Then the integral operator \(F \) defined by
\[\begin{align*}
F(z) &:= \frac{\mu - 1}{z^\mu} \int_0^z \frac{t^{\mu-1} f(t)}{W_{s,b}(t)} dt \quad (z \in U^*; \quad \Re(\mu) > 1) \\
\end{align*} \]
belongs to the class \(MS_{s,b}(\eta; \phi) \).

Proof. Let \(f \in MS_{s,b}(\eta; \phi) \). We then find from (3.22) that
\[(3.23) \quad z (W_{s,b}F)'(z) + \mu W_{s,b}F(z) = (\mu - 1)W_{s,b}f(z). \]
By setting
\[(3.24) \quad q(z) := \frac{1}{1-\eta} \left(-z \frac{(W_{s,b}F)'(z)}{W_{s,b}F(z)} - \eta \right), \]
we observe that \(q \) is analytic in \(U \) with \(q(0) = 1 \). It follows from (3.23) and (3.24) that
\[(3.25) \quad -(1-\eta)\eta q(z) - \eta + \mu = (\mu - 1) \frac{W_{s,b}f(z)}{W_{s,b}F(z)}. \]
Differentiating both sides of (3.25) with respect to \(z \) logarithmically and using (3.24), we get
\[(3.26) \quad q(z) + \frac{zq'(z)}{-(1-\eta)\eta q(z) - \eta + \mu} = \frac{1}{1-\eta} \left(-z \frac{(W_{s,b}F)'(z)}{W_{s,b}F(z)} - \eta \right) \prec \phi(z). \]
Since
\[\Re(-(1-\eta)\phi(z) - \eta + \mu) > 0 \quad (z \in U), \]
by virtue of Lemma 2.1 and (3.26), we obtain
\[\frac{1}{1-\eta} \left(-z \frac{(W_{s,b}F)'(z)}{W_{s,b}F(z)} - \eta \right) \prec \phi(z), \]
which implies that the assertion of Theorem 3.5 holds. □
3.6. Theorem. Let $f \in \text{MS}_s, b(\eta; \phi)$ with
\[
\Re((1 - \eta)\delta \phi(z) + \eta \delta - \mu) < 0 \quad (z \in \mathbb{U}; \delta \neq 0; \mu \in \mathbb{C}).
\]
Then the function $K \in \Sigma$ defined by
\[
W_{s, b}K(z) := \left(\frac{\mu - \delta}{z^\mu} \int_0^z t^{\mu - 1} (W_{s, b}f(t))^{\delta} dt \right)^{1/\delta} \quad (z \in \mathbb{U}^*; \delta \neq 0)
\]
belongs to the class $\text{MS}_s, b(\eta; \phi)$.

Proof. Let $f \in \text{MS}_s, b(\eta; \phi)$ and suppose that
\[
\rho(z) := \frac{1}{1 - \eta} \left(-\frac{zW_{s, b}K'(z)}{W_{s, b}K(z)} - \eta \right) \quad (z \in \mathbb{U}).
\]
In view of (3.27) and (3.28), we have
\[
\lambda - \eta \delta - (1 - \eta)\delta \rho(z) = (\lambda - \delta) \left(\frac{W_{s, b}f(z)}{W_{s, b}K(z)} \right)^\delta.
\]
Now, by means of (3.27), (3.28) and (3.29), we obtain
\[
\rho(z) + \frac{z \rho'(z)}{\mu - \eta \delta - (1 - \eta)\delta \rho(z)} = \frac{1}{1 - \eta} \left(-z \left(W_{s, b}f(z) \right)^\delta - \eta \right) \prec \phi(z).
\]
Since
\[
\Re(\lambda - \eta \delta - (1 - \eta)\delta \rho(z)) > 0 \quad (z \in \mathbb{U}),
\]
it follows from (3.30) and Lemma 2.1 that $\rho(z) \prec \phi(z)$, that is $K \in \text{MS}_s, b(\eta; \phi)$. We thus complete the proof of Theorem 3.6.

Now, we derive the following subordination property for the class $\text{MC}_s, b(\lambda; \phi)$.

3.7. Theorem. Let $f \in \text{MC}_s, b(\lambda; \phi)$ with $\Re(\lambda/(b - 1)) > 0$. Then
\[
z W_{s+1, b}f(z) \prec \frac{b - 1}{2 \lambda} z^{-\frac{b - 1}{2 \lambda}} \int_0^z t^{\frac{b - 1}{2 \lambda} - 1} \phi(t) dt \prec \phi(z).
\]

Proof. Let $f \in \text{MC}_s, b(\lambda; \phi)$ and suppose that
\[
b(z) := z W_{s+1, b}f(z) \quad (z \in \mathbb{U}).
\]
Then b is analytic in \mathbb{U}. By virtue of (1.5), (1.11) and (3.32), we find that
\[
b(z) + \frac{\lambda}{b - 1} z b'(z) = (1 - \lambda)z W_{s+1, b}f(z) + \lambda z W_{s, b}f(z) \prec \phi(z).
\]
Thus, an application of Lemma 2.3 to (3.33) yields the desired assertion (3.31) of Theorem 3.7.

3.8. Theorem. Let $\lambda_2 > \lambda_1 \geq 0$. Then $\text{MC}_s, b(\lambda_2; \phi) \subset \text{MC}_s, b(\lambda_1; \phi)$.

Proof. Suppose that $f \in \text{MC}_s, b(\lambda_2; \phi)$. It follows that
\[
(1 - \lambda_2)z W_{s+1, b}f(z) + \lambda_2 z W_{s, b}f(z) \prec \phi(z) \quad (z \in \mathbb{U}).
\]
Since
\[
0 \leq \frac{\lambda_1}{\lambda_2} < 1
\]
and the function ϕ is convex and univalent in \mathbb{U}, we deduce from (3.31) and (3.34) that
\[
(1 - \lambda_1)z W_{s+1, b}f(z) + \lambda_1 z W_{s, b}f(z)
\]
\[
= \frac{\lambda_1}{\lambda_2} [(1 - \lambda_2)z W_{s+1, b}f(z) + \lambda_2 z W_{s, b}f(z)] + \left(1 - \frac{\lambda_1}{\lambda_2} \right) z W_{s+1, b}f(z) \prec \phi(z),
\]
which implies that \(f \in \mathcal{MC}_{s, b}(\lambda; \phi) \). The proof of Theorem 3.8 is thus completed. \(\square \)

3.9. Theorem. Let \(f \in \mathcal{MC}_{s, b}(\lambda; \phi) \). If the function \(F \in \Sigma \) is defined by (3.22), then
\[
(3.35) \quad z W_{s+1, b} F(z) \prec \phi(z) \quad (z \in U).
\]

Proof. Let \(f \in \mathcal{MC}_{s, b}(\lambda; \phi) \) and suppose that
\[
(3.36) \quad \chi(z) := z W_{s+1, b} F(z) \quad (z \in U).
\]
From (3.22), we find that
\[
(3.37) \quad z (W_{s+1, b} F)'(z) + \mu W_{s+1, b} F(z) = (\mu - 1) W_{s+1, b} F(z).
\]
By virtue of (3.31), (3.36) and (3.37), we have
\[
(3.38) \quad \chi(z) + \frac{1}{\mu - 1} z \chi'(z) = z W_{s+1, b} f(z) \prec \phi(z).
\]
Thus, an application of Lemma 2.3 to (3.38), we get the assertion of Theorem 3.9. \(\square \)

3.10. Theorem. Let \(q_1 \) be univalent in \(U \). Suppose also that \(q_1 \) satisfies the condition
\[
(3.39) \quad \mathbb{R} \left(1 + \frac{z q_1''(z)}{q_1'(z)} \right) > \max \left\{ 0, -\frac{b - 1}{\lambda} \right\}.
\]
If \(f \in \Sigma \) satisfies the following subordination
\[
(3.40) \quad (1 - \lambda) z W_{s+1, b} f(z) + \lambda z W_{s, b} f(z) \prec q_1(z) + \frac{\lambda}{b - 1} z q_1'(z),
\]
then
\[
z W_{s+1, b} f(z) \prec q_1(z),
\]
and \(q_1 \) is the best dominant.

Proof. Let the function \(b \) be defined by (3.32). We know that (3.33) holds. Combining (3.33) and (3.40), we find that
\[
(3.41) \quad b(z) + \frac{\lambda}{b - 1} z b'(z) \prec q_1(z) + \frac{\lambda}{b - 1} z q_1'(z).
\]
By Lemma 2.4 and (3.41), we obtain the assertion of Theorem 3.10. \(\square \)

We now derive the following superordination result for the class \(\mathcal{MC}_{s, b}(\lambda; \phi) \).

3.11. Theorem. Let \(q_2 \) be convex univalent in \(U \), \(\lambda \in \mathbb{C} \) with \(\mathbb{R}(\lambda) > 0 \). Also let \(z W_{s+1, b} f(z) \in \mathcal{H}(q_2(0), 1] \cap Q \) and \((1 - \lambda) z W_{s+1, b} f(z) + \lambda z W_{s, b} f(z) \) be univalent in \(U \). If
\[
q_2(z) + \frac{\lambda}{b - 1} z q_2'(z) \prec (1 - \lambda) z W_{s+1, b} f(z) + \lambda z W_{s, b} f(z),
\]
then
\[
q_2(z) \prec z W_{s+1, b} f(z),
\]
and \(q_2 \) is the best subordinant.

Proof. Let the function \(b \) be defined by (3.32). Then
\[
q_2(z) + \frac{\lambda}{b - 1} z q_2'(z) \prec (1 - \lambda) z W_{s+1, b} f(z) + \lambda z W_{s, b} f(z) = b(z) + \frac{\lambda}{b - 1} z b'(z).
\]
Thus, an application of Lemma 2.5, yields the assertion of Theorem 3.11. \(\square \)

Finally, combining the above-mentioned subordination and superordination results, we obtain the following sandwich type result.
3.12. Corollary. Let \(q_3 \) be convex univalent and let \(q_4 \) be univalent in \(U, \lambda \in \mathbb{C} \) with \(\Re(\lambda) > 0 \). Suppose also that \(q_4 \) satisfies the condition
\[
\Re \left(1 + \frac{zq_4''(z)}{q_4'(z)} \right) > \max \left\{ 0, -\Re \left(\frac{b-1}{\lambda} \right) \right\}.
\]
If \(0 \neq z \mathcal{W}_{s+1}, b f(z) \in \mathbb{H}[q_3(0), 1] \cap Q \) and \((1-\lambda)z \mathcal{W}_{s+1}, b f(z)+\lambda z \mathcal{W}_s, b f(z) \) is univalent in \(U \), also
\[
q_3(z) + \frac{\lambda}{b-1} zq_3'(z) \prec (1-\lambda)z \mathcal{W}_{s+1}, b f(z)+\lambda z \mathcal{W}_s, b f(z) \prec q_4(z) + \frac{\lambda}{b-1} zq_4'(z),
\]
then
\[
q_3(z) \prec z \mathcal{W}_{s+1}, b f(z) \prec q_4(z),
\]
and \(q_3 \) and \(q_4 \) are, respectively, the best subordinant and the best dominant.

Acknowledgments

The present investigation was supported by the National Natural Science Foundation under Grant no. 11301008, the Natural Science Foundation of Hunan Province under Grant no. 2016JJ2036, the Foundation for Excellent Youth Teachers of Colleges and Universities of Henan Province under Grant no. 2013GGJS-146, the Foundation of Educational Committee of Henan Province under Grant no. 17A110014. The authors would like to thank the referees for their valuable comments and suggestions, which essentially improved the quality of this paper.

References

1460

