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Two classes of risk model with di�usion and
multiple thresholds: the discounted dividends
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Abstract

In this paper, we consider the present value of total dividends until ruin
in a perturbed risk model with two independent classes of risks under
multiple thresholds, in which both of the two inter-claim times have
phase-type distributions. We obtain the integro-di�erential equations
for the moment-generating function and the rth moment of discounted
dividend payments. Explicit expressions for the expectation of dis-
counted dividend payments are derived if the two classes claim amount
distributions both belong to the rational family.
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1. Introduction

The discounted sum of dividend payments until ruin is an important quantity in
assessing the quality of a dividend barrier strategy in insurance risk theory, which has
been studied in some papers and books, see e.g. [1], [3], [5], [8], [10], [13].

Recently, some researchers consider the ruin measures for a risk model involving two
independent classes of risks in the actuarial literature. Among them, [11] considered the
expected discounted penalty functions by assuming that the two claim number processes
are independent Poisson and generalized Erlang(2) processes. [15] supposed that the
claim number processes are independent Poisson and generalized Erlang(n) processes,
respectively, in which the Laplace transforms of the expected discounted penalty functions
are obtained. As an extension to these papers, [7] investigated the same ruin measures
in the risk model with two classes of renewal risk processes by assuming that both of the
two claim number processes have phase-type inter-claim times.

∗Department of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006,
China, Email: csujw@163.com
†Corresponding Author.



201

There is a particular attention in considering risk models with multi-threshold divi-
dend strategies. For instance, [12] discussed the Gerber-Shiu expected discounted penalty
function in the compound Poisson risk model with multiple thresholds. [14] extended the
corresponding results to a Sparre Andersen model with generalized Erlang(n)-distributed
inter-claim times. In insurance risk models with multiple thresholds, the premium rate is
a step function of the insurer's surplus. The premium policy is e�ective when the insurer
intend to keep a �xed retention ratio on its revenues and pays bonuses as an incentive to
its policyholders.

[9] investigated the discounted penalty function for two classes of risk processes with
di�usion and multiple thresholds, where both of the two claim number processes have
phase-type inter-claim times. It is natural to ask for the results on the discounted sum
of dividend payments until ruin for a corresponding risk model. The rest of the paper is
structured as follows. Section 2 describes the risk model. In Section 3, we derive systems
of integro-di�erential equations for the moment generating function. In Section 4, integro-
di�erential equations for the moments of discounted dividend payments are obtained.
Section 5 presents the main results and derives explicit expressions for the expectation of
discounted dividend payments when two classes claim amount distributions both belong
to the rational family. Section 6 gives a numerical example.

2. Notation and model description

The surplus process R(t) perturbed by di�usion satis�es

(2.1) R(t) = u+ ct− S(t) + σB(t), t ≥ 0,

where u ≥ 0 is the initial surplus, c denotes the insurer's premium income per unit time,
{B(t); t ≥ 0} is a standard Brownian motion and σ > 0 is the dispersion parameter, and
the aggregate-claim process {S(t) : t ≥ 0} is de�ned by

S(t) =

N1(t)∑
i=1

Xi +

N2(t)∑
i=1

Yi, t ≥ 0,

where {X1, X2, · · · } and {Y1, Y2, · · · } are independent and identically distributed (i.i.d.)
positive random variables representing the successive individual claim amounts from
the �rst and the second class, respectively. The random variables {X1, X2, · · · } are
assumed to have common cumulative distribution function F (x) = 1 − F̄ (x), x ≥ 0,
with probability density function f(x) = F ′(x), of which the Laplace transform is

f̃(s) =
∫∞
0
e−sxf(x)dx, s ∈ C, C denotes the complex space. Similarly, common cu-

mulative distribution function, density function and the Laplace transform of the den-
sity function of {Y1, Y2, · · · } are given by G(x) = 1 − Ḡ(x), x ≥ 0, g(x) = G′(x) and
g̃(s) =

∫∞
0
e−sxg(x)dx. The renewal processes {N1(t); t ≥ 0} and {N2(t); t ≥ 0} denote

the number of claims up to time t caused by the �rst and the second class of claim
respectively, and are de�ned as follows.

N1(t) = sup{n : T1 + T2 + · · ·+ Tn ≤ t},

N2(t) = sup{n : V1 + V2 + · · ·+ Vn ≤ t},
where the i.i.d. interclaim times {T1, T2, · · · } have common cumulative distribution func-
tion K1(t), t ≥ 0 and density function k1(x) = K′1(x), and {V1, V2, · · · } have common
cumulative distribution function K2(t), t ≥ 0 and density function k2(x) = K′2(x).

In addition, we suppose that {X1, X2, · · · }, {Y1, Y2, · · · }, {N1(t); t ≥ 0}, {N2(t); t ≥ 0}
and {B(t); t ≥ 0} are mutually independent, and c > E(X1)/E(T1) + E(Y1)/E(V1),
providing a positive safety loading factor.
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Under the multi-threshold risk model, there are L thresholds 0 = d0 < d1 < · · · <
dL−1 < dL = ∞ such that when the surplus is between the thresholds dl−1 and dl,
dividends are paid continuously at a constant rate ηl ≥ 0. Furthermore, we assume
η1 = 0, namely, when the surplus is below the level d1, no dividends are paid, and ηl > 0
for l = 2, 3, · · · , L. Correspondingly, let cl denote the premium rate when dl−1 ≤ u < dl,
thus, the net premium rate after dividend payments is cl+1 = c1 − ηl+1 ≥ 0. Thus the
surplus process {R(t); t ≥ 0} can be expressed as

(2.2) dR(t) = cldt+ σdB(t)− dS(t), dl−1 ≤ R(t) < dl.

The time of (ultimate) ruin is de�ned as T = inf{t|R(t) ≤ 0}, where T =∞ if R(t) > 0
for all t ≥ 0. The probability of ruin is ψ(u) = Pr(T <∞).

Denote by D(t) the cumulative amount of dividends paid out up to time t and δ > 0

the force of interest, then D =
∫ T
0
e−δtdD(t) is the present value of all dividends until

ruin time T . In the following text, we turn to the moment generating function under
multiple thresholds,

M(u, y) = E[eyD|R(0) = u]

(for those values of y where it exists) and the rth moment

W (u, r) = E[Dr|R(0) = u], r ∈ N.

Note that W (u, 0) ≡ 1. We will always assume that M(u, y) and W (u, r) are su�ciently
smooth functions in u and y, respectively.

Throughout the text of the paper, all bold-faced letters represent either vectors or
matrices and all vectors are column vectors. We assume that the distribution K1(t) of
the inter-claim time random variable T1 is phase-type with representation (α>,A,a),
where α> = (α1, α2, · · · , αn), with αi ≥ 0,

∑n
i=1 αi = 1, A = (aij)

n
i,j=1 is an n × n

matrix with aii < 0, aij ≥ 0, for i 6= j,
∑n
j=1 aij ≤ 0, for any i = 1, 2, · · · , n, and

a = (a1, a2, · · · , an)> with a = −Aen, where x> denotes the transpose of x and en
denotes a column vector of length n with all elements being one. Following [2], we have
K1(t) = 1−α>eAten, k1(t) = α>eAta, t ≥ 0, and

(2.3) k̃1(s) =

∫ ∞
0

e−stk1(t)dt = α>(sI−A)−1a.

By the de�nition of phase-type distributions, each of the inter-claim times Ti, i = 1, 2, · · · ,
corresponds to the time to absorption in a terminating continuous-time Markov Chain,

say, I
(i)
t with n transient states {E1, E2, · · · , En} and one absorbing state E0.

The distribution K2(t) of the inter-claim time random variable V1 is phase-type with
representation (β>,B,b), where β> = (β1, β2, · · · , βm), B = (bij)

m
i,j=1 is an m × m

matrix, b = (b1, b2, · · · , bm)> with b = −Bem. Then we have K2(t) = 1 − β>eBtem,
k2(t) = β>eBtb, t ≥ 0, and k̃2(s) =

∫∞
0
e−stk2(t)dt = β>(sI−B)−1b. J

(i)
t denotes the

terminating continuous-time Markov Chain of Vi, i = 1, 2, · · · , with m transient states
{F1, F2, · · · , Fm} and one absorbing state F0.

Now, we construct a two-dimensional Markov process {(I(t), J(t)); t ≥ 0} by piecing

the {I(i)t ; i = 1, 2, · · · } and {J(i)
t ; i = 1, 2, · · · } together,

I(t) = {I(1)t }, 0 ≤ t < T1, I(t) = {I(2)t−T1
}, T1 ≤ t < T1 + T2, · · · ,

J(t) = {J(1)
t }, 0 ≤ t < V1, J(t) = {J(2)

t−V1
}, V1 ≤ t < V1 + V2, · · · .

So {(I(t), J(t)); t ≥ 0} is the underlying state process with states {(E1, F1) , (E2, F1), · · · ,
(En, F1), (E1, F2), (E2, F2), · · · , (En, F2), · · · , (E1, Fm), (E2, Fm), · · · , (En, Fm)}, initial
distribution γ = β ⊗α, where ⊗ denotes the Kronecker product of two matrices.
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For k = 1, 2; i = 1, 2, · · · , n; j = 1, 2, · · · ,m, let M (k)(u, y) denote the moment gener-

ating function of D if the ruin is caused by a claim from class k and R(0) = u. M
(k)
ij (u, y)

denotes the moment generating function of D when the ruin is caused by a claim from

class k and initial state (I
(1)
0 , J

(1)
0 ) = (Ei, Fj), then the moment generating function can

be written as

(2.4) M (k)(u, y) = γ>M(k)(u, y),

where M(k)(u, y) ≡
(
M

(k)
11 (u, y),M

(k)
21 (u, y), · · · ,M (k)

n1 (u, y), M
(k)
12 (u, y), M

(k)
22 (u, y), · · · ,

M
(k)
n2 (u, y), · · · , M (k)

1m (u, y),M
(k)
2m (u, y), · · · ,M (k)

nm(u, y)
)>

. Thus

(2.5) M(u, y) = γ>M(u, y) = γ>[M(1)(u, y) + M(2)(u, y)].

Wij(u, r) denotes the rth moment of D if (I
(1)
0 , J

(1)
0 ) = (Ei, Fj), then the moment can

be computed by

(2.6) W (u, r) = γ>W(u, r),

where W(u, r) ≡ (W11(u, r), W21(u, r), · · · ,Wn1(u, r), W12(u, r), W22(u, r), · · · , Wn2(u, r),

· · · , W1m(u, r),W2m(u, r), · · · ,Wnm(u, r))>.

3. The moment generating function

Let ∂·
∂u

and ∂·
∂y

denote the di�erentiation operators with respect to (w.r.t.) u and y,

respectively.

3.1. Theorem. The vectors M(k)(u, y), dl−1 ≤ u < dl, l = 1, 2, . . . , L, k = 1, 2 satisfy
the following partial integro-di�erential system, respectively,

(3.1)

(
σ2

2
∂2

∂u2 + cl
∂
∂u
− yδ ∂

∂y
+ yηl

)
M(1)(u, y) + Im×m ⊗AM(1)(u, y)+

B⊗ In×nM(1)(u, y) + Im×m ⊗ (aα>)
∫ u
0

M(1)(u− x, y)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(1)(u− x, y)g(x)dx+ (em ⊗ a)F̄ (u) = 0,

and

(3.2)

(
σ2

2
∂2

∂u2 + cl
∂
∂u
− yδ ∂

∂y
+ yηl

)
M(2)(u, y) + Im×m ⊗AM(2)(u, y)+

B⊗ In×nM(2)(u, y) + Im×m ⊗ (aα>)
∫ u
0

M(2)(u− x, y)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(2)(u− x, y)g(x)dx+ (b⊗ en)Ḡ(u) = 0,

where In×n denotes the n × n identity matrix, 0 denotes a column vector of length mn
with all elements being 0. F̄ (u) =

∫∞
u
f(x)dx and Ḡ(u) =

∫∞
u
g(x)dx.

Proof. Taking into account an in�nitesimal time interval (0, dt) for dl−1 ≤ u < dl, l =
1, 2, . . . , L, there are four possible events regarding to the occurrence of the claim and
change of the environment: (1) no claim arrival and no change of state; (2) a claim arrival
but no change of state; (3) a change of state but no claim arrival; (4) two or more events
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occur. Using the total expectation formula, yields

(3.3)

M
(1)
ij (u, y)

= eyηldt
{

(1 + aiidt)(1 + bjjdt)E[M
(1)
ij (u+ cldt+ σB(dt), ye−δdt)]

+(1 + bjjdt)
n∑

k=1,k 6=i
(aikdt)E[M

(1)
kj (u+ cldt+ σB(dt), ye−δdt)]

+(1 + aiidt)
m∑

h=1,h6=j
(bjhdt)E[M

(1)
ih (u+ cldt+ σB(dt), ye−δdt)]

+(1 + bjjdt)(aidt)

×E
[
n∑
s=1

αs
∫ u+cldt+σB(dt)

0
M

(1)
sj (u+ cldt+ σB(dt)− x, ye−δdt)f(x)dx

+
∫∞
u+cldt+σB(dt)

f(x)dx
]

+ (1 + aiidt)(bjdt)

× E

[
m∑
r=1

βr
∫ u+cldt+σB(dt)

0
M

(1)
ir (u+ cldt+ σB(dt)− x, ye−δdt)g(x)dx

]}
+o(dt).

By the aid of Taylor expansion, we have

(3.4)

E[M
(1)
ij (u+ cldt+ σB(dt), ye−δdt)]

= M
(1)
ij (u, y) + cldt

∂M
(1)
ij (u,y)

∂u
+ y(e−δdt − 1)

∂M
(1)
ij (u,y)

∂y

+σ2

2
dt
∂2M

(1)
ij (u,y)

∂u2 + o(dt).

Substituting (3.4) into (3.3), after some careful calculations, it follows that

(3.5)

(
σ2

2
∂2

∂u2 + cl
∂
∂u
− yδ ∂

∂y
+ yηl

)
M

(1)
ij (u, y) +

n∑
k=1

aikM
(1)
kj (u, y)+

m∑
h=1

bjhM
(1)
ih (u, y) + ai

(
n∑
s=1

αs
∫ u
0
M

(1)
sj (u− x, y)f(x)dx+

∫∞
u
f(x)dx

)
+bj

m∑
r=1

βr
∫ u
0
M

(1)
ir (u− x, y)g(x)dx = 0.

Rewriting (3.5) in matrix form, we conclude (3.1). By similar arguments, we can obtain
(3.2). �

4. The moments of discounted dividend payments

4.1. Theorem. The vector W(u, r), dl−1 ≤ u < dl, l = 1, 2, . . . , L, satis�es the following
integro-di�erential system,

(4.1)

(
σ2

2
d2

du2 + cl
d
du
− rδ

)
W(u, r) + rηlW(u, r − 1) + Im×m ⊗AW(u, r)+

B⊗ In×nW(u, r) + Im×m ⊗ (aα>)
∫ u
0

W(u− x, r)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

W(u− x, r)g(x)dx = 0,

with boundary conditions

(4.2) W(u, r)|u=0 = 0, W(u, r)|
u=d−

l
= W(u, r)|

u=d+
l
,

and

(4.3)
dW(u, r)

du

∣∣∣∣
u=d−

l

=
dW(u, r)

du

∣∣∣∣
u=d+

l

.
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Proof. Adding (3.1) to (3.2) and noting that M(u, y) = M(1)(u, y) + M(2)(u, y), which
results in

(4.4)

(
σ2

2
∂2

∂u2 + cl
∂
∂u
− yδ ∂

∂y
+ yηl

)
M(u, y) + Im×m ⊗AM(u, y)+

B⊗ In×nM(u, y) + Im×m ⊗ (aα>)
∫ u
0

M(u− x, y)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(u− x, y)g(x)dx+ (em ⊗ a)F̄ (u)
+(b⊗ en)Ḡ(u) = 0.

Since W (u, r) = E[Dr|R(0) = u], we have the following representation

(4.5) M(u, y) = emn +

∞∑
r=1

yr

r!
W(u, r).

Substituting (4.5) into (4.4) and equating the coe�cients of yr(r ∈ N). Then by virtue of
a = −Aen and b = −Bem. Further, Im×m ⊗Aemn = −Im×m ⊗ (aα>)emn= −em ⊗ a
and B⊗ In×nemn = −(bβ>)⊗ In×nemn = −b⊗ en. Hence, we achieve (4.1).

When u = 0, ruin is immediate and no dividends are paid. That is to say W(u, r)|u=0 =
0. Utilizing the continuity of W(u, r) and thanks to [16], we have the boundary condi-
tions (4.2) and (4.3). �

4.2. Remark. We assume that m = 1 and G(0) = 1, from Eq.(4.1), which yields

(4.6)

(
σ2

2
d2

du2 + cl
d
du
− rδ

)
W(u, r) + rηlW(u, r − 1)

+ AW(u, r) + (aα>)
∫ u
0

W(u− x, r)f(x)dx = 0,

where dl−1 ≤ u < dl, l = 1, 2, . . . , L. Furthermore, when L = 2 and the distribution K1(t)
is a generalized Erlang(n) distribution, we recover Theorem 4.1 in [5] from (4.6), which
consider the perturbed renewal risk model with a threshold dividend strategy.

5. The expectation of discounted dividend payments

In what follows, we consider the case r = 1 for W(u, r), the expectation of discounted
dividend payments. For notational convenience, let W(u) ≡ W(u, 1). From Theorem
4.1, we have for dl−1 ≤ u < dl, l = 1, 2, . . . , L, that

(5.1)

(
σ2

2
d2

du2 + cl
d
du
− δ
)

W(u) + ηlemn + Im×m ⊗AW(u)+

B⊗ In×nW(u) + Im×m ⊗ (aα>)
∫ u
0

W(u− x)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

W(u− x)g(x)dx = 0,

and with boundary conditions W(u)|u=0 = 0, W(u)|
u=d−

l
= W(u)|

u=d+
l
, dW(u)

du

∣∣∣
u=d−

l

= dW(u)
du

∣∣∣
u=d+

l

.

5.1. Laplace transforms. Motivating by [12], we relax the constraint dl−1 ≤ u < dl
in (5.1) and consider the case of u ≥ dl−1. Let Wl(u), u ≥ dl−1, l = 1, · · · , L be the
solutions of the following non-homogeneous integro-di�erential equations:

(5.2)

(
σ2

2
d2

du2 + cl
d
du
− δ
)

Wl(u) + Im×m ⊗AWl(u) + B⊗ In×nWl(u)+

Im×m ⊗ (aα>)
[∫ u−dl−1

0
Wl(u− x)f(x)dx+

∫ u
u−dl−1

W(u− x)f(x)dx
]

+(bβ>)⊗ In×n
[∫ u−dl−1

0
Wl(u− x)g(x)dx+

∫ u
u−dl−1

W(u− x)g(x)dx
]

+ηlemn = 0, u ≥ dl−1.
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From the theory of di�erential equations, it follows that

(5.3) W(u) = Wl(u) +

mn∑
j=1

kljΘlj(u), dl−1 ≤ u < dl,

where klj is constant coe�cient for each l and j, and Θlj(u), j = 1, 2, · · · ,mn, are mn
linearly independent solutions to the associated homogeneous integro-di�erential equa-
tions

(5.4)

(
σ2

2
d2

du2 + cl
d
du
− δ
)

Θl(u) + Im×m ⊗AΘl(u)+

B⊗ In×nΘl(u) + Im×m ⊗ (aα>)
∫ u−dl−1

0
Θl(u− x)f(x)dx+

(bβ>)⊗ In×n
∫ u−dl−1

0
Θl(u− x)g(x)dx = 0, u ≥ dl−1.

5.1. Remark. When u → ∞, ruin does not happen all the time and dividends are
always paid at a constant rate ηL. So we have limu→∞W(u) = ηL

δ
emn. We can found

that ηL
δ

emn are really particular solutions of (5.2). It follows from the general theory of
di�erential equations that

(5.5) W(u) =
ηL
δ

emn +

mn∑
j=1

kLjΘLj(u), u ≥ dL−1,

Taking a change of variables z = u− dl−1 and Φl(z) ≡Wl(u) = Wl(z + dl−1), then
we obtain from (5.2),

(5.6)

(
σ2

2
d2

dz2
+ cl

d
dz
− δ
)

Φl(z) + Im×m ⊗AΦl(z)+

B⊗ In×nΦl(z) + Im×m ⊗ (aα>)
∫ z
0

Φl(z − x)f(x)dx+

(bβ>)⊗ In×n
∫ z
0

Φl(z − x)g(x)dx+ Γl(z) = 0, z ≥ 0,

where

(5.7)
Γl(z) = Im×m ⊗ (aα>)

∫ dl−1

0
W(x)f(z + dl−1 − x)dx

+(bβ>)⊗ In×n
∫ dl−1

0
W(x)g(z + dl−1 − x)dx+ ηlemn.

Next de�ne the following Laplace transforms: Φ̃l(s) =
∫∞
0
e−sxΦl(x)dx, Γ̃l(s) =∫∞

0
e−sxΓl(x)dx. Taking Laplace transforms on both sides of (5.6) and rearranging, we

have

(5.8)

[(
σ2

2
s2 + cls− δ

)
Imn×mn + Im×m ⊗A + B⊗ In×n+

Im×m ⊗ (aα>)f̃(s) + (bβ>)⊗ In×ng̃(s)
]
Φ̃l(s) =

σ2

2
Φ′l(0) + pl(s)Φl(0)− Γ̃l(s),

where pl(s) = σ2

2
s+ cl, Φl(0) = Wl(dl−1),Φ′l(0) = W′

l(dl−1).

Let Ll(s) =
(
σ2

2
s2 + cls− δ

)
Imn×mn+ Im×m⊗A+B⊗ In×n+ Im×m⊗ (aα>)f̃(s)+

(bβ>) ⊗ In×ng̃(s), and Ll
∗(s) is the adjoint of matrix Ll(s) for l = 1, 2, · · · , L. Thus,

when det[Ll(s)] 6= 0, we get from (5.8)

(5.9) Φ̃l(s) =
Ll
∗(s)

det[Ll(s)]

(
σ2

2
Φ′l(0) + pl(s)Φl(0)− Γ̃l(s)

)
.

For a given l the generalized Lundberg's equations det[Ll(s)] = 0 has exactlymn roots
in the right half of the complex plane when δ > 0, see e.g. [7] for details. We denote them
by ρl1, ρl2, · · · , ρl,mn respectively, and for simplicity, we assume that they are di�erent
from each other.
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Divided di�erence plays an important role in the present paper. Now we recall di-
vided di�erences of a matrix L(s) w.r.t. distinct numbers r1, r2, · · · , which are de�ned
recursively as follows:

L[r1, s] =
L(s)− L(r1)

s− r1
, L[r1, r2, s] =

L[r1, s]− L[r1, r2]

s− r2
,

and so on.
Since each element of Φ̃l(s) is �nite for all <(s) > 0, ρl1, ρl2, · · · , ρl,mn are also roots

of numerator in (5.9). Utilizing a similar technique to Theorem 4.2 in [7], we obtain from
(5.9) the following theorem.

5.2. Theorem. The Laplace transforms of Φl(y) for l = 1, 2, · · · , L are represented by

(5.10)

Φ̃l(s) =
mn∏
j=1

(s−ρlj)

det[Ll(s)]

{
Ll
∗[ρl1, · · · , ρl,mn, s]

(
σ2

2
Φ′l(0) + pl(s)Φl(0)− Γ̃l(s)

)
+

Ll
∗[ρl1, · · · , ρl,mn]σ

2

2
Φl(0)−

mn∑
i=1

Ll
∗[ρl1, · · · , ρli]Γ̃l[ρli, · · · , ρl,mn, s]

}
.

5.2. The homogeneous integro-di�erential equations. The solutions to the asso-
ciated homogeneous integro-di�erential equations (5.4) are uniquely determined by the
initial conditions Θl(dl−1) and Θ′l(dl−1). In the following, we apply Laplace transforms
to �nd the solutions of (5.4).

let z = u− dl−1 and Ξl(z) ≡ Θl(u) = Θl(z + dl−1), l = 1, 2, · · · , L, then (5.4) can be
rewritten as

(5.11)

(
σ2

2
d2

dz2
+ cl

d
dz
− δ
)

Ξl(z) + Im×m ⊗AΞl(z)+

B⊗ In×nΞl(z) + Im×m ⊗ (aα>)
∫ z
0

Ξl(z − x)f(x)dx+

(bβ>)⊗ In×n
∫ z
0

Ξl(z − x)g(x)dx = 0, z ≥ 0.

Taking Laplace transforms on both sides of (5.11) yields

(5.12)

[(
σ2

2
s2 + cls− δ

)
Imn×mn + Im×m ⊗A + B⊗ In×n+

Im×m ⊗ (aα>)f̃(s) + (bβ>)⊗ In×ng̃(s)
]
Ξ̃l(s) = σ2

2
Ξ′l(0) + pl(s)Ξl(0),

where Ξ̃l(s) =
∫∞
0
e−sxΞl(x)dx. Then, we have

(5.13) Ξ̃l(s) =
Ll
∗(s)

det[Ll(s)]

(
σ2

2
Ξ′l(0) + pl(s)Ξl(0)

)
.

Since Θl(dl−1) = Ξl(0),Θ′l(dl−1) = Ξ′l(0), invert (5.13) leads to

(5.14) Θl(u) = L
−1

{
Ll
∗(s)

det[Ll(s)]

(
σ2

2
Θ′l(dl−1) + pl(s)Θl(dl−1)

)}
, u ≥ dl−1.

5.3. Claim sizes with rational Laplace transform. Let us now restrict the further
analysis to the case of the claim amount distributions F (x) and G(x) both with rational
Laplace transforms, that is,

f̃(s) =
qm1−1(s)

qm1(s)
, g̃(s) =

rm2−1(s)

rm2(s)
, m1,m2 ∈ N+,

where qm1−1(s), rm2−1(s) are polynomials of degreem1−1 andm2−1 or less, respectively,
while qm1(s) and rm2(s) are polynomials of degree m1 and m2 with only negative roots,
and satisfy qm1−1(0) = qm1(0), rm2−1(0) = rm2(0). Without loss of generality, we assume
that qm1(s) and rm2(s) have leading coe�cient 1. This wide class of distributions includes
the Erlang, Coxian and phase-type distributions, and also the mixtures of these.
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Multiplying both numerator and denominator of (5.13) by h(s), where
h(s) = [qm1(s)rm2(s)]mn. We get for l = 1, 2, · · · , L that

(5.15) Ξ̃l(s) =
Ll
∗(s)

h(s)det[Ll(s)]

(
h(s)

σ2

2
Ξ′l(0) + h(s)pl(s)Ξl(0)

)
.

It is obvious that the factor h(s)det[Ll(s)] of the denominator is a polynomial of de-
gree mn(m1 + m2 + 2) with leading coe�cient (σ2/2)mn. Therefore, the equation
h(s)det[Ll(s)] = 0 has mn(m1 + m2 + 2) roots on the complex plane. We can factorize
h(s)det[Ll(s)] as follows

(5.16) h(s)det[Ll(s)] =

(
σ2

2

)mn mn∏
j=1

(s− ρlj)
mn(m1+m2+1)∏

j=1

(s+Rlj),

where Rlj for each l and j has positive real part and we assume that all of them are
distinct from each other.

Since pl(s) with degree 1, the numerator Ll
∗(s)

(
h(s)σ

2

2
Ξ′l(0) + h(s)pl(s)Ξl(0)

)
in

(5.15) is a polynomial with degree less than mn(m1 +m2 + 2) for each l. By the partial
fraction decomposition, we get

(5.17) Ξ̃l(s) =

mn∑
j=1

ϑlj
s− ρlj

+

mn(m1+m2+1)∑
j=1

χlj
s+Rlj

, s ∈ C,

where ϑlj , for j = 1, 2, · · · ,mn, and χlj , for j = 1, 2, · · · ,mn(m1 + m2 + 1), are the
coe�cient matrices de�ned respectively by

(5.18) ϑlj = −
Ll
∗(ρlj)

(
h(ρlj)

σ2

2
Ξ′l(0) + h(ρlj)pl(ρlj)Ξl(0)

)
(σ

2

2
)mn

[
mn(m1+m2+1)∏

k=1

(Rlk + ρlj)

][
mn∏

i=1,i 6=j
(ρli − ρlj)

] ,
and

(5.19) χlj =
Ll
∗(−Rlj)

(
h(−Rlj)σ

2

2
Ξ′l(0) + h(−Rlj)pl(−Rlj)Ξl(0)

)
(σ

2

2
)mn

[
mn∏
k=1

(ρlk +Rlj)

] [
mn(m1+m2+1)∏

i=1,i 6=j
(Rli −Rlj)

] .

Inverting (5.17) yields

(5.20) Ξl(z) =

mn∑
j=1

ϑlje
ρljz +

mn(m1+m2+1)∑
j=1

χlje
−Rljz, z ≥ 0.

To conclude, we have

5.3. Theorem. If the claim-size distributions F (x) and G(x) both belong to the rational
family, then the solutions of the associated homogeneous integro-di�erential equations
(5.4) are given by

Θl(u) =
mn∑
j=1

ϑlje
ρlj(u−dl−1) +

mn(m1+m2+1)∑
j=1

χlje
−Rlj(u−dl−1),

(5.21) u ≥ dl−1, l = 1, 2, · · · , L,
where ϑlj and χlj are given by (5.18) and (5.19), respectively.
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Next, we turn to derive the expressions of Wl(u), for l = 1, 2, · · · , L. For this purpose,
multiplying both numerator and denominator of (5.10) by h(s), by virtue of (5.16) and

then canceling the same factor
mn∏
j=1

(s− ρlj), we derive from (5.10) that

(5.22)

Φ̃l(s) = 1(
σ2

2

)mn mn(m1+m2+)∏
j=1

(s+Rlj)

×

{
h(s)Ll

∗[ρl1, · · · , ρl,mn, s]
(
σ2

2
Φ′l(0)− Γ̃l(s)

)
+

h(s)Ll
∗[ρl1, · · · , ρl,mn, s]pl(s)Φl(0) + h(s)Ll

∗[ρl1, · · · , ρl,mn]σ
2

2
Φl(0)

− h(s)
mn∑
i=1

Ll
∗[ρl1, · · · , ρli]Γ̃l[ρli, · · · , ρl,mn, s]

}
.

Thanks to [9], which can be rewritten as

(5.23)

Φ̃l(s) = 1(
σ2

2

)mn mn(m1+m2+1)∑
j=1

1
s+Rlj

{
Qlj

(
σ2

2
Φ′l(0)− Γ̃l(s)

)
+ HljΦl(0)

+ Dlj

(
Ll
∗[ρl1, · · · , ρl,mn]σ

2

2
Φl(0)−

mn∑
i=1

Ll
∗[ρl1, · · · , ρli]Γ̃l[ρli, · · · , ρl,mn, s]

)}
.

where Qij , Dij and Hij are given respectively by

(5.24) Qlj =
h(−Rlj)Ll∗[ρl1, · · · , ρl,mn,−Rlj ]

mn(m1+m2+1)∏
i=1,i 6=j

(Rli −Rlj)
, Dlj =

h(−Rlj)
mn(m1+m2+1)∏

i=1,i 6=j
(Rli −Rlj)

,

and

(5.25) Hlj =
h(−Rlj)Ll∗[ρl1, · · · , ρl,mn,−Rlj ]pl(−Rlj)

mn(m1+m2+1)∏
i=1,i 6=j

(Rli −Rlj)
.

In order to obtain the Laplace inverses of (5.23), we recall the operator Tr for a real-

valued integrable function f(x) de�ned by Trf(x) =
∫∞
x
e−r(u−x)f(u)du, r ∈ C, x ≥ 0.

For properties of the operator Tr, see [4]. Now, we extend the de�nition of operator
Tr for a real-valued integrable function to a matrix function w.r.t. a complex number
r. If each element is a real-valued integrable function of x in matrix Ψ(x), we de�ne

TrΨ(x) =
∫∞
x
e−r(u−x)Ψ(u)du, r ∈ C, x ≥ 0, and it is easy to see that

Tr1Tr2Ψ(x) = Tr2Tr1Ψ(x) =
Tr1Ψ(x)− Tr2Ψ(x)

r1 − r2
, r1 6= r2 ∈ C, x ≥ 0.

Furthermore, from [6], we can get the Laplace inverse of Ψ̃[r1, r2, · · · , rn, s] as follows

(5.26) L
−1
(
Ψ̃[r1, r2, · · · , rn, s]

)
= (−1)n

(
n∏
i=1

Tri

)
Ψ(x).

Using (5.26) and inverting (5.23), which results in

(5.27)

Φl(z) = 1(
σ2

2

)mn mn(m1+m2+1)∑
j=1

{(
σ2

2
QljΦ

′
l(0) + HljΦl(0)

)
e−Rljz

+ σ2

2
DljLl

∗[ρl1, · · · , ρl,mn]Φl(0)e−Rljz − e−Rljz ? [QljΓl(z)

− Dlj
mn∑
i=1

Ll
∗[ρl1, · · · , ρli](−1)mn−i

(
mn∏
j=i

Tρlj

)
Γl(z)

]}
, z ≥ 0,

where ? represents the convolution operator.
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Since Φl(z) = Wl(u) = Wl(z + dl−1), we can obtain the following theorem from
(5.27).

5.4. Theorem. If the claim-size distributions F (x) and G(x) both belong to the rational
family, for l = 1, 2, · · · , L, when u ≥ dl−1, the solutions of the equations (5.2) are given
by

(5.28)

Wl(u) =

1(
σ2

2

)mn mn(m1+m2+1)∑
j=1

{(
σ2

2
QljW

′
l(dl−1) + HljWl(dl−1)

)
e−Rlj(u−dl−1)

+σ2

2
DljLl

∗[ρl1, · · · , ρl,mn]Wl(dl−1)e−Rlj(u−dl−1)

−e−Rlj(u−dl−1) ? [QljΓl(u− dl−1)

− Dlj
mn∑
i=1

Ll
∗[ρl1, · · · , ρli](−1)mn−i

(
mn∏
j=i

Tρlj

)
Γl(u− dl−1)

]}
,

where Qlj, Dlj and Hlj are given by (5.24), (5.25), respectively.

5.5. Remark. Let l = 1 in (5.28), we have

(5.29) W1(u) =
1(

σ2

2

)mn−1

mn(m1+m2+1)∑
j=1

Q1jW
′
1(0)e−R1ju, u ≥ 0.

Obviously, W(u) = W1(u) for 0 ≤ u < d1. By virtue of W′
r(u) = rWr−1(u). Thus,

when r = 1, W′(u) = emn, that is, W′(dl−1) = emn, l = 2, 3, · · · , L. So, di�erentiating
(5.29) w.r.t. u and letting u = d1, we can determine W′

1(0). Thus, W(u), 0 ≤ u < d1
can be obtain.

6. Numerical illustrations

We now illustrate an application of the main conclusions in this paper with a numerical
example. We suppose that the claim amounts from class 1 and class 2 have density
functions, respectively,

f(x) = µ1e
−µ1x, µ1 > 0, x > 0, g(y) = µ2e

−µ2y, µ2 > 0, y > 0.

Hence, the Laplace transforms f̃(s) = µ1
s+µ1

, g̃(s) = µ2
s+µ2

. The inter-claim times from

class 1 occur following a Poisson process with parameter λ, i.e. α = (1),A = (−λ),a =
(λ), and inter-claim times from class 2 occur following a phase-type distribution with the
following parameters: β = (1/2, 1/2)>,B = diag(−λ1,−λ2),b = (λ1, λ2)>. In addition,
we assume that the multi-threshold layers L = 2 with 0 = d0 < d1 < d2 = ∞. So, we
have h(s) = [(s+ µ1)(s+ µ2)]2 and Ll(s), l = 1, 2 are given by(

κ(s)− λ1 + λµ1
s+µ1

+ λ1µ2
2(s+µ2)

λ1µ2
2(s+µ2)

λ2µ2
2(s+µ2)

κ(s)− λ2 + λµ1
s+µ1

+ λ2µ2
2(s+µ2)

)
,

where κ(s) = σ2

2
s2 + cls − δ − λ. Let µ1 = 1, µ2 = 2, λ = 2, λ1 = 1, λ2 = 3, σ = 1, δ =

0.01, d1 = 2, c1 = 2 and c2 = 1.5. So, η2 = 0.5, and the positive security loading conditions
are satis�ed. Under this hypothesis, the solutions of h(s)det[L1(s)] = 0 are −R11 =
−6.0539,−R12 = −5.3665,−R13 = −2.0000,−R14 = −1.5891,−R15 = −0.5883,−R16 =
−0.0127, ρ11 = 0.3244, ρ12 = 1.2861, and the solutions of h(s)det[L2(s)] = 0 are −R21 =
−5.3915,−R22 = −4.6356,−R23 = −2.0000,−R24 = −1.5608,−R25 = −0.5600,−R26 =
−0.0079, ρ21 = 0.6041, ρ22 = 1.5517.
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Di�erentiating (5.29) w.r.t. u, then letting u = d1 and using W′(d1) = emn, we have
W′

1(0) = (90.7431, 97.5835)>. Substituting the value of W′
1(0) into (5.29) and noting

that the root s = −2.0000 is Singular, we have the expression of W(u) for 0 ≤ u < 2,

(6.1)

W(u) =

(
−56.9599 48.0343 −0.0078 −6.5895 15.5229
−85.1765 78.8988 −1.2463 −6.0170 13.5409

)
e−6.0539u

e−5.3665u

e−1.5891u

e−0.5883u

e−0.0127u

 .

Letting the initial conditions Ξ′2(0) = (1, 0)>,Ξ2(0) = (0, 1)> and Ξ′2(0) = (0, 1)>,
Ξ2(0) = (1, 0)>, respectively, by virtue of the asymptotic behaviour of W(u), u ≥ 2, we
get the following two linearly independent solutions from (5.21) when u ≥ 2,

Θ21(u) =

(
6.5218 −2.9357 −0.0069 −0.0053 −1.4173
59.4285 1.1493 −0.0164 0.0118 −1.4228

)
e−5.3915(u−2)

e−4.6356(u−2)

e−1.5608(u−2)

e−0.5600(u−2)

e−0.0079(u−2)

 ,

Θ22(u) =

(
2.1362 21.4218 −0.0057 −0.0046 −3.4694
19.4654 −8.3868 −0.0135 0.0103 −3.4830

)
e−5.3915(u−2)

e−4.6356(u−2)

e−1.5608(u−2)

e−0.5600(u−2)

e−0.0079(u−2)

 .

Combining (5.5) with (6.1) and utilizing the boundary condition
W(u)|

u=d−1
= W(u)|

u=d+1
, then solving the linear equations, we have k21 = −0.4243, k22 =

−1.7921. Thus, we obtain W(u), u ≥ 2,

(6.2)

W(u) =

(
50
50

)
+

(
−6.5956 −37.1448 0.0131 0.0105 6.8190
−60.1005 14.5425 0.0312 −0.0235 6.8457

)
e−5.3915(u−2)

e−4.6356(u−2)

e−1.5608(u−2)

e−0.5600(u−2)

e−0.0079(u−2)

 .

Last, since γ = β ⊗α = (1/2, 1/2)>, we can obtain W (u) by W (u) = γ>W(u), viz,

(6.3) W (u) =


−71.0682e−6.0539u + 63.4665e−5.3665u − 0.6271e−1.5891u

−6.3033e−0.5883u + 14.5319e−0.0127u, 0 ≤ u < 2,

50− 33.3481e−5.3915(u−2) − 11.3011e−4.6356(u−2)

+0.0222e−1.5608(u−2) − 0.0065e−0.5600(u−2)

+6.8323e−0.0079(u−2), u ≥ 2.
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