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Abelian model structures and Ding homological
dimensions
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Abstract

Let R be an n-FC ring. For 0 < t ≤ n, we construct a new abelian
model structure on R-Mod, called the Ding t-projective (t-injective)
model structure. Based on this, we establish a bijective correspon-
dence between dg-t-projective (dg-t-injective) R-complexes and Ding
t-projective (t-injective) A-modules under some additional conditions,
where A = R[x]/(x2). This gives a generalized version of the bijective
correspondence established in [[14]] between dg-projective (dg-injective)
R-complexes and Gorenstein projective (injective) A-modules. Finally,
we show that the embedding functors K(DP) −→ K(R-Mod) and
K(DI) −→ K(R-Mod) have right and left adjoints respectively, where
K(DP) (K(DI)) is the homotopy category of complexes of Ding pro-
jective (injective) modules, and K(R-Mod) denotes the homotopy cat-
egory.
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1. Introduction and preliminaries. We study model structures on the categories
R-Mod and Ch(R), where R is an n-FC ring. In [[15]], M. Hovey constructed an abelian
model structure on R-Mod where the class of co�brant objects is given by the class
of Gorenstein projective modules, the class of �brant objects is given by the category
R-Mod, and the trivial objects are the left R-modules of �nite projective dimension.
Dually, there was a model structure on R-Mod with the same trivial objects, the class
of co�brant objects being R-Mod, and the class of �brant objects being the class of the
Gorenstein injective modules. Later in [[13]], J. Gillespie constructed another abelian
model structure on R-Mod where the class of co�brant objects is given by the class of
Ding projective modules. Dually, there was a model structure on R-Mod where the class
of �brant objects is given by the class of Ding injective modules.

We construct two new abelian model structures on R-Mod, called the Ding t-projective
and Ding t-injective model structures. In the �rst structure, the class of co�brant ob-
jects is formed by the objects with Ding projective dimension at most t. In the second
structure, the class of �brant objects is given by the class of objects with Ding injective
dimension at most t. In order to construct these structures, we use a result known by
some authors as the Hovey's Criterion, which allows us to get abelian model structures
from compatible and complete cotorsion pairs. In this sense, we prove the completeness
of the cotorsion pair cogenerated by the class of Ding t-projective modules. Dually, the
cotorsion pair generated by the class of Ding t-injective modules is also complete. These
structures have their analogues in the category of chain complexes.

For any ring R, there exists an invertible functor from Ch(R) to the category of
graded R[x]/(x2)-modules. In [[14]], the authors proved that this functor gives rise to a
bijective correspondence between the dg-projective complexes over R and the Gorenstein
projective R[x]/(x2)-modules. The same also occurred between dg-injective complexes
over R and Gorenstein injective R[x]/(x2)-modules. We prove the Ding version of these
results.

In the end of this paper, we show that the embedding functors K(DP) −→ K(R-Mod)
andK(DI) −→ K(R-Mod) have right and left adjoints respectively, whereK(DP) (K(DI))
is the homotopy category with each complex constructed by Ding projective (injective)
modules, and K(R-Mod) is the homotopy category.

We next recall some known notions and facts needed in the sequel.
In this paper, R denotes a ring with unity, R-Mod the category of left R-modules,

and Ch(R) the category of complexes of left R-modules. A complex

· · · δ2−→ C1
δ1−→ C0

δ0−→ C−1
δ−1−→ · · ·

of left R-modules will be denoted (C, δ) or C. Given a left R-module M , we will denote
by Dm(M) the complex

· · · −→ 0 −→M
id−→M −→ 0 −→ · · ·

with the M in the m and (m − 1)-th position. Given a complex C, ΣC denotes the
complex such that (ΣC)n = Cn−1 and whose boundary operators are −δCn−1.

A homomorphism ϕ : C −→ D of degree n is a family (ϕi)i∈Z of homomorphisms of
R-modules ϕi : Ci −→ Dn+i. All such homomorphisms form an abelian group, denoted
HomR(C,D)n, it is clearly isomorphic to

∏
i∈Z HomR(Ci, Dn+i). We let HomR(C,D)

denote the complex of abelian groups with n-th component HomR(C,D)n and boundary
operator

δn((ϕi)i∈Z) = (δDn+iϕi − (−1)nϕi−1δ
C
i )i∈Z.

A homomorphism ϕ ∈ HomR(C,D)n is called a chain map if δ(ϕ) = 0, that is, if
δDn+iϕi = (−1)nϕi−1δ

C
i for all i ∈ Z. A chain map of degree 0 is called a morphism.
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To every complex C we associate the numbers

supC = sup{i | Ci 6= 0}, inf C = inf{i | Ci 6= 0}.

The complex C is called bounded above when supC <∞, bounded below when inf C >
−∞ and bounded when it is bounded below and above.

For objects C and D of Ch(R) (R-Mod), Hom(C,D) (HomR(C,D)) is the abelian
group of morphisms from C to D in Ch(R) (R-Mod) and Exti(C,D) (ExtiR(C,D)) for
i ≥ 1 will denote the groups we get from the right derived functor of Hom(C,D)
(HomR(C,D)).

Let A,B be two classes of R-modules. The pair (A,B) is called a cotorsion pair (also
called a cotorsion theory) if A⊥ = B and A = ⊥B. Here A⊥ is the class of R-modules C
such that Ext1(A,C) = 0 for all A ∈ A, and similarly ⊥B is the class of R-modules C
such that Ext1(C,B) = 0 for all B ∈ B. A cotorsion pair (A,B) is said to be hereditary,

if whenever 0 → Ã → A → Â → 0 is exact with A, Â ∈ A then Ã is also in A, or

equivalently, if 0 → B̃ → B → B̂ → 0 is exact with B̃, B ∈ B then B̂ is also in B. A
cotorsion pair (A,B) is cogenerated by a set S ⊆ A if B = S⊥. A cotorsion pair (A,B)
is said to have enough injectives (projectives) [[10]] if for any object M there exists an
exact sequence 0→M → B → A→ 0 (0→ B → A→M → 0) with A ∈ A and B ∈ B.
By [[10], Proposition 1.1.5], a cotorsion pair (A,B) has enough projectives if and only if
it has enough injectives. The cotorsion pair (A,B) is called complete if it has enough
projectives and injectives.

Given a class B of objects of Ch(R), a morphism φ : X → B is called a B-preenvelope
([[6]]) if B ∈ B and Hom(B,B′)→ Hom(X,B′)→ 0 is exact for all B′ ∈ B. If, moreover,
any f : B → B such that fφ = φ is an automorphism of B then φ : X → B is called a
B-envelope of X. A complex X is said to have a special B-preenvelope [[9]] if there is an
exact sequence 0→ X → B → L→ 0 with B ∈ B and L ∈ ⊥B. (Special) precovers and
covers of X are de�ned dually.

2. Ding t-projective and Ding t-injective model structures. Ding and Chen ex-
tended FC rings to n-FC rings [[2], [3]], which are seen to have many properties similar
to those of n-Gorenstein rings. Just as a ring is called Gorenstein when it is n-Gorenstein
for some nonnegative integer n (a ring R is called n-Gorenstein if it is a left and right
Noetherian ring with self injective dimension at most n on both sides for some non-
negative integer n), Gillespie �rst called a ring Ding-Chen when it is n-FC for some n
[[13], De�nition 4.1]. An R-module M is called Ding projective if there exists an exact
sequence of projective R-modules · · · −→ P1 −→ P0 −→ P−1 −→ P−2 −→ · · · with
M = Ker(P0 −→ P−1) and which remains exact after applying Hom(−, F ) for any �at
R-module F [[5]]. The class of Ding projective R-modules is denoted by DP. An R-
module N is called Ding injective if there exists an exact sequence of injective R-modules
· · · −→ I1 −→ I0 −→ I−1 −→ I−2 −→ · · · with N = Ker(I0 −→ I−1) and which remains
exact after applying Hom(E,−) for any FP -injective R-module E [[17]]. The class of
Ding injective R-modules is denoted by DI. Note that every Ding injective (respectively,
Ding projective) R-module N is Gorenstein injective (respectively, Gorenstein projec-
tive), and if R is Gorenstein, then every Gorenstein injective R-module is Ding injective
(respectively, Gorenstein projective)[[13]].

From [[13], Theorem 4.2], we know that for a Ding-Chen ring R, the class of all mod-
ules with �nite �at dimension and the class of all modules with �nite FP -injective di-
mension are the same, and we use WR to denote this class throughout this section.

Ding and Mao proved that (⊥WR,WR) forms a complete cotorsion pair when R is
a Ding-Chen ring [[4], Theorem 3.8]. Also, (WR,W

⊥
R) forms a complete cotorsion pair
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when R is a Ding-Chen ring [[16], Theorem 3.4]. Moreover, Gillespie proved that an R-
module M is Ding projective if and only if M ∈⊥ WR, an R-module N is Ding injective
if and only if N ∈ W⊥R [[13], Corollaries 4.5 and 4.6]. So (DP,WR) and (WR,DI) are
complete hereditary cotorsion pairs (each cogenerated by a set). Hence for everyM ∈ R-
Mod there exists an epimorphism D0 −→M where D0 is a Ding projective module. This
allows us to construct an exact sequence

· · · −→ Dk −→ · · · −→ D1 −→ D0 −→M −→ 0,

where Dk is a Ding projective module, for every k ≥ 0. We shall say that this sequence
is a left Ding projective resolution of M . An R-module M is said to be Ding t-projective,
if M admits a left Ding projective resolution of length at most t (that is, M has Ding
projective dimension at most t), where t is a nonnegative integer. Let DPt denote the
class of Ding t-projective modules. We shall denote by Dpd(M) the (left) Ding projective
dimension of M . Note that DPt = {M ∈ R-Mod : Dpd(M) ≤ t} and that DP0 = DP,
similarly, we let Pt denote the class of t-projective R-modules.

Similarly, we can de�ne Ding t-injective modules, and we let DIt denote the class of
Ding t-injective modules and It the class of t-injective R-modules.

Let

· · · −→ Pn
fn−→ Pn−1 −→ · · · −→ P1

f1−→ P0
f0−→ X −→ 0, (1)

be a projective resolution of X. We shall say that Im(fi) is the i-th projective syzygy of
X in (1). We shall use the notation Ωi(X) for the class of all i-th projective syzygies of
X. Dually, given an injective coresolution of X, say

0 −→ X −→ I0
f0−→ I1

f1−→ · · · −→ In−1 f
n−1

−→ In −→ · · · , (2)

we shall say that Ker(f i) is the i-th injective cosyzygy of X in (2), and we shall use the
notation Ω−i(X) for the class of all i-th injective cosyzygies of X.

We begin with the following result.

1.1. Lemma ([[5], Lemma 3.4]). Let R be a Ding-Chen ring. Then the following are
equivalent:
(1) M is Ding t-projective.
(2) ExtiR(M,W ) = 0 for all i > t and for all W ∈WR.
(3) Extt+1

R (M,W ) = 0 for all W ∈WR.
(4) Every tth Ding projective syzygy of M is Ding projective.
(5) Every tth projective syzygy of M is Ding projective.

1.2. Corollary. Let R be an n-FC ring. Then for every 0 ≤ t ≤ n,DPt ∩WR = Pt.

Proof The inclusion Pt ⊆ DPt ∩WR is clear. Now let M ∈ DPt ∩WR. Then every
G ∈ Ωt(M) is in DP by Lemma 1.1. Since M ∈ WR, we have G ∈ WR. Then G ∈
DP ∩WR = P0 by [[5], Lemma 2.4]. It follows M ∈ Pt. �

The following results show that (DPt, (DPt)
⊥) is a complete cotorsion pair for every

1 ≤ t ≤ n.

1.3. Theorem. Let R be an n-FC ring. (DPt, (DPt)
⊥) is a cotorsion pair cogenerated

by a set, and so it is complete for every 1 ≤ t ≤ n.

Proof First we prove that (DPt, (DPt)
⊥) is a cotorsion pair.

It su�ces to show that ⊥((DPt)
⊥) ⊆ DPt. LetM ∈⊥ ((DPt)

⊥). Consider a left partial
projective resolution of M , say 0 −→ G −→ Pt−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0.
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By Lemma 1.1, it su�ces to show that G is a Ding projective module. Suppose t = 1
and let W ∈WR. We have the exact sequence

· · · −→ Ext1R(P0,W ) −→ Ext1R(G,W ) −→ Ext2R(M,W ) −→ · · · ,
where Ext1R(P0,W ) = 0, since P0 is projective. On the other hand, Ext2R(M,W ) =
Ext1R(M,L), where L ∈ Ω−1(W ). We show L ∈ (DP1)⊥. Let K ∈ DP1 and consider the
short exact sequence 0 −→W −→ I −→ L −→ 0, where I is injective. Then we have an
exact sequence

· · · −→ Ext1R(K, I) −→ Ext1R(K,L) −→ Ext2R(K,W ) −→ · · · ,
where Ext1R(K, I) = 0, since I is injective, and Ext2R(K,W ) = 0 since K ∈ DP1 and
W ∈ WR. Then Ext1R(K,L) = 0 for every K ∈ DP1, i.e. L ∈ (DP1)⊥. It follows
Ext2R(M,W ) = 0. Hence Ext1R(G,W ) = 0 for every W ∈WR, i.e. G ∈ DP.

Suppose the result is true for every 1 ≤ j ≤ t− 1. We have an exact sequence

0 −→ G −→ Pt−1 −→ · · · −→ P1 −→ L −→ 0,

where L ∈ Ω1(M), and a short exact sequence 0 −→ L −→ P0 −→ M −→ 0. Let K ∈
(DPt−1)⊥. We have Ext1R(L,K) ∼= Ext1R(M,K′), where K′ ∈ Ω−1(K). Let N ∈ DPt.
Then N ′ ∈ DPt−1, for every N

′ ∈ Ω1(N). We have Ext1R(N,K′) ∼= Ext1R(N ′,K) = 0.
So K′ ∈ (DPt)

⊥. It follows Ext1R(L,K) ∼= Ext1R(M,K′) = 0, for every K ∈ (DPt−1)⊥.
Hence L ∈⊥ ((DPt−1)⊥) = DPt−1. It follows M ∈ DPt.

Now we prove that (DPt, (DPt)
⊥) is a cotorsion pair cogenerated by a set.

Consider the cogenerating set U of (DP,WR). On the other hand, it is known that

(Pt, (Pt)
⊥) is cogenerated by the set P

≤κ
t := {M ∈ Pt : Card(M) ≤ κ}, where κ ≥

Card(R) is a �xed in�nite cardinal number. Set Gt := U∪P≤κt . We prove (DPt)
⊥ = (Gt)

⊥.
Since Gt ⊆ DPt, we have (DPt)

⊥ ⊆ (Gt)
⊥. Now let N ∈ (Gt)

⊥, and consider M ∈ DPt.
Since (DP,WR) is a complete cotorsion pair, there exists a short exact sequence 0 −→
M −→ W −→ G −→ 0, where W ∈ WR and G ∈ DP. Then W ∈ DPt ∩WR = Pt by
Corollary 1.2. We apply the contravariant functor Ext(−, N) and obtain a long exact
sequence

· · · −→ Ext1R(W,N) −→ Ext1R(M,N) −→ Ext2R(G,N) −→ · · · .

Note that Ext2R(G,N) = 0, since N ∈ (Gt)
⊥ ⊆ U⊥ = WR and (DP,WR) is hereditary.

On the other hand, N ∈ (P≤κt )⊥ = (Pt)
⊥ and W ∈ Pt, so Ext1R(W,N) = 0. Hence

Ext1R(M,N) = 0 for every M ∈ DPt, i.e. N ∈ (DPt)
⊥. �

This gives the following result.

1.4. Corollary. Let R be an n-FC ring. Then (DPt)
⊥ = WR∩(Pt)

⊥ for every 1 ≤ t ≤ n.

Proof Since DP ⊆ DPt and Pt ⊆ DPt, we get (DPt)
⊥ ⊆ (DP)⊥ = WR and (DPt)

⊥ ⊆
(Pt)

⊥, and so (DPt)
⊥ ⊆ WR ∩ (Pt)

⊥. Let N ∈ WR ∩ (Pt)
⊥. Since (DPt, (DPt)

⊥) is
complete by Theorem 1.3, there exists a short exact sequence 0 −→ N −→ K −→ C −→ 0
where K ∈ (DPt)

⊥ and C ∈ DPt. Since N,K ∈WR, C ∈WR. Then C ∈ DPt∩WR = Pt
by Corollary 1.2 and hence Ext1R(C,N) = 0. It follows K ∼= N ⊕ C. Since (DPt)

⊥ is
closed under direct summands and K ∈ (DPt)

⊥, we get N ∈ (DPt)
⊥. �

1.5. De�nition. Given two cotorsion pairs (A,B′) and (A′,B) in an abelian category, we
shall say that they are compatible if there exists a class of objects W such that A′ = A∩W
and B′ = B ∩W.

1.6. Lemma. (Hovey's criterion) Let (A,B ∩W) and (A ∩W,B) be two compatible
cotorsion pairs in a bicomplete abelian category C with enough projective and injective
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objects, where the class W is thick. Then there exists a unique abelian model structure
on C such that A is the class of co�brant objects, B is the class of �brant objects, and W

is the class of trivial objects.

From the above results, there exists a unique abelian model strucutre on R-Mod where
DPt is the class of co�brant objects, (Pt)

⊥ is the class of �brant objects, and WR is the
class of trivial objects. We call this structure the Ding t-projective model structure on
R-Mod. Similarly, there is a unique abelian model structure on R-Mod such that ⊥(It)
is the class of co�brant objects, DIt is the class of �brant objects, and WR is the class of
trivial objects. We call this structures the Ding t-injective model structure on R-Mod.

We also have the following result.

1.7. Proposition. Let X be a chain complex bounded below. Then X is Ding t-projective
if and only if Xm is a Ding t-projective module for every m ∈ Z.

Proof Let X be a Ding t-projective chain complex. Then there exists an exact sequence
in Ch(R)

0 −→ Dt −→ Dt−1 −→ · · · −→ D1 −→ D0 −→ X −→ 0,

such that Di is a Ding projective complex for every 0 ≤ i ≤ t. For each m ∈ Z, we have
an exact sequence in R-Mod

0 −→ Dt
m −→ Dt−1

m −→ · · · −→ D1
m −→ D0

m −→ Xm −→ 0.

Since each Di is a Ding projective complex, we have that Di
m is a Ding projective module.

So the previous exact sequence turns out to be a right Ding projective resolution of Xm
of length t, i.e. Xm ∈ DPt.

Now suppose that Xm is a Ding t-projective module for every m ∈ Z. Consider a
partial left projective resolution

0 −→ Dt −→ P t−1 −→ · · · −→ P 1 −→ P 0 −→ X −→ 0.

It su�ces to show that Dt is a Ding projective chain complex. For each m ∈ Z, we have
a exact sequence

0 −→ Dt
m −→ P t−1

m −→ · · · −→ P 1
m −→ P 0

m −→ Xm −→ 0.

Note that each P im is a projective module. Since Xm ∈ DPt, we have Dt
m ∈ Ωt(Xm) ∈

DP. Hence Dt is a Ding projective complex by [[20], Proposition 3.14]. �

1.8. De�nition ([[12], De�nition 3.3]). Let (A,B) be a cotorsion pair in R-Mod and X
an R-complex.
(1) X is called an A complex if it is exact and ZnX ∈ A for all n ∈ Z.
(2) X is called a B complex if it is exact and ZnX ∈ B for all n ∈ Z.
(3) X is called a dg-A complex if Xn ∈ A for each n ∈ Z, and HomR(X,B) is exact
whenever B is a B complex.
(4) X is called a dg-B complex if Xn ∈ B for each n ∈ Z, and HomR(A,X) is exact
whenever A is an A complex.

We denote the class of A complexes by Ã and the class of dg-A complexes by dgÃ.

Similarly, the class of B complexes is denoted by B̃ and the class of dg-B complexes is

denoted by dgB̃.

As we did in the category R-Mod, we can prove that (D̃Pt, (D̃Pt)
⊥) and (⊥(D̃It), D̃It)

are complete cotorsion pairs. Moreover, we can see that (D̃Pt, (D̃Pt)
⊥) and (P̃t, (P̃t)

⊥)
are compatible. So there exists a unique abelian model structure on Ch(R) such that

D̃Pt is the class of co�brant objects, (P̃t)
⊥ is the class of �brant objects, and W̃R is the
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class of trivial objects. Similarly, there is a unique abelian model structure on Ch(R)

such that ⊥(Ĩt) is the class of co�brant objects, D̃It is the class of �brant objects, and

W̃R is the class of trivial objects. We call these structures the Ding t-projective model
structure and the Ding t-injective model structure on Ch(R), respectively.

3. Ding homological dimensions over graded rings. A Z-graded ring A is a ring
that has a direct sum decomposition into (abelian) additive groups A = ⊕n∈ZAn =
· · · ⊕A−1 ⊕A0 ⊕A1 ⊕ · · · such that the ring multiplication · satis�es Am ·An ⊆ Am+n,
for every m,n ∈ Z. A graded module is left module over a Z-graded ring A with a
direct sum decomposition M = ⊕n∈ZMn such that the product · : A ·M → M satis�es
Am ·Mn ⊆Mm+n, for every m, n ∈ Z.

Given any associative ring with unit R, consider the ring of polynomials R[x] and the
ideal (x2). It is easy to see that the quotient A := R[x]/(x2) is a Z-graded ring with a di-
rect sum decomposition given by R[x]/(x2) = · · ·⊕0⊕(x)⊕R⊕0⊕· · · , where the scalars
r ∈ R are the elements of degree 0, and the elements in the ideal (x) form the terms of
degree −1. The following we will check that the category A-Mod is isomorphic to the cat-
egory Ch(R) of unbounded R-chain complexes. Through this isomorphism, the A-module
A corresponds to D0(R). In particular, we have ExtiA(−, A) ∼= ExtiCh(R)(−, D0(R)).

Now we prove that every A-module can be viewed as a chain complex over R, and
vice versa.

Let Φ : A-Mod −→ Ch(R) be the application de�ned as follows:
(1) Given a graded A-module M = ⊕n∈ZMn, note that if y ∈ Mn then x · y ∈ Mn−1,
since x has degree −1. Denote by Φ(M)n the set Mn endowed with the structure of
R-module provided by the graded multiplication. Let ∂n : Φ(M)n −→ Φ(M)n−1 be the
map y 7→ x · y. It is clear that ∂n is an R-homomorphism. Moreover, ∂n−1 ◦ ∂n(y) =
x · (x · y) = x2 · y = 0 · y = 0. Then, Φ(M) = (Φ(M)n, ∂n)n∈Z is a chain complex over R.
(2) Let f : M −→ N be a homomorphism of graded A-modules. Then f(Mn) ⊆ Nn,
for every n ∈ Z. It follows that f |Mn is an R-homomorphism. Let Φ(f)n := f |Mn :
Φ(M)n −→ Φ(N)n. We have Φ(f)n−1 ◦ ∂Mn (y) = f |Mn−1(x · y) = x · f |Mn(y) = ∂Nn ◦
Φ(f)n(y). So Φ(f) = (Φ(f)n)n∈Z is a chain map.

Note that Φ : A-Mod −→ Ch(R) de�nes a covariant functor. We show that this
functor is an isomorphism, by giving an inverse functor Ψ : Ch(R) −→ A-Mod.
(1) LetM = (Mn, ∂n)n∈Z be a chain complex over R. Let y ∈Mn and de�ne the product
r · y = ry ∈ Mn for every r ∈ R, and x · y = ∂n(y) ∈ Mn−1. This gives rise to a graded
A-module, that we denote by Ψ(M) = (Ψ(M)n)n∈Z, where Ψ(M)n = Mn as sets.
(2) Given a chain map f : M −→ N , we have x · f(y) = ∂ ◦ f(y) = f ◦ ∂(y) = f(x · y).
Then f gives rise to a graded A-module homomorphism denoted by Φ(f).

It is easy to show that Ψ ◦ Φ = IdA-Mod and Φ ◦ Ψ = IdCh(R-Mod). It follows that Ψ
and Φ map projective (resp., injective, �at) objects into projective (resp., injective, �at)
objects. It is also easy to check that both Ψ and Φ preserves exact sequences.

2.1. De�nition ([[8]]). A complex C is called �nitely generated if, in case C =
∑
i∈I D

i,

with Di ∈ Ch(R) subcomplexes of C, then there exists a �nite subset J ⊂ I such that
C =

∑
i∈J D

i; A complex C is called �nitely presented if C is �nitely generated and for
every exact sequence of complexes 0→ K → L→ C → 0 with L �nitely generated, K is
also �nitely generated.

2.2. Lemma ([[8]]). An R-complex C is �nitely generated if and only if C is bounded
and Cn is �nitely generated in R-Mod for all n ∈ Z. A complex C is �nitely presented if
and only if C is bounded and Cn is �nitely presented in R-Mod for all n ∈ Z.
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It is obvious that Ψ and Φ map �nitely presented objects into �nitely presented objects
by Lemma 2.2. Next, we prove Ψ and Φ map FP -injective objects into FP -injective
objects.

2.3. Lemma. Let E be an FP -injective A-module, and Y be an FP -injective R-complex.
Then Φ(E) is an FP -injective R-complex, and Ψ(Y ) is an FP -injective A-module.

Proof We prove the �rst assertion, the second one can be proven similarly. Let F be a
�nitely presented A-module. We �rst prove that Exti(Φ(F ),Φ(E)) ∼= ExtiA(F,E) = 0
for every i ≥ 1. Given a class [0 −→ E −→ Q −→ F −→ 0] ∈ Ext1A(F,E), map its
representative to the sequence

0 −→ Φ(E) −→ Φ(Q) −→ Φ(F ) −→ 0.

This sequence is exact since Φ is an exact functor. Also, Φ preserves pullbacks, and hence
it preserves Baer sums. It follows

[0 −→ Φ(E) −→ Φ(Q) −→ Φ(F ) −→ 0] ∈ Ext1(Φ(F ),Φ(E)).

It is clear that this mapping de�nes a group isomorphism from
Ext1A(F,E) to Ext1(Φ(F ),Φ(E)). The same argument works for any i > 1. Since Φ(F )
is a �nitely presented R-complex, Φ(E) is an FP -injective R-complex. �

2.4. Proposition. If R is an n-FC ring, then the graded ring A := R[x]/(x2) is n-FC
with weak global dimension ∞.

Proof Any homogeneous left (resp. right) ideal of A is of the form I0 + I1x, where I0
and I1 are left (resp. right) ideals of R. Let I0 + I1x be �nitely generated. So I0, I1
is �nitely generated. Since R is left (right) coherent, I0, I1 is �nitely presented. Hence
I0 + I1x is �nitely presented. Hence A is left and right coherent. If M = ⊕n∈ZMn is a
�nitely presented A-module, then Mn is a �nitely presented R-module for every n ∈ Z.
Since

ExtiA(−, A) ∼= ExtiCh(R)(−, D0(R)),

and

HomCh(R)(X,D
0(R)) ∼= HomR(X−1, R),

where X−1 is the degree −1 part of X. Since this functor (−)−1 is exact and preserves
projectives, we see that

ExtiCh(R)(−, D0(R)) ∼= ExtiR((−)−1, R).

In particular, if R is n-FC, so is A.
Since �at chain complexes are exact, any chain complex that is not exact must have

in�nite �at dimension, so the weak global dimension of A is ∞. �

We say a chain complex X is projective (resp., injective, �at, FP -injective) if it is
exact and each cycle ZnX is projective (resp., injective, �at, FP -injective). We denote

these classes of chain complexes by P̃, Ĩ, F̃, and F̃I respectively.

2.5. Lemma. If R is an n-FC ring, then the class of chain complexes with �nite FP -
injective dimension and the class of chain complexes with �nite �at dimension coincide
and every exact complex E with cycles of �nite �at (FP -injective) dimension has fd(E) ≤
n (FP -id(E) ≤ n).

Proof From [[19], Theorem 2.26], we know that the class of chain complexes with �nite
FP -injective (�at) dimension is the class of exact complexes with cycles of bounded
FP -injective (�at) dimension. If R is n-FC, then these classes coincide. �
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By Proposition 2.4, for an n-FC ring R and A := R[x]/(x2), the class WA must
correspond to some collection of chain complexes. Next we will characterize these chain
complexes.

2.6. Corollary. Let R be left and right coherent with �nite weak global dimension. Then
WA corresponds the class of all exact complexes.

Proof By [[18], Proposition 3.5], [[13], Theorem 4.2] and Lemma 2.5 the conclusion is
obvious. �

Recall from [[7]] that a complex P is said to be dg-projective if each Pm is projective
and HomR(P,E) is exact for any exact complex E. A dg-injective complex is de�ned
dually.

Now we get the following result.

2.7. Proposition. Suppose R is a ring and let A be the graded ring R[x]/(x2). Then
every dg-projective chain complex over R is a Ding projective A-module. The converse
holds if R is left and right coherent and of �nite weak global dimension.

Proof Suppose X is a dg-projective chain complex. We want to show that it is a Ding
projective A-module. We �rst take a projective resolution of X

· · · −→ P 1 −→ P 0 −→ X −→ 0.

Note that since X is dg-projective, the kernel at any spot in the sequence is also dg-

projective. Next we use the fact that (dgP̃,E) is complete to �nd a short exact sequence
0 −→ X −→ P0 −→ K −→ 0 where P0 is exact and K is dg-projective. But P0 must
also be dg-projective since it is an extension of two dg-projective complexes. Therefore
P0 is a projective complex. Continuing with the same procedure on K we can build a
projective coresolution of X as below:

0 −→ X −→ P0 −→ P1 −→ P2 −→ · · · .

Again the kernel at each spot is dg-projective. Pasting this �right� coresolution together
with the �left� resolution above we get an exact sequence

· · · −→ P 1 −→ P 0 −→ P0 −→ P1 −→ · · ·

of projective complexes which satis�es the de�nition of X being a Ding projective A-
module. Indeed since X dg-projective implies Ext1(X,E) = 0 for any exact chain com-
plex E, we certainly have Ext1(X,F ) = 0 for any �at chain complex F . Therefore
applying HomA(−, F ) will leave the sequence exact.

Next we let X be a Ding projective A-module and argue that it is a dg-projective
R-chain complex, when R is both left and right Coherent and wD.dim(R) = n. Note
that by the de�nition of Ding projective we have Exti(X,F ) = 0 for all i > 0 and �at
complexes F . We will be done if we can show that Ext1(X,E) = 0 for any exact complex
E. By Corollary 2.6 fd(E) ≤ n, so there exists a �nite �at resolution

0 −→ Fn −→ · · · −→ F 1 −→ F 0 −→ E −→ 0.

By a dimension shifting argument we see that Ext1(X,E) ∼= Extn+1(X,Fn) = 0. �

With a dual proof we get the following.

2.8. Proposition. Suppose R is a ring and let A be the graded ring R[x]/(x2). Then
every dg-injective chain complex over R is a Ding injective A-module. The converse holds
if R is left and right coherent and of �nite weak global dimension.
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Now we extend Proposition 2.7 as follows.

2.9. Theorem. The functor Ψ : Ch(R) −→ A-Mod maps dg-t-projective complexes
into Ding t-projective A-modules. If R is a left and right coherent ring of �nite weak
global dimension, then the inverse functor Φ : A-Mod −→ Ch(R) maps Ding t-projective
A-modules into dg-t-projective complexes.

Proof Let X ∈ dgP̃t. Consider Ψ(X) and a partial left projective resolution

0 −→ G −→ Pt−1 −→ · · · −→ P1 −→ P0 −→ Ψ(X) −→ 0.

We show that G is a Ding projective A-module. Consider the complex Φ(G) and let E
be an exact complex. By the proof of Lemma 2.3 we have Ext1(Φ(G), E) ∼= Ext1(X,E′),

where E′ ∈ Ω−t(E). Note that E′ ∈ (P̃t)
⊥. In fact, if Z ∈ P̃t then Ext1(Z,E′) ∼=

Extt+1(Z,E) = 0. Also, it is easy to check that E′ ∈ E. So E′ ∈ (P̃t)
⊥ ∩ E = (dgP̃t)

⊥.
It follows Ext1(Φ(G), E) ∼= Ext1(X,E′) = 0, for every E ∈ E. In other words, Φ(G)
is dg-projective, and by Proposition 2.7 we have G = Ψ(Φ(G)) is a Ding projective
A-module.

Now suppose that R is a left and right coherent ring of �nite weak global dimension.
Note that Ψ and Φ de�ne an one-to-one correspondence between the projective objects
of Ch(R) and A-Mod. It follows that Ψ and Φ also de�ne an one-to-one correspondence

between t-projective complexes over R and t-projective A-modules. Let X ∈ (P̃t)
⊥

and consider Ψ(X). Let M be an t-projective A-module. Then Φ(M) is a t-projective
complex. We have Ext1A(M,Ψ(X)) ∼= Ext1(Φ(M), X) = 0. It follows Ψ(X) ∈ (Pt)

⊥.

Hence, Ψ and Φ give rise to a one-to-one correspondence between (P̃t)
⊥ and (Pt)

⊥.
Also, by Corollary 2.6, we have the same correspondence between E and WA. Since

(dgP̃t)
⊥ = (P̃t)

⊥ ∩ E and WA ∩ (Pt)
⊥ = (DPt)

⊥ by Corollary 1.4, we have that a

complex Y is in (dgP̃t)
⊥ if and only if Ψ(Y ) is in (DPt)

⊥. Since dgP̃t =⊥ ((dgP̃t)
⊥) and

DPt =⊥ ((DPt)
⊥), we have that Φ maps Ding t-projective A-modules into dg-t-projective

complexes. �

The following result is the dual version of Theorem 2.9.

2.10. Theorem. The functor Ψ : Ch(R) −→ A-Mod maps dg-t-injective complexes
into Ding t-injective A-modules. If R is a left and right coherent ring of �nite weak
global dimension, then the inverse functor Φ : A-Mod −→ Ch(R) maps Ding t-injective
A-modules into dg-t-injective complexes.

4. Adjoint functors. In this section, we show that the embedding functors K(DP) −→
K(R-Mod) and K(DI) −→ K(R-Mod) have right and left adjoints respectively, where
K(DP) (K(DI)) is the homotopy category of complexes of Ding projective (injective)
modules, and K(R-Mod) denotes the homotopy category. To this end, we will be con-
cerned with the category Ch(R) and the category K(R-Mod) �rstly. These categories
have the same objects, and the morphisms in K(R-Mod) are homotopy equivalence
classes of chain maps, that is, for objects C and D of K(R-Mod), HomK(R-Mod)(C,D) =
H0(HomR(C,D)), where HomK(R-Mod)(C,D) denotes the abelian group of morphisms
from C to D in K(R-Mod). We recall that if f : C −→ D is a morphism in Ch(R), then
we have the mapping cone con(f) of f . We have that (con(f))n = Dn⊕Cn−1 and the dif-
ferential d is such that d(y, x) = (d(y) + f(x),−d(x)). We have the short exact sequence
0 −→ D −→ con(f) −→ ΣC −→ 0 where the maps D −→ con(f) and con(f) −→ ΣC
are given by y 7−→ (y, 0) and (y, x) 7−→ x respectively. Given f, g ∈ Hom(C,D) we will
let f ∼ g mean that f and g are homotopic. The idea of the next lemma derives from
Bravo et al. in [[1]].
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3.1. Lemma. Let R be a Ding-Chen ring, X be an R-complex, and 0 −→ C −→ D −→
X −→ 0 be exact where D ∈ D̃P, C ∈ dgW̃R. If D′ ∈ D̃P, fi ∈ Hom(D′, X) and
gi ∈ Hom(D′, D) such that

D′

gi~~
fi

��
D // X

are commutative for i = 1, 2, then f1 ∼ f2 if and only if g1 ∼ g2.

Proof If g1 ∼ g2 then easily f1 ∼ f2. For the converse let f = f1− f2 and g = g1− g2 we
see that we only need show that when f ∼ 0 we have g ∼ 0. With such f and g we get
the commutative diagram

0 // D

��

// con(g)

��

// ΣD′

��

// 0

0 // X // con(f) // ΣD′ // 0.

Since f ∼ 0, by [[11], Lemma 2.3.2] we get that the lower short exact sequence splits. A
retraction con(f) −→ X provides us with a commutative diagram

D

��

// con(g)

{{
X.

Since D̃P is closed under extensions and suspensions we have con(g) ∈ D̃P. Since D −→
X is a D̃P-precover we get a lifting con(g) −→ D. We now prove that con(g) −→ D
provides a retraction of D −→ con(g) in K(R-Mod). For this note that the di�erence of
the composition D −→ con(g) −→ D and the identity map idD maps D into the kernel

of D −→ X, that is into C. Since (D̃P, dgW̃R) is a complete hereditary cotorsion pair,
this di�erence (as a map into C) is homotopic to 0 by [[11], Lemma 2.3.2]. But then the
di�erence as a map into D is homotopic to 0. So con(g) −→ D provides a retraction of
D −→ con(g) in K(R-Mod). Next we prove that con(g) −→ D provides a retraction of
D −→ con(g) in Ch(R). Let s : con(g) −→ D (s a morphism in Ch(R)) give a retraction
of D −→ con(g) in K(R-Mod). Let r be the corresponding homotopy, i.e. for y ∈ D
we have (dr + rd)(y) = y − s(y, 0). De�ne con(g) −→ D by (y, x) 7→ y + rg(x) + s(0, x)
for (y, x) ∈ con(g). We can easily prove that this map is a morphism of complexes and
it gives the desired retraction. So we get that the short exact sequence 0 −→ D −→
con(g) −→ ΣD′ −→ 0 is split exact in Ch(R). So by [[11], Lemma 2.3.2] we get that
g ∼ 0. �

3.2. Corollary. Let R be a Ding-Chen ring, X be an R-complex, and 0 −→ C −→ D −→
X −→ 0 be exact where D ∈ D̃P and C ∈ dgW̃R. If D

′ ∈ D̃P, then HomK(R-Mod)(D
′, D) −→

HomK(R-Mod)(D
′, X) is a bijection.

Proof We �rst note that the exact sequence 0 −→ C −→ D −→ X −→ 0 gives the
exact sequence Hom(D′, D) −→ Hom(D′, X) −→ Ext1(D′, C) = 0. So Hom(D′, D) −→
Hom(D′, X) is surjective. This gives that HomK(R-Mod)(D

′, D) −→ HomK(R-Mod)(D
′, X)

is surjective. Lemma 3.1 guarantees that this function is injective and so bijective. �

This gives the following result.
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3.3. Theorem. Let R be a Ding-Chen ring. Then the embedding K(DP) −→ K(R-Mod)
has a right adjoint.

Proof For each X ∈ Ch(R), there exists an exact sequence 0 −→ C −→ D −→ X −→ 0

in Ch(R) with D ∈ D̃P and C ∈ dgW̃R. We want to de�ne a functor T : K(R-Mod) −→
K(DP) so that T (X) = D. If f : X −→ X ′ is a morphism in Ch(R) we let [f ] represent
the corresponding morphism in K(R-Mod). So [f ] consists of all f ′ : X −→ X ′ such that
f ∼ f ′. We use the following procedure to de�ne T ([f ]). We have the exact sequence
Hom(D,D′) −→ Hom(D,X ′) −→ Ext1(D,C′) = 0. This means that there is a morphism
g ∈ Hom(D,D′) whose image in Hom(D,X ′), which is the composition D −→ X −→ X ′.
So we have the commutative diagram

D −−−−−→ X

g

y f

y
D′ −−−−−→ X ′.

For f ′ ∈ [f ] (so f ∼ f ′) we use the same argument and �nd a morphism g′ : D −→ D′

so that the diagram
D −−−−−→ X

g′
y f ′

y
D′ −−−−−→ X ′

is commutative. Then an application of Lemma 3.1 gives that g ∼ g′. This means that
we can de�ne T ([f ]) to be [g] with f and g as above. Then it can be quickly checked that
T is an additive functor. Note that the maps D −→ X then become maps T (X) −→ X
and give a natural transformation from T to the identity functor on K(R-Mod).

Now we appeal to Corollary 3.2. This Corollary says that HomK(R-Mod)(D
′, D) −→

HomK(R-Mod)(D
′, X) is a bijection if D′ ∈ D̃P and 0 −→ C −→ D −→ X −→ 0 is as

above. But T (X) = D, so we have the bijection

HomK(R-Mod)(D
′, T (X)) −→ HomK(R-Mod)(D

′, X).

From the de�nition of this map we see that it is natural in D′. From the natural transfor-
mation above we see that it is natural in X. So this establishes that T is a right adjoint
of the embedding functor K(DP) −→ K(R-Mod). �

3.4. Remark. We also have the duals of Lemma 3.1 and the Corollary 3.2. The embed-
ding K(DI) −→ K(R-Mod) has a left adjoint.
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