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Q-Q plots with con�dence for testing Weibull and
exponential distributions
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Abstract

One of the basic graphical methods for assessing the validity of a dis-
tributional assumption is the Q-Q plot which compares quantiles of a
sample against the quantiles of the distribution. In this paper, we focus
on how a Q-Q plot can be augmented by intervals for all the points so
that, if the population distribution is Weibull or exponential then all
the points should fall inside the corresponding intervals simultaneously
with probability 1− α. These simultaneous 1− α probability intervals
provide therefore an objective mean to judge whether the plotted points
fall close to the straight line: the plotted points fall close to the straight
line if and only if all the points fall within the corresponding intervals.
The powers of �ve Q-Q plot based graphical tests and the most popular
non-graphical Anderson-Darling and Cramér-von-Mises tests are com-
pared by simulation. Based on this power study, the tests that have
better powers are identi�ed and recommendations are given on which
graphical tests should be used in what circumstances. Examples are
provided to illustrate the methods.
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1. Introduction

When a simple random sample Y1, · · · , Yn is drawn from a population, one important
question is whether the population has a distribution of the form F0 ((y − µ)/σ), where
F0(·) is a given cumulative distribution function (cdf), and −∞ < µ <∞ and σ > 0 are
two unknown parameters. Note that µ is not necessarily the mean and σ is not necessarily
the standard deviation of Y . One widely used graphical technique for dealing with this
question is the Q-Q plot. In order to provide an objective judgement on whether the
points (zk, Y[k]) fall close to a straight line and building on the work of Michael (1983).
Chantarangsi et al. (2015) consider augmenting the normal probability plot by providing
an interval for each Y[k] (k = 1, . . . , n) so that, if the population is normally distributed
then all the Y[k] (k = 1, · · · , n) will fall into the corresponding intervals simultaneously
with probability 1 − α. In this paper, the authors use the idea of Chantarangsi et al.
(2015) on Q-Q plots to judge whether a sample is drawn from the Weibull or exponential
distributions.

The exponential distribution Exp(µ, σ) is a location-scale family, but the Weibull
distribution is not. Therefore, log-transformation is applied to the Weibull distribution
to obtain the smallest extreme value distribution SEV (µ, σ), which is a location-scale
family. A Q-Q plot consists of the n points (qk, Y[k]), k = 1, · · · , n, where Y[1] ≤ · · · ≤ Y[n]

are the ordered Yk's and q1 < . . . < qn are a set of n reference values which represent
the ordered values of a typical sample of size n from the distribution F0(y). There are
several ways to choose the reference values qk = F−1

0 (pk) where F−1
0 (·) is the inverse

function of F0(·). Various slightly di�erent forms of pk have been suggested in the
statistical literature. See, e.g., Weibull (1939) [23], Blom (1958) [2] and Filliben (1975)
[7]. Throughout this paper, we use pk = (k − 0.5)/n (k = 1, . . . , n), which are �rstly
given in Hazen (1914) [8] and used in the software packages R (when n > 10) and Matlab.
Note that the choices of the pk's do not a�ect the tests discussed in this paper.

If Y1, · · · , Yn have the distribution F0 ((y − µ)/σ), then the n points (qk, Y[k]) should
fall close to a straight line. In order to provide an objective judgement on whether the
points (qk, Y[k]) fall close to a straight line, one can augment the Q-Q plot by providing
an interval for each Y[k] (k = 1, · · · , n) so that, if the population follows the distribution
F0 ((y − µ)/σ), then all the Y[k] (k = 1, · · · , n) will fall inside the corresponding intervals
simultaneously with probability 1 − α. Each of these n intervals can be depicted in the
Q-Q plot as a vertical interval at the corresponding qk. Therefore, if at least one point
(qk, Y[k]) (1 ≤ k ≤ n) does not fall within the corresponding interval then one can claim,
with 1−α con�dence, that the population does not follow the distribution F0 ((y − µ)/σ).
This is in e�ect a size α test for the null hypothesis H0: the population distribution is
F0 ((y − µ)/σ) for some −∞ < µ <∞ and σ > 0 against the alternative hypothesis Ha:
H0 is not true, but with a clear graphical interpretation on the Q-Q plot.

One way to construct the intervals is to use the Kolmogorov-Smirnov statistic

(1.1) D = max
1≤k≤n

∣∣F0

(
(Y[k] − µ̂)/σ̂

)
− (k − 0.5)/n

∣∣
where µ̂ and σ̂ are the estimates of µ and σ, respectively. Note that D is sometimes also
referred to as Lilliefors' (1967) statistic [11] when F0 is the cdf of the standard normal
distribution Φ(·). Let cD be a critical constant so that P{D ≤ cD} = 1 − α under H0.
This probability statement can be rewritten as

(1.2) P
{
Y[k] ∈ µ̂+ σ̂F−1

0 ((k − 0.5)/n± cD ) , k = 1, · · · , n
}

= 1− α.

Hence, under H0, each Y[k] should fall in the corresponding interval

µ̂+ σ̂F−1
0 ((k − 0.5)/n± cD ) simultaneously for k = 1, · · · , n with probability 1− α.



889

The second set of intervals is due to Michael (1983) [16] and based on the statistic

(1.3) Dm = max
1≤k≤n

∣∣∣∣(2/π) arcsin
√
F0

(
(Y[k] − µ̂)/σ̂

)
− (2/π) arcsin

√
(k − 0.5)/n

∣∣∣∣ .
Let cDm

be a critical constant so that P{Dm ≤ cDm
} = 1−α under H0. This probability

statement can be rewritten as

(1.4) P
{
Y[k] ∈ µ̂+ σ̂F−1

0

(
sin2[arcsin

√
(k − 0.5)/n± π

2
cDm

]
)
for k = 1, . . . , n

}
= 1−α.

The purpose of this paper is to propose three new graphical tests and to compare the
powers of these graphical tests in order to identify the one having larger overall power.

The layout of the paper is as follows. Section 2 presents the methods of parameter
estimation for Weibull and exponential distributions. Section 3 then constructs graphical
tests for testing Weibull and exponential distributions based on the tests proposed in
Chantarangsi et al. (2015) [5]. The powers of these graphical and two non-graphical
tests are then compared in a simulation study in order to identify the tests that have
overall good power in Section 4. An illustrative example is presented in Section 5.

2. Distribution function and Parameter estimation

2.1. Weibull distribution. A random variable X is said to have the Weibull distribu-
tion, Wbl(a, b, c), if its cdf is given by

(2.1) F (x|a, b, c) = 1− exp
{
−
[x− a

b

]c}
, x > a, b > 0, c > 0

where a is called the location parameter, b the scale parameter and c the shape parameter.
In this paper, it is assumed a is known and so Y = ln(X − a) has the so-called smallest
extreme value (SEV ) distribution. The cdf of Y is given by

(2.2) F (y|µ, σ) = 1− exp
(
− exp

(y − µ
σ

))
, −∞ < y <∞

where −∞ < µ = ln b < ∞ is the location parameter and σ = 1/c > 0 is the scale
parameter. In short, Y ∼ SEV (µ, σ). The original null hypothesis H0 : X1, . . . , Xn
come from Wbl(a, b, c), where a is known, is therefore the same as H0 : Y1 = ln(X1 −
a), . . . , Yn = ln(Xn − a) are from SEV (µ, σ) for some unknown parameters µ and σ.

Note that the pth quantile of the distribution SEV (0, 1) is given by F−1(p) =
ln(− ln(1−p)). Hence a Q-Q plot contains the n points (ln(− ln(1−pk)), Y[k]), k = 1, . . . , n

where pk = k−0.5
n

.
Since both the location and scale parameters of SEV (µ, σ) are unknown, they have to

be estimated. We consider three popular estimators proposed in the statistical literature:
the maximum likelihood estimators (MLE), the best linear unbiased estimators (BLUE)
and the best linear invariant estimators (BLIE). They are studied to see which one gives
better power. The MLEs are given (cf. Krishnamoorthy (2006) [9]) by

µ̃ = σ̃ ln
( 1

n

n∑
k=1

exp
(Yk
σ̃

))
,(2.3)

σ̃ = −Ȳ +

∑n
k=1 Yk exp

(
Yk
σ̃

)
∑n
k=1 exp

(
Yk
σ̃

) .(2.4)

Pirouzi�Fard and Holmquist (2013) [19] considered the statistic Dm in which the
BLUEs of µ and σ in SEV (µ, σ) are obtained by the generalised least squares (GLS)
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method. Let Z[1] ≤ . . . ≤ Z[n] be the ordered values of a sample of size n from SEV (0, 1)
with

µk = E(Z[k]), k = 1, . . . , n(2.5)

σ2
k = Var(Z[k]), k = 1, . . . , n.(2.6)

Pirouzi�Fard and Holmquist (2007) [17] propose the approximations

(2.7) µk ≈
{ − ln(n)− γ, for k =1,

ln(− ln(1− [ k−0.4866
n+0.1840

])), for k = 2,. . . , n

where γ ≈ 0.577215665 is Euler's constant. Pirouzi�Fard and Holmquist (2008) [18]
propose the approximations

(2.8) σ2
rk ≈

{
π2

6
, for r = k = 1,

(k−0.469)([n+0.831−k][n+0.073])−1

ln(n+0.831−k
n+0.356

) ln(n+0.779−k
n+0.356

)
, for 1 ≤ r ≤ k ≤ n

where σ2
rk = σ2

kr is the covariance of the Z[r] and Z[k] and so, if r = k, σ2
rk = σ2

k.

Let µ = [µ1 . . . µn]′, V = (σ2
rk)n×n and Y = [Y[1] . . . Y[n]]

′. Then Y[k] = µ + σZ[k] and
E(Y[k]) = µ+ σE(Z[k]) = µ+ σµk.

Consider the regression model

(2.9) Y[k] = µ+ σµk + εk, k = 1, . . . , n,

with Cov(Y[r], Y[k]) = σ2Cov(Z[r], Z[k]) = σ2σ2
rk. Since the Y[k]'s are heteroscedastic and

autocorrelated, the unknown β = [µ, σ]′ in (2.9) can be estimated by using the GLS

method, which result in the BLUEs β̇ = (X′V −1X)
−1
X′V −1Y where X = [1,µ] and

V = (σ2
rk)n×n. Lloyd (1952) [14] is the �rst to apply the GLS method for estimating the

parameters of a location�scale distribution.
Although BLUEs have some very nice properties, they often have larger mean square

errors than some other linear estimators. The BLIEs are given in Mann (1969) [15] by

(2.10) µ̈ = µ̇− σ̇
( E12

1 + E22

)
, σ̈ =

σ̇

1 + E22

where µ̇ and σ̇ are the BLUEs of µ and σ and

(
E11 E12

E12 E22

)
= X′V −1X.

2.2. Exponential distribution. The cdf of the two-parameter exponential distribution
with the location parameter µ and the scale parameter σ is given by

(2.11) F (y|µ, σ) = 1− exp
(
− y − µ

σ

)
, y > µ, σ > 0.

Speci�cally, the pth quantile of a random variable Y ∼ Exp(µ, σ) is given by

(2.12) F−1(p) = µ− σ ln(1− p).

In particular, the pth quantile of the random variable Y−µ
σ
∼ Exp(0, 1) is − ln(1− p).

2.2.1. Parameter estimation. Again the three popular estimators MLE, BLUE and
BLIE are investigated in order to �nd the estimator that gives good overall powers.

The MLEs of µ and σ are given (cf. Krishnamoorthy, 2006 [9]) by

(2.13) (µ̃, σ̃) =
(
Y[1],

1

n

n∑
k=1

(Yk − Y[1])
)

=
(
Y[1], Ȳ − Y[1]

)
.
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Let Z[1] ≤ . . . ≤ Z[n] be the ordered sample from Exp(0, 1). Then we have (cf. Ahsanullah
and Hamedani, 2010 [1])

µk = E(Z[k]) =

k∑
i=1

1

n− i+ 1
, k = 1, . . . , n(2.14)

σ2
k = Var(Z[k]) =

k∑
i=1

1

(n− i+ 1)2
, k = 1, . . . , n(2.15)

σ2
rk = Cov(Z[r], Z[k]) =

k∑
i=1

1

(n− i+ 1)2
, 1 ≤ r ≤ k ≤ n.(2.16)

where σ2
rk = σ2

kr = Cov(Z[r], Z[k]). Similar to the case of Weibull distribution, the BLUEs
of (µ, σ) can be obtained by the generalised least squares method and are given by

µ̇ =
nY[1] − Ȳ
n− 1

,(2.17)

σ̇ =
n(Y[1] − Ȳ )

n− 1
.(2.18)

See, e.g., Ahsanullah and Hamedani (2010) [1] for details.
The BLIEs are given in Mann (1969)[15] by

µ̈ = (1 +
1

n
)Y[1] −

Ȳ

n
,(2.19)

σ̈ = Ȳ − Y[1].(2.20)

3. The tests

The �ve graphical tests considered in this paper include the two existing tests D, Dm
mentioned in the introduction and the three new tests De, Dbe and Dbi based on those
in Chantarangsi et al.(2015) [5] for testing normality. The (µ̂, σ̂) in each test can there-
fore be substituted by (µ̃, σ̃), (µ̇, σ̇) or (µ̈, σ̈). In this section, we assume H0 is true and
provide all the tests of size α. The D and Dm tests using (µ̃, σ̃) have been considered by
Kimber (1985) [10]. The D and Dm tests using (µ̃, σ̃) have been studied in Coles (1989)
[3], which shows that the (µ̇, σ̇) gives better powers than the (µ̃, σ̃).

Recall that Z1, ..., Zn denote a simple random sample drawn from SEV (0, 1) or
Exp(0, 1) and Z[1] ≤ ... ≤ Z[n] be the ordered values. The expected values and vari-
ances of Z[k] for k = 1, . . . , n are given by

µk = E(Z[k]),(3.1)

σ2
k = Var(Z[k]) = E(Z2

[k])− µ2
k(3.2)

where fk(z) is the probability density function of Z[k] and is de�ned by

fk(z) =
n!

(k − 1)!(n− k)!
(FZ(z))k−1(1− FZ(z)

)n−k
fZ(z) , −∞ ≤ z ≤ ∞.

First, we consider testing the Weibull distribution. Recall that Z1, ..., Zn denote a simple
random sample from SEV (0, 1), Z[1] ≤ ... ≤ Z[n] are the ordered values, and µk =

E(Z[k]), σ
2
k = Var(Z[k]). It is clear that (Y[1], ..., Y[n]) have the same joint distribution as

(µ+σZ[1], ..., µ+σZ[n]). In particular, we have E(Y[k]) = µ+σµk and Var(Y[k]) = σ2σ2
k.

The test De uses the test statistic

(3.3) De = max
1≤k≤n

∣∣∣Y[k] − (µ̂+ σ̂µk)

σ̂σk

∣∣∣,



892

where (µ̂, σ̂) is the estimator of (µ, σ) and can be any one of the three estimators MLE
(µ̃, σ̃), BLUE (µ̇, σ̇) and BLIE (µ̈, σ̈) considered in Section 2.

It is clear from expression (3.3) that the distribution of De does not depends on
the unknown parameters µ and σ2. The critical constant ce, which satis�es P{De ≤
ce} = 1 − α under H0, can easily be computed accurately by using a large number of
simulations, as in Chantarangsi et al. (2015) [5]. See Edwards and Berry (1987) [6] and
Liu et al. (2005) [13] for ways to assess the accuracy of this approach. It is noteworthy
that simulation methods are also used to compute the critical constants of the D and
Dm tests; see, e.g., Michael (1983) [16] and Scott and Stewart (2011) [20].

The probability statement P{De ≤ Ce} = 1−α produces the following simultaneously
probability intervals for Y[1], ..., Y[n]:

P
{
Y[k] ∈ [µ̂+ σ̂µk ± ceσ̂σk] for k = 1, · · · , n

}
= 1− α.(3.4)

The Dbe test is constructed in the following steps. Let F0(·) denote the cdf of

SEV (0, 1). Note that, under H0, Uk = F0

(Yk − µ
σ

)
, k = 1, . . . , n has a uniform dis-

tribution on the interval (0, 1) and the order statistic Uk = F0

(Yk − µ
σ

)
has the beta

distribution with parameters k and n− k + 1.

• Step 1. Construct p∗ level highest-density probability interval
[L(p∗, k, n), U(p∗, k, n)] for U[k], which is the shortest probability interval for U[k]

among all the p∗ level probability intervals for U[k].
• Step 2. Find p∗ so that

K(p∗) ≡ P
{
F−1
0 (L(p∗, k, n)) ≤

Y[k] − µ̂
σ̂

≤ F−1
0 (U(p∗, k, n)) for k = 1, ..., n

}
= 1− α.

Such a p∗ can be found by simulation and a standard numerical searching algo-
rithm in a similar way as in Chantarangsi et al. (2015) [5].

• Step 3. Under H0, the simultaneous 1− α probability intervals for Y[1] ≤ ... ≤
Y[n] are therefore given by

µ̂+ σ̂F−1
0 (L(p∗, k, n)) ≤ Y[k] ≤ µ̂+ σ̂F−1

0 (U(p∗, k, n)), k = 1, . . . , n.

Hence test Dbe rejects H0 if and only if at least one Y[k] is not included in its correspond-

ing interval [µ̂+ σ̂F−1
0 (L(p∗, k, n)), µ̂+ σ̂F−1

0 (U(p∗, k, n))].

The Dbi test uses statistic

Dbi = max
1≤k≤n

∣∣F0

(
(Y[k] − µ̂)/σ̂

)
− (k − 0.5)/n

∣∣√
(k − 0.5)(n− k + 0.5)/n3

.

Let cbi be a critical constant so that P
{
Dbi < cbi

}
= 1 − α, under H0, which can be

determined by using simulation as before. The simultaneous 1− α probability intervals
for Y[1] ≤ ... ≤ Y[n] are therefore given by

(3.5) Y[k] ∈ µ̂+ σ̂F−1
0

(k − 0.5

n
± cbi

√
(k − 0.5)(n− k + 0.5)

n3

)
for k = 1, . . . , n.

The test D and Dm are speci�ed in (1.1), (1.2) and (1.3), (1.4), respectively, but with
F0(·) being the cdf of SEV (0, 1).

The non-graphical Anderson-Darling (AD) test rejects H0 if and only if AD > c where

(3.6) AD = −
n∑
k=1

[ (2k − 1){ln(F0(Y[k])) + ln(1− F0(Y[n+1−k]}
n

]
− n.
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The critical constant c, which satis�es P{AD < c} = 1−α under H0, can be determined
by simulation as before.

The non-graphical Cramér-von Mises (CvM) test rejects H0 if and only if CvM > c
where

(3.7) CvM =

n∑
k=1

[
F0(Y[k])−

2k − 1

2n

]2
+

1

12n

The critical constant c, which satis�es P{CvM < c} = 1 − α under H0, can again be
determined by simulation.

For testing the Exponential distribution Exp(µ, σ), the �ve graphical and two non-
graphical tests for testing the Weibull distribution given above are easily modi�ed by
simply assuming that F0(·) is the cdf of Exp(0, 1) and that Z1, . . . , Zn are a simple
random sample from Exp(0, 1) to give the �ve graphical and two non-graphical tests also
denoted as D, Dm, De, Dbe, AD and CvM.

Our focus is on the �ve graphical tests D, Dm, De, Dbi and Dbe, each providing a set
of simultaneous 1− α probability intervals for the Y[k]'s. These intervals can be used in
the Q-Q plot to objectively judge whether the n points (qk, Y[k]) fall close to a straight
line. We also want to compare the powers of the �ve graphical and the two non-graphical
tests.

From many simulation studies on power comparison published in statistical literature
(cf. Littell et al. (1979) [12] and Sürücü (2008) [21]), the AD and CvM tests usually have
larger power than other tests, for testing Weibull or Exponential distributions. This is
the reason why AD and CvM tests are included in our power comparison study.

4. Power comparisons

The power of a test is evaluated by simulation as the proportion of times the null
hypothesisH0 is rejected by the test for a given alternative distribution. In our simulation
study, each critical constant c is based on 30,000 simulations and each power value is
based on 10,000 simulations. The powers of the seven tests are computed for all possible
combinations of α = 0.01, 0.05, 0.1, the three estimators (MLE, BLUE, BLIE), sample
size n from a set of values, and the alternative distribution from a set of distributions.
The set of alternative distributions includes many of the distributions used in several
published studies on power comparison of tests for Weibull or Exponential distributions
(cf. Littell, et al. (1979) [12], Kimber (1985) [10], Coles (1989) [3], Tiku and Singh (1981)
[22], Castro-Kusiss (2011) [4], Pirouzi-Fard and Holmquist et al. (2013) [19]).

4.1. For Weibull distribution. The alternatives are divided into the following three
groups. The �rst group of seven distributions are asymmetric on the support (0,∞) and
includes χ2(1), χ2(3), χ2(4), χ2(6), χ2(10), LogN(0, 1) and Half-normal(0,1) (HN(0, 1)).
The second group of seven distributions are on the interval (0, 1) and includes U(0, 1),
beta(2, 2), beta(2, 5), beta(5, 1.5), beta(0.5, 0.5), beta(0.5, 3) and beta(1, 2). The third
group of seven distributions are symmetric on the support (−∞,∞) and include
Laplace(0, 1), logistic(0, 1), N(0, 1), t(1), t(3), t(4) and t(6).

Sample sizes n = 10, 25, 40 ,100, 150, 200, 250, 300, 350, 400 and 500 are used for the
alternative distributions from Group I and Group II. For the alternative distributions
from Group III, the considered sample sizes are n = 5(5)30, 40, 50, 100, 150, and 200
since the powers are very close to 100% already at sample size n = 200.

From the results of our study, which one of the three estimators is used has little e�ect
on the powers of the seven tests. Hence any one of the three estimators can be used with
any one of the seven tests. Tables 1-3 give the powers of the tests when BLUE is used.



894

From the power results in Table 1 for the �rst group of alternative distributions, the
following observations can be made. The Dbe test has good power, even relative to the
non-graphical tests AD and CvM, against the alternatives in Group I except χ2(1) and
HN(0, 1). Dm and Dbe have similar powers. Overall D and De tend to be less powerful
than the other tests. While Dbi has better power than D and De on many cases, it is
less powerful than Dbe and Dm overall.

From the power results in Table 2 for the second group of alternative distributions,
the Dbi test often has the best powers and is more powerful than the non-graphical
AD and CvM tests on most occasions whereas the D and De tests generally have least
powers. However, when n 6 40, De seems to have greater powers than all the other tests.
Additionally, the powers of Dm and Dbe are close to each other. All tests have little
power in detecting the departure from the Weibull distribution of beta(2, 5). Also, the
Dbi test is more powerful than the non-graphical AD and CvM tests on most occasions.

From the power results in Table 3 for the third group of alternative distributions,
the AD and CvM tests are overall more powerful than the other tests. Nevertheless, for
N(0, 1), the Dbi test is more powerful than the AD and CvM tests. The D, De and Dbi
tests have low power over the distributions in Group III and the powers of Dbi are less
than those of D and De for larger sample sizes. Among the graphical tests, the Dm and
Dbe tests are more powerful overall.

4.2. For exponential distribution. The �rst group of nine distributions are asym-
metric on the support (0,∞) includes χ2(1), χ2(3), χ2(4), χ2(6), χ2(10), LogN(0, 1),
HN(0, 1), Wbl(0, 0.5, 0.5) and Wbl(0, 2, 2). The second and the third groups of the
distributions are the same as the second and third groups, respectively, given in Section
4.1

From our simulation study, the BLIE often gives the best power, even though the
power di�erences between BLIE and BLUE are often small. Hence BLIE is recommended
for testing Exponential distribution.

From the power results given in Table 4 for the �rst group of alternative distri-
butions, the following observations can be made. The two non�graphical AD and CvM
tests are the most powerful against all alternative distributions exception LogN(0, 1).
Interestingly, the powers of the D test are as good as those of the others. Moreover, the
De test is the best choice against LogN(0, 1). On the other hand, it has low powers in
comparison with the other tests in this group. Also, the Dbi test is the best choice against
HN(0, 1); however, it has the least power among χ2(1), LogN(0, 1) and Wbl(0, 0.5, 0.5).
For the other alternative distributions, powers of the Dbi test is slightly better than those
of Dm and Dbe.

From the power results given in Table 5 for the second group of the alternative
distributions, we can observe that the Dbi test shows good power, even relative to the
non-graphical AD and CvM tests, except for beta(0.5, 3). The De test has the worst
power among all the tests except for beta(0.5, 3). The powers of the Dm and Dbe tests
are not as high as those of the Dbi, AD and CvM tests in many cases, but they perform
quite well overall the alternative distributions generally.

From the power results given in Tables 6 for the third group of the alternative
distributions, the powers of all tests are very similar. Nevertheless, the CvM test is
slightly more powerful than the other tests.

The overall conclusions from this power study for both Weibull and Exponential dis-
tributions are as follows. Although not completely dominated, the D and De are less
powerful than the other three graphical tests in most scenarios and so not recommended.
Therefore, the graphical tests Dm, Dbe and Dbi are recommended for use with Q-Q plot.
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Table 1. Powers (in %) for testing Weibull distribution with BLUE
and α = 0.05 against the alternative distributions from Group I

Alternatives n D Dm De Dbe Dbi AD CvM

χ2(1) 10 5.88 5.27 8.26 5.35 3.72 5.96 6.01

25 7.92 5.28 12.20 4.69 3.62 8.90 7.60

40 8.59 6.08 15.10 5.50 4.14 10.54 9.45

100 15.12 11.76 21.55 11.83 8.97 20.02 17.65

150 18.26 17.09 28.31 18.26 13.23 30.18 22.92

200 24.79 23.03 32.11 24.50 15.90 36.20 30.45

250 28.68 29.80 36.00 31.73 20.39 44.26 36.02

300 33.80 35.66 40.64 39.01 23.22 52.24 43.40

350 40.00 42.05 44.83 44.21 27.60 59.38 50.78

400 44.94 48.46 49.11 49.36 31.80 64.56 56.43

500 53.12 57.82 54.76 59.67 37.64 75.64 66.21

χ2(3) 10 4.95 5.56 4.26 5.30 6.35 5.22 5.36

25 5.19 6.95 3.49 6.86 7.90 4.90 5.45

40 5.69 8.05 3.41 7.80 8.61 5.22 5.92

100 6.42 10.25 4.15 10.42 10.25 7.72 7.23

150 7.60 11.63 5.42 12.32 10.91 10.08 9.00

200 8.90 13.49 6.17 14.26 12.48 11.82 10.62

250 9.53 15.12 6.08 15.46 13.48 12.28 11.15

300 10.46 16.67 6.61 17.40 13.29 15.54 12.76

350 11.89 18.54 7.58 18.94 14.85 17.26 14.84

400 12.59 19.61 8.46 20.36 15.34 18.60 15.64

500 14.85 23.04 9.59 23.24 16.16 22.08 18.56

χ2(4) 10 5.38 6 3.61 5.94 7.15 5.10 5.78

25 5.86 8.51 3.28 7.82 9.94 5.76 6.65

40 6.52 10.8 3.69 10.56 12.73 7.30 7.25

100 9.46 16.89 5.73 16.46 16.36 12.88 11.57

150 11.94 21.11 8.48 21.04 19.32 18.50 15.73

200 15.81 26.15 10.32 26.42 21.74 22.88 19.73

250 18.3 31.00 11.59 32.24 25.62 26.9 23.20

300 20.29 35.16 14.34 36.96 26.09 34.22 27.74

350 23.49 39.30 15.93 40.20 29.91 38.24 31.85

400 25.85 42.15 18.41 45.44 30.54 42.80 34.45

500 31.83 49.39 21.69 52.28 35.57 51.98 42.92

χ2(6) 10 5.27 6.31 3.25 7.16 8.16 5.64 6.11

25 6.89 11.60 3.55 10.16 13.83 8.02 8.22

40 8.68 14.66 4.67 14.64 16.47 10.06 10.47

100 14.87 28.75 9.88 27.98 27.93 22.66 19.81

150 20.91 38.06 15.08 39.04 33.85 34.52 28

200 27.7 47.71 19.75 48.26 40.11 43.62 37.24

250 33.44 56.15 23.16 56.50 45.65 52.74 45.45

300 38.48 62.91 28.89 65.20 49.38 64.00 53.22

350 44.89 69.20 33.12 71.16 55.36 69.82 60.17

400 49.49 74.85 39.38 75.80 59.42 76.5 65.55

500 59.44 82.92 46.73 84.48 66.89 85.54 76.69

χ2(10) 10 6.05 7.42 3.25 7.62 9.90 6.58 6.94

25 8.45 15.36 4.53 15.18 18.09 10.70 10.44

40 12.10 20.96 6.79 20.46 23.40 15.80 14.34

100 22.95 44.68 16.41 43.98 42.34 37.64 31.43

150 32.45 58.86 25.65 60.14 52.66 54.08 45.41

200 43.97 70.82 32.42 72.00 62.19 68.92 58.92

250 52.61 80.28 40.01 81.68 70.69 78.58 69.77

300 60.13 86.40 49.10 87.44 75.20 86.82 77.76

350 69.08 91.21 57.34 91.68 81.42 91.76 84.74

400 74.35 94.05 65.87 94.66 85.55 94.38 88.95

500 84.01 97.62 76.72 98.10 91.39 98.30 95.04

LogN(0, 1) 10 9.34 12.40 3.97 12.43 16.88 10.36 11.25

25 18.62 34.49 11.94 33.89 40.13 28.40 25.46

40 28.12 52.20 20.64 51.58 56.83 43.92 38.57

100 63.39 91.66 51.29 91.59 90.10 86.94 79.81

150 81.86 98.38 73.18 98.48 97.35 97.18 94.17

200 93.03 99.80 87.30 99.80 99.33 99.56 98.54

250 97.35 100 94.65 99.98 99.89 99.90 99.74

300 98.93 99.98 98.58 99.98 99.95 99.98 99.94

350 99.71 99.99 99.60 99.99 100 99.98 99.97

400 99.88 100 99.88 100 100 100 100

500 99.99 100 99.99 100 100 100 100

HN(0, 1) 10 5.93 5.43 8.56 5.25 4.00 6.62 5.99

25 7.15 5.28 12.18 4.51 3.05 8.64 7.45

40 8.75 5.91 14.58 5.38 4.06 10.40 9.28

100 14.39 11.21 21.20 10.78 9.02 19.24 16.33

150 18.87 17.01 27.84 17.83 13.15 28.12 23.71

200 25.35 23.58 32.23 25.03 16.05 36.26 31.01

250 30.30 29.43 35.25 30.53 20.49 43.74 37.25

300 34.27 35.62 40.75 38.35 23.16 52.94 44.61

350 40.56 41.92 45.11 44.39 27.38 59.48 51.30

400 44.67 47.59 48.83 49.75 30.69 65.56 56.10

500 53.89 58.04 55.33 59.65 37.40 75.70 66.90

The bolded number is the highest power among the seven tests for each sample size.
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Table 2. Powers (in %) for testing Weibull distribution with BLUE
and α = 0.05 against the alternative distributions from Group II

Alternatives n D Dm De Dbe Dbi AD CvM

U(0, 1) 10 14.21 12.00 20.92 9.97 5.44 19.68 15.94

25 32.05 31.54 42.77 25.61 36.30 48.62 39.43

40 49.17 66.52 57.26 60.33 77.42 72.12 60.46

100 91.16 99.99 92.79 99.93 100 99.32 97.21

150 98.66 100 99.86 100 100 100 99.89

200 99.88 100 100 100 100 100 100

250 100 100 100 100 100 100 100

300 100 100 100 100 100 100 100

350 100 100 100 100 100 100 100

400 100 100 100 100 100 100 100

500 100 100 100 100 100 100 100

beta(2, 2) 10 6.59 5.50 9.59 4.80 3.14 7.52 6.88

25 9.56 6.47 14.47 5.53 4.15 13.38 10.62

40 12.84 9.65 18.01 8.36 10.64 18.16 15.15

100 28.22 46.57 29.62 39.38 56.22 49.62 38.56

150 41.99 76.58 39.77 70.98 84.94 70.94 56.61

200 56.74 92.79 47.98 90.94 96.39 83.74 71.93

250 68.90 98.58 57.59 97.30 99.50 92.04 82.95

300 75.78 99.76 70.69 99.55 99.92 97.06 90.43

350 84.35 99.98 81.58 99.89 99.99 98.90 94.79

400 89.27 100 89.49 99.99 100 99.46 97.29

500 94.82 100 97.48 100 100 99.96 99.25

beta(2, 5) 10 4.62 4.41 4.78 4.28 4.39 4.86 4.85

25 5.20 4.62 5.16 3.64 4.27 4.34 5.10

40 4.57 3.98 4.56 3.96 4.30 4.54 4.65

100 5.37 4.85 3.94 4.23 6.14 5.50 5.64

150 5.67 5.27 4.07 5.30 6.67 7.26 6.04

200 6.24 6.88 4.16 6.22 8.42 7.28 7.01

250 6.71 8.16 3.29 6.39 10.59 8.06 7.99

300 6.57 8.53 3.49 8.11 11.78 9.66 8.18

350 7.58 10.32 3.54 9.15 14.76 10.70 9.57

400 8.96 12.58 3.90 10.45 16.46 11.28 10.85

500 9.14 15.62 3.29 12.60 20.97 14.32 11.99

beta(5, 1.5) 10 8.01 6.43 11.80 5.54 3.14 9.92 8.34

25 15.01 11.07 22.14 8.52 8.50 21.30 17.66

40 20.65 21.21 29.10 17.81 27.54 35.22 26.04

100 52.08 87.37 52.56 82.54 92.98 79.70 66.78

150 72.15 99.11 70.78 98.45 99.75 94.98 86.69

200 86.56 99.98 86.87 99.96 100 99.22 95.78

250 93.99 100 95.62 100 100 99.78 98.62

300 97.42 100 98.47 100 100 100 99.68

350 99.16 100 99.93 100 100 100 99.93

400 99.59 100 100 100 100 100 99.98

500 99.96 100 100 100 100 100 100

beta(0.5, 0.5) 10 33.39 30.47 42.47 25.68 19.10 46.44 38.96

25 73.77 85.45 79.02 80.91 92.48 90.24 82.42

40 92.10 99.60 93.11 99.37 99.84 99.30 97.09

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

250 100 100 100 100 100 100 100

300 100 100 100 100 100 100 100

350 100 100 100 100 100 100 100

400 100 100 100 100 100 100 100

500 100 100 100 100 100 100 100

beta(0.5, 3) 10 7.64 6.09 10.92 5.59 3.40 8.78 7.67

25 11.56 8.25 18.65 6.62 4.76 17.96 12.59

40 15.57 12.17 24.85 10.12 10.80 21.82 18.44

100 34.31 44.73 43.08 40.37 46.97 53.34 44.78

150 48.78 68.59 55.84 67.44 72.02 74.86 62.26

200 62.84 86.65 65.45 85.04 88.69 86.86 76.82

250 74.08 95.30 73.12 93.69 96.18 93.42 87.03

300 81.81 98.42 81.59 97.86 98.85 97.84 93.06

350 88.79 99.57 88.39 99.41 99.71 98.88 96.52

400 92.53 99.81 92.62 99.82 99.94 99.74 98.00

500 97.01 100 97.31 99.97 100 99.98 99.68

beta(1, 2) 10 6.89 5.53 10.12 4.95 3.19 9.56 6.88

25 11.17 8.10 17.98 6.36 5.07 15.70 12.68

40 15.92 12.97 23.00 10.83 13.73 22.46 18.94

100 35.17 56.25 39.37 50.40 65.34 57.34 46.89

150 50.68 84.91 53.03 81.43 91.37 79.70 66.85

200 67.18 97.10 64.43 95.51 98.58 90.42 81.10

250 77.27 99.60 72.79 99.35 99.83 96.64 89.98

300 86.15 99.93 84.35 99.88 99.96 98.92 95.14

350 90.96 100 92.33 99.99 100 99.66 97.74

400 94.92 100 97.08 100 100 99.96 99.07

500 98.28 100 99.71 100 100 99.98 99.89

The bolded number is the highest power among the seven tests for each sample size.
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Table 3. Powers (in %) for testing Weibull distribution with BLUE
and α = 0.05 against the alternative distributions from Group III

Alternatives n D Dm De Dbe Dbi AD CvM

Laplace(0, 1) 5 9.73 9.71 8.24 10.60 11.44 8.42 9.82

10 19.56 24.02 12.10 24.88 27.00 23.03 24.12

15 28.93 34.3 21.59 35.23 34.12 35.57 35.92

20 37.33 43.57 32.12 46.18 41.05 47.03 46.43

25 46.92 52.22 40.26 54.51 46.24 57.06 56.08

30 55.42 58.61 48.28 60.53 51.40 65.73 65.04

40 67.43 68.97 61.76 70.24 57.72 78.08 76.93

50 76.62 75.98 71.28 77.85 62.10 85.56 84.58

100 96.73 95.10 94.00 95.95 79.88 98.80 98.60

150 99.68 98.97 98.98 99.27 89.72 99.93 99.91

200 99.91 99.84 99.84 99.91 95.01 99.98 99.98

logistic(0, 1) 5 6.92 6.96 6.11 7.49 8.39 6.00 6.92

10 12.14 16.66 6.23 16.95 21.01 15.21 15.6

15 17.08 24.35 11.14 24.59 28.35 22.95 22.02

20 21.99 32.40 17.64 33.89 36.11 31.65 29.29

25 27.67 40.51 23.56 41.59 41.50 39.05 36.56

30 33.29 46.99 29.12 47.51 46.99 47.12 43.69

40 41.67 57.45 39.37 57.19 55.02 58.72 54.4

50 49.23 64.32 47.57 65.94 60.65 67.92 62.79

100 80.52 89.51 77.33 90.48 81.39 93.46 90.59

150 93.54 96.73 92.68 97.40 91.26 98.8 98.01

200 98.02 99.20 97.08 99.43 95.98 99.8 99.58

N(0, 1) 5 6.12 6.14 5.35 6.35 7.10 5.19 6.33

10 9.34 12.40 3.97 12.31 16.88 10.66 11.25

15 11.99 19.50 6.00 19.18 25.58 15.97 15.54

20 15.08 26.60 9.04 26.15 33.13 22.62 20.79

25 18.62 34.49 11.94 34.17 40.13 28.44 25.46

30 21.20 40.80 14.26 40.64 46.48 33.81 29.35

40 28.12 52.20 20.64 51.58 56.83 44.20 38.57

50 34.00 63.23 25.66 62.38 66.57 54.84 47.11

100 63.39 91.66 51.29 91.65 90.10 87.06 79.81

150 81.86 98.38 73.18 98.48 97.35 97.11 94.17

200 93.03 99.80 87.30 99.80 99.33 99.59 98.54

t(1) 5 29.51 29.54 27.90 30.42 31.14 29.09 30.53

10 57.46 59.16 52.82 60.89 58.12 60.83 61.63

15 74.7 75.48 71.96 76.67 72.05 78.63 78.87

20 84.57 84.78 82.93 86.41 79.99 88.29 88.27

25 90.87 90.96 89.64 91.88 85.82 93.61 93.57

30 94.48 94.24 94.23 98.23 89.47 96.59 96.57

40 98.48 98.15 98.16 98.04 95.13 99.24 99.25

50 99.55 99.39 99.17 99.46 97.38 99.82 99.81

100 99.99 99.99 99.99 99.99 99.95 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(3) 5 10.22 10.22 9.11 11.07 11.78 9.47 10.68

10 20.44 24.62 14.82 25.56 26.67 24.35 24.79

15 29.91 35.99 25.70 36.78 37.79 37.32 36.57

20 38.28 46.30 36.23 47.67 44.65 48.31 46.71

25 44.87 52.07 44.71 54.12 48.93 55.70 53.75

30 53.21 59.70 51.88 61.79 55.00 64.49 62.31

40 65.06 70.69 65.83 71.58 61.89 76.47 74.48

50 73.21 77.30 73.89 78.96 67.17 84.37 82.35

100 94.82 94.91 95.01 95.87 84.33 98.24 97.79

150 99.17 99.05 99.08 99.25 92.34 99.81 99.78

200 99.90 99.82 99.79 99.91 96.78 99.99 99.99

t(4) 5 8.42 8.34 7.19 9.38 10.01 7.86 9.03

10 16.23 20.52 10.06 21.19 24.02 19.26 19.71

15 24.30 31.57 18.27 31.69 34.57 31.35 30.48

20 29.66 39.30 27.64 41.26 39.82 40.30 38.41

25 36.57 46.94 34.70 48.43 44.96 48.65 46.28

30 43.92 54.04 42.72 55.34 50.89 57.18 54.20

40 54.16 63.65 55.10 65.51 57.76 68.83 65.64

50 63.98 71.89 64.72 73.25 63.75 78.45 75.41

100 89.52 92.18 90.06 93.15 80.28 96.31 95.22

150 97.67 98.05 97.77 98.56 89.32 99.62 99.50

200 99.71 99.67 99.44 99.69 95.12 99.98 99.94

t(6) 5 7.36 7.44 6.39 8.06 8.94 6.60 8.00

10 13.12 17.30 7.71 17.84 21.37 15.56 16.08

15 19.79 27.33 13.72 27.05 31.09 25.84 25.03

20 24.37 34.85 20.20 35.55 37.02 34.02 32.06

25 28.99 41.57 25.69 42.88 42.01 41.23 38.45

30 35.57 48.13 32.68 49.40 47.53 48.97 45.51

40 45.09 59.16 44.56 60.42 55.11 61.44 57.07

50 52.67 66.73 53.43 67.79 60.94 70.89 66.24

100 82.40 89.59 81.38 90.57 80.02 94.11 91.83

150 94.14 96.94 94.13 97.61 89.50 98.94 98.26

200 98.59 99.17 98.32 99.32 94.79 99.84 99.74

The bolded number is the highest power among the seven tests for each sample size.
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Table 4. Powers (in %) for testing exponential distribution with BLIE
and α = 0.05 against the alternative distributions from Group I

Alternatives n D Dm De Dbe Dbi AD CvM

χ2(1) 5 3.88 3.93 6.43 4.22 3.92 6.91 4.38

10 10.66 10.95 11.78 10.29 5.98 17.95 12.18

15 19.85 21.14 15.45 19.33 8.04 31.62 22.77

20 29.58 31.39 19.63 29.14 10.39 44.49 34.35

25 39.12 42.05 23.29 41.13 13.56 55.70 44.23

30 48.89 52.44 28.02 52.94 16.41 66.29 55.15

40 65.77 70.48 38.14 68.94 25.37 81.21 71.65

50 77.49 81.98 47.76 81.63 32.17 90.29 82.33

100 98.44 99.19 91.11 99.25 77.25 99.76 99.16

150 99.8 99.95 99.04 99.98 95.65 99.97 99.95

200 100 100 100 100 100 100 100

χ2(3) 5 6.71 6.68 6.03 6.5 6.72 6.55 7.13

10 9.14 9.38 8.09 9.31 9.99 8.35 9.85

15 11.41 12.33 10.13 12 13.27 11.11 12.82

20 12.79 13.49 11.58 14.08 15.26 12.9 14.53

25 14.86 16.54 14.33 17.05 18.98 15.67 17.36

30 17.48 20.55 18.15 20.5 23.20 19.07 20.93

40 22.36 27.02 23.75 26.2 29.30 26.17 27.44

50 28.63 33.3 29.57 33.12 32.83 32.79 33.31

100 55.11 62.31 57.49 62.72 55.78 66.06 64.9

150 75.82 81.42 77.27 80.94 73.85 85.92 84.15

200 88.34 91.63 88.78 91.78 84.15 94.96 93.84

χ2(4) 5 7.53 7.52 6.83 8.40 7.55 7.31 8.38

10 12.49 12.71 10.84 12.52 13.65 12.47 14.34

15 17.87 18.81 15.87 19.37 20.18 18.21 20.34

20 22.79 24.45 21.38 25.45 26.9 24.29 27.25

25 28.83 31.47 28.2 31.62 34.64 32.04 34.48

30 35.45 38.87 35 39.77 41.44 39.55 42.07

40 47.26 52.1 48.1 52 53.31 54.19 55.67

50 59.32 64.21 59.55 63.68 62.12 67.96 68.35

100 91.96 93.2 90.83 93.39 89.79 96.13 95.92

150 98.9 99.05 98.33 98.97 97.78 99.76 99.67

200 99.86 99.85 99.71 99.88 99.48 99.97 99.94

χ2(6) 5 9.01 8.76 7.76 9.82 9.09 8.82 9.91

10 18.46 18.81 15.91 18.81 20.24 18.83 21.69

15 28.86 29.97 25.94 30.47 31.66 30.47 33.50

20 39.04 40.25 36.76 40.41 42.5 43.67 46.71

25 49.3 52.05 47.95 51.09 54.19 55.2 57.70

30 59.48 62.14 58.25 62.56 63.71 66.24 68.38

40 75.66 78.24 74.9 76.43 78 82.77 83.69

50 86.15 86.82 83.99 86.31 85.44 91.07 91.42

100 99.54 99.47 99.07 99.45 98.92 99.8 99.81

150 99.99 99.99 99.99 100 99.96 100 100

200 100 100 100 100 100 100 100

χ2(10) 5 11.25 10.8 9.24 11.59 11.31 10.15 11.63

10 25.03 25.23 21.74 25.71 26.69 26.66 29.69

15 40.73 41.76 37.59 42.23 42.87 45.36 48.66

20 55.33 55.86 51.79 55.47 57.69 61.25 63.83

25 67.44 68.15 64.6 67.48 69.71 73.69 75.90

30 77.25 77.87 74.37 78.26 78.83 83.11 84.53

40 89.81 89.72 87.86 89.06 89.67 93.82 94.33

50 95.93 96.11 94.85 95.74 95.32 98.07 98.18

100 99.97 99.96 99.91 99.98 99.89 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

LogN(0, 1) 5 4.94 4.86 5.46 5.07 4.92 5.60 4.98

10 6.6 6.45 10.54 6.48 6.05 8.55 7.11

15 8.41 8.25 13.68 8.24 7.28 10.84 9.22

20 9.98 9.73 17.84 9.63 8.53 12.6 11.09

25 11.5 10.76 20.89 10.67 8.9 13.91 12.43

30 13.09 12.49 23.86 12.69 10.04 16.17 14.93

40 16.56 15.92 29.88 15.67 11.7 19.52 18.62

50 19.22 18.29 34.85 18.23 12.62 22.86 21.12

100 34.56 36.09 59.85 38.55 23.17 41.63 40.03

150 48.77 55.58 76.67 57.09 37.67 62.01 57.11

200 62.53 71.6 87.66 74.74 50.32 77.89 71.49

HN(0, 1) 5 7.71 7.56 6.47 8.05 7.73 7.14 8.01

10 11.95 11.51 9.81 11.89 11.87 11.56 13.63

15 15.4 14.68 12.49 14.9 15.01 15.28 17.56

20 18.66 17.42 15.07 17.37 19.53 19.5 21.97

25 22.44 20.66 17.79 20.32 23.72 23.84 26.89

30 26.36 24.34 20.92 24.39 28.17 28.53 31.49

40 33.68 31.05 25.74 29.35 37.97 38.52 42.03

50 41.27 38.31 29.78 35.99 44.46 47.83 50.45

100 71.14 70.53 51.8 68.05 74.89 80.67 82.66

150 87.36 87.97 68.69 85.55 90.08 94.22 94.95

200 95.33 95.82 80.58 95.21 95.53 98.39 98.51

Wbl(0, 2, 2) 5 12.13 11.97 10.16 13.08 12.18 11.35 13.10

10 26.38 26.68 23.32 27.15 27.95 28.51 31.66

15 42 41.66 37.49 42.47 42.88 46.8 49.91

20 56.21 55.18 51.39 56.12 58.68 63.61 66.42

25 69.1 67.8 63.63 68.26 71.4 76.72 78.60

30 79.46 78.94 75.08 78.38 81.81 86.19 87.49

40 90.65 90.41 86.89 89.52 92.1 95.26 95.75

50 96.17 96.11 93.6 95.57 96.25 98.61 98.75

100 99.99 100 99.95 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

Wbl(0, 0.5, 0.5) 5 8.09 8.08 14.47 8.58 8.09 15.83 9.42

10 34.64 35.48 33.86 33.55 23.84 48.41 38.89

15 58.36 59.64 48.38 57.67 39.07 72.17 64.11

20 75.35 76.39 59.78 75.66 51.32 86.42 80

25 85.75 86.82 70.47 86.84 62.04 93.62 89.27

30 92.51 93.55 79.13 93.13 72.78 97.25 94.6

40 97.97 98.55 91.08 98.43 86.55 99.45 98.89

50 99.52 99.64 97.03 99.67 93.63 99.93 99.71

100 100 100 100 100 99.96 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

The bolded number is the highest power among the seven tests for each sample size.
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Table 5. Powers (in %) for testing exponential distribution with BLIE
and α = 0.05 against the alternative distributions from Group II

Alternatives n D Dm De Dbe Dbi AD CvM

U(0, 1) 5 15.67 15.55 14.28 16.24 15.71 16.46 17.66

10 31.33 29.25 27.39 28.75 27.13 37.18 38.87

15 45.01 40.55 37.26 39.61 47.03 55.29 56.27

20 56.22 52.96 46.61 50.21 75.36 69.99 70.11

25 66.49 72.22 55.16 64.58 91.51 81.01 80.71

30 76.06 87.6 63.65 80.84 97.90 88.46 88.06

40 86.99 98.51 76.27 96.24 99.93 96.62 96.14

50 93.95 99.94 83.99 99.64 100 99.18 98.96

100 99.95 100 99.03 100 100 100 100

150 100 100 99.97 100 100 100 100

200 100 100 100 100 100 100 100

beta(2, 2) 5 17.46 17.34 15.33 17.35 17.48 17.36 19.58

10 39.35 37.79 34.76 38.38 37.23 45.71 48.30

15 59.77 56.97 53.34 56.85 59.87 69.63 71.17

20 74.61 72.36 68.37 71.85 82.53 85.9 86.51

25 85.39 85.76 79.74 83.82 93.97 93.73 94.01

30 92.35 94.41 87.41 92.36 98.52 97.28 97.43

40 97.95 99.47 95.49 98.83 99.92 99.64 99.57

50 99.66 99.96 98.94 99.96 99.99 99.96 99.96

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

beta(2, 5) 5 11.54 11.21 9.58 11.68 11.55 10.35 12.07

10 22.41 22.2 19.41 22.78 23.13 23.4 26.49

15 34.2 33.89 29.72 35.67 34.7 38.87 41.73

20 46.85 46.9 42.85 46.37 50.73 55.33 58.30

25 59.29 59.51 54.71 58.35 65.09 69.04 70.72

30 69.49 69.56 64.45 68.86 74.73 78.33 79.83

40 83.18 84.2 78.88 82.76 88.58 91.46 92.18

50 91.68 92.59 87.17 91.88 94.65 96.61 96.51

100 99.89 99.95 99.62 99.97 99.97 99.99 99.99

150 100 100 99.99 100 100 100 100

200 100 100 100 100 100 100 100

beta(5, 1.5) 5 29.41 29.25 26.77 30.17 29.43 32.5 34.46

10 67.79 65.79 63.03 66.24 63.23 77.22 78.49

15 88.88 87.03 84.94 86.69 91.03 94.62 94.72

20 96.36 96.32 94.22 95.58 99.06 98.85 98.88

25 99.04 99.53 97.9 99.24 99.93 99.83 99.83

30 99.77 99.94 99.41 99.92 100 99.96 99.97

40 99.99 100 99.99 100 100 100 100

50 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

beta(0.5, 0.5) 5 15.37 17.09 17.51 15.55 15.02 19.08 18.55

10 25.68 23.86 24.3 23.7 17.77 33.07 30.86

15 34.68 30.67 29.02 29.62 39.82 46.82 42.86

20 42.05 43.44 33.96 37.41 67.97 58.65 52.89

25 51.63 64.34 39.1 53.45 85.32 69.81 63.54

30 60.5 82.04 46.19 72.82 94.24 79.64 73.03

40 73.47 96.83 56.8 93.4 99.34 91.34 85.51

50 84.76 99.67 66.83 99.02 99.97 97.12 93.44

100 99.58 100 95.72 100 100 100 99.94

150 100 100 99.8 100 100 100 100

200 100 100 100 100 100 100 100

beta(0.5, 3) 5 4.2 4.29 5.74 4.68 4.22 6.20 4.43

10 6.89 7.12 5.54 6.57 3.41 11.14 7.24

15 11.39 12.59 6.15 11.45 3.69 19.21 12.77

20 16.4 18.64 5.8 18.03 4.06 27.30 18.89

25 21.82 25.79 6.1 25.21 5.23 35.77 25.36

30 29.42 35.96 7.52 34.63 7.15 46.15 33.48

40 41.8 50.45 10.36 49.5 10.79 61.25 47.45

50 53.19 63.21 14.96 62.88 13.39 73.41 58.37

100 88.7 95.48 62 95.76 46.13 97.09 91.98

150 98.05 99.38 90.74 99.59 79.03 99.79 98.87

200 99.75 99.94 98.74 99.99 94.15 99.99 99.85

beta(1, 2) 5 9.27 9 7.91 9.37 9.29 8.25 9.51

10 13.61 13.05 11.31 13.28 12.79 13.94 16.16

15 18.9 17.48 15.04 17.5 17.18 19.96 21.98

20 22.78 20.16 18.07 20.65 24.65 26.83 28.78

25 27.42 24.72 20.68 24.74 34.97 33.24 35.41

30 33.8 31.55 25.3 28.85 46.92 39.23 41.61

40 42.05 45 30.49 37.17 68.24 51.83 53.67

50 50.05 59.11 33.95 51.04 82.03 61.94 62.77

100 82.37 98.78 58.94 96.71 99.93 92.94 92.8

150 95.21 100 77.37 99.97 100 99.26 99.11

200 99.06 100 89.27 100 100 99.94 99.93

The bolded number is the highest power among the seven tests for each sample size.



900
Table 6. Powers (in %) for testing exponential distribution with BLIE
and α = 0.05 against the alternative distributions from Group III

Alternatives n D Dm De Dbe Dbi AD CvM

Laplace(0, 1) 5 25.61 24.7 21.48 26.16 25.67 25.04 27.65

10 60.42 60.3 56.88 61.58 60.62 62.09 65.41

15 83.94 83.34 81.32 82.93 82.41 85.7 87.23

20 93.38 92.83 91.86 92.78 92.59 94.33 95.17

25 97.35 97.23 96.71 97.19 96.87 98.02 98.31

30 98.95 98.74 98.56 99.07 98.51 99.26 99.39

40 99.92 99.89 99.85 99.83 99.75 99.95 99.96

50 99.99 99.97 99.97 99.98 99.98 99.99 99.99

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

logistic(0, 1) 5 21.7 20.94 18.16 22.39 21.76 21.18 23.72

10 53 52.19 48.92 53.43 52.87 56.92 60.18

15 77.37 75.92 72.94 75.67 76.04 81.49 83.42

20 89.05 88.33 86.86 88.07 88.63 92.34 93.20

25 94.98 94.46 93.29 94.59 94.89 96.95 97.39

30 97.64 97.47 99.51 97.89 97.6 98.76 99

40 99.75 99.65 99.92 99.57 99.62 99.88 99.92

50 99.97 99.96 100 99.95 99.92 99.98 99.98

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

Cauchy(0, 1) 5 36.91 36.15 34.7 37.87 36.95 37.42 38.16

10 71.92 72.42 71.82 72.93 73.18 72.74 73.67

15 89.01 90.12 89.82 89.63 90.32 90.3 90.66

20 95.56 96.1 96.2 96 96.2 96.62 96.64

25 98.37 98.53 98.63 98.44 98.43 98.96 98.84

30 99.26 99.48 99.53 99.57 99.33 99.61 99.59

40 99.92 99.93 99.93 99.91 99.9 99.97 99.97

50 99.98 99.96 99.98 99.98 99.95 99.99 99.98

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

N(0, 1) 5 19.96 19.38 16.72 20.56 20 19.36 21.68

10 48.77 48.2 44.51 48.66 47.92 53.85 56.93

15 72.26 70.56 67.53 70.91 70.84 78.64 80.52

20 86.74 85.46 83.21 85.28 86.97 91.58 92.48

25 93.69 93.11 91.48 92.8 94.22 96.61 97.10

30 97.4 96.97 95.94 96.93 97.79 98.89 98.97

40 99.53 99.6 99.36 99.54 99.7 99.87 99.87

50 99.9 99.93 99.74 99.9 99.97 99.99 99.99

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(1) 5 36.95 36.49 35.15 37.38 36.99 37.63 38.10

10 71.96 72.62 71.82 73.13 73.33 72.87 73.95

15 88.84 89.8 89.55 88.73 90.01 90.29 90.42

20 95.55 95.99 95.99 95.8 95.96 96.28 96.40

25 98.1 98.47 98.38 98.38 98.5 98.73 98.75

30 99.44 99.57 99.54 99.55 99.46 99.70 99.64

40 99.94 99.94 99.94 99.91 99.89 99.96 99.96

50 100 100 100 99.99 100 100 100

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(3) 5 24.99 24.26 21.54 25.92 25.03 24.09 26.51

10 57.86 57.82 54.6 59.09 58.19 60.54 63.44

15 79.54 79.53 77.17 79.71 79.48 81.94 83.82

20 91.11 90.99 89.6 90.34 90.63 92.85 93.56

25 96.16 96.11 95.66 96.26 95.85 97.23 97.55

30 98.54 98.27 98.01 98.24 97.99 99.02 99.15

40 99.78 99.71 99.69 99.74 99.66 99.84 99.87

50 99.92 99.95 99.86 99.94 99.88 99.96 99.96

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(4) 5 23.11 22.34 19.63 24.39 23.22 22.4 24.80

10 56.85 56.46 53.18 56.42 56.33 59.36 62.35

15 77.96 77.74 75.06 78.02 77.67 80.79 82.63

20 89.87 89.29 88.05 89.12 89.5 92.19 92.92

25 96.04 95.82 95.24 95.62 95.75 97.18 97.59

30 98.27 98 97.55 98.3 97.75 98.93 99.11

40 99.67 99.62 99.54 99.61 99.54 99.88 99.91

50 100 99.98 99.95 99.94 99.94 100 100

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(6) 5 22.14 21.71 18.71 22.41 22.19 21.57 24.02

10 54.25 53.75 50.25 54.45 53.79 57.52 60.85

15 76.8 76.15 73.28 75.82 75.88 80.59 82.37

20 89.28 88.48 86.95 88.44 88.94 91.94 92.83

25 95.62 95.19 94.29 95.04 95.05 97.1 97.37

30 98.15 98.08 97.46 97.75 97.92 98.83 99.06

40 99.72 99.64 99.52 99.72 99.6 99.83 99.87

50 99.98 99.98 99.95 99.94 99.94 99.99 99.99

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

The bolded number is the highest power among the seven tests for each sample size.
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Figure 1. The Q-Q plot and simultaneous probability intervals of Dm
(dot dashed lines), Dbe (solid lines) and Dbi (dotted lines) for testing
the SEV (µ, σ) distribution by using BLUE at α = 0.05

.

5. Illustrative examples

Example 1 The following sample of n = 40 observations is available: 0.1638, 0.176,
0.2208, 0.2697, 0.2872, 0.2976, 0.3782, 0.3851, 0.4464, 0.4934, 0.4946, 0.5341, 0.5413,
0.6063, 0.631, 0.6395, 0.8083, 0.829, 0.9798, 1.0765, 1.2162, 1.2174, 1.5189, 1.539, 1.7137,
1.7962, 2.1652, 2.4304, 2.445, 2.6073, 2.772, 2.8333, 2.9133, 3.1765, 3.6735, 4.2328, 4.3731,
4.4028, 4.5422 and 7.4225. We want to test whether the population from which the sample
is taken has the distribution SEV (µ, σ) for some unknown µ and σ > 0. Following the
recommendations in the last section, we can apply any one of the Dm, Dbe and Dbi tests
at α = 0.05. The Q-Q plot together with the corresponding intervals for the Y[k]'s of
Dm, Dbe and Dbi are given in Figure 1. Since Y[1] is outside the corresponding interval
of each of Dm, Dbe and Dbi tests, H0 is rejected by each of Dm, Dbe and Dbi tests, i.e.
we can claim that the sample does not follow a SEV (µ, σ) distribution.

For the non-graphical tests AD and CvM, the tests statistics of AD and CvM are
0.5111 and 0.0783, respectively. Also, the corresponding critical values of AD and CvM
at α = 0.05 are 0.7529 and 0.1240, respectively. Hence the hypothesis H0 is not rejected
by either AD or CvM in this case.

Example 2 The following sample of n = 40 observations is available: 3.4966, 3.6591,
4.2103, 4.7391, 4.9138, 5.0151, 5.7313, 5.7879, 6.264, 6.6019, 6.6103, 6.8772, 6.9248,
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7.3341, 7.4817, 7.5318, 8.4437, 8.5465, 9.2456, 9.6554, 10.2049, 10.2092, 11.2582, 11.3228,
11.8595, 12.0993, 13.0847, 13.72, 13.7534, 14.1161, 14.4676, 14.5948, 14.7573, 15.2703,
16.1591, 17.0582, 17.2696, 17.3136, 17.5179 and 20.9488. We want to test that H0 the
population from which the sample is taken has the distribution Exp(µ, σ) for some un-
known µ and σ > 0.

The usual Q-Q plot with the corresponding intervals for the Y[k]'s of Dbi with α = 0.05
are given in Figure 2. Since several points are outside the corresponding intervals of Dbi,
e.g., Y[3], Y[4], Y[39] and Y[40], the null hypothesis H0 is rejected by Dbi.

For the non-graphical tests, the test statistics AD and CvM are 1.5627 and 0.2773,
respectively. Also, the critical values at α = 0.05 and n = 40 are 1.1755 and 0.2107,
respectively. Hence the null hypothesis H0 is also rejected by AD or CvM.
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Figure 2. The Q-Q plot and simultaneous probability intervals of Dbi
(dotted lines) for testing Exp(µ, σ) distribution by using BLIE at α =
0.05

6. Conclusions

Generally, the Kolmogorov-Smirnov test (D test) has a very low power. Although the
Anderson-Darling and Cra �mer-von-Mises tests are non-graphical, they may not be more
powerful than the graphical tests. According to Wanpen et al.(2015), the Dbi and De
tests should be used for testing normality based on a simple random sample. For testing
the Weibull and exponential distributions, the Dbe, Dbi and Dsp tests should be used.
Although the De test is one of the graphical tests recommended for testing normality
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when a simple random sample is considered, it is a bad choice for testing Weibull and
exponential distributions.

Speci�cally, we obtain the simultaneous 1 − α probability intervals suitable for Q-Q
plots on testing the Weibull and exponential distributions. They become the objective
judgement on Q-Q plots for practitioners who want to use the graphical test.
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