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Multi-stage multi-objective solid transportation
problem for disaster response operation with

type-2 triangular fuzzy variables

Abhijit Baidya∗† , Uttam Kumar Bera‡ and Manoranjan Maiti�

Abstract

In this paper, for the �rst time we formulate and solve multi-stage solid
transportation problem (MSSTP) to minimize the total cost and time
with type-2 fuzzy transportation parameters. During transportation
period, loading, unloading cost and time, volume and weight for each
item, limitation of volume and weight for each vehicle are normally
imprecise and taken into account to formulate the models. To remove
the uncertainty of the type-2 fuzzy transportation parameters from
objective functions and constraints, we apply CV-Based reduction
methods and generalized credibility measure. Disasters are unexpected
situations that require signi�cant logistical deployment to transport
equipment and humanitarian goods in order to help and provide relief
to victims and sometime this transportation is not possible directly
from supply point to destination. Again, the availabilities at supply
points and requirements at destinations are not known precisely
due to disaster. For this reason, we formulate the multi-stage solid
transportation problems under uncertainty (type-2 fuzzy). The models
are illustrated with a numerical example. Finally, generalized reduced
gradient technique (LINGO.13.0 software) is used to solve the models.
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1. Introduction

1.1. Literature review and the main work of the research: The transportation
problem originally developed by Hitchcock [7] is one of the most common combinatorial
problems involving constraints. The solid transportation problem (STP) was �rst stated
by Shell [8]. Haley [5, 6] developed the solution procedure of a solid transportation prob-
lem and made a comparison between the STP and the classical transportation problem.
Geo�rion and Graves [19] were the �rst researchers studied on two-stage distribution
problem. After that so many researchers(Pirkul and Jayaraman [20], Heragu [17], Hindi
et al. [21], Syarif and Gen [22], Amiri [23], Gen et al. [24]) study two-stage TP. Mahap-
atra et al. [25] applied fuzzy multi-objective mathematical programming technique on a
reliability optimization model. A type-2 fuzzy variable is a map from a fuzzy possibility
space to the real number space; it is an appropriate tool for describing type-2 fuzziness.
The concept of a type-2 fuzzy set was �rst proposed in Qin et al. [1] as an extension
of an ordinary fuzzy set. Mitchell [10] used the concept of an embedded type-1 fuzzy
number. Liang and Mendel [11] proposed the concept of an interval type-2 fuzzy set.
Karnik and Mendel [2], Liu [3], Qin et al. [1], Yang et al. [30], Liu et al. [29], Yang et
al. [30] worked on type-2 fuzzy set. In the literature, data envelopment analysis (DEA)
technology was �rst proposed in [12]. Sengupta [22] incorporated stochastic input and
output variations; Banker [14] incorporated stochastic variables into DEA; Cooper et al.
[15] and Land et al. [16] developed a chance-constrained programming to accommodate
the stochastic variations in the data. Qin et al. [4] proposes three noble methods of
reduction for a type-2 fuzzy variable. Here, we present in tabular form a scenario of
literature development made on transportation problem in Table-1.

Table-1: Some remarkable research works on TP/STP
Author(s), Ref. Objective Nature Additional function Environments Solution Techniques
Kundu et al. Multi-objective STP Multi-item fuzzy LINGO

Yang and Feng Single-objective STP �xed charges stochastic Tabu search algorithm

Kundu et al. Single-objective TP Fixed charge type-2 fuzzy variable LINGO

Baidya et al. Single-objective STP Safety factor Fuzzy, Stochastic, Interval LINGO

Gen et al. Single-objective TP Two-stage Deterministic Genetic algorithms

Proposed Multi-objective STP Multi-stage Triangular type-2 fuzzy LINGO

In spite of the above developments, there are so many gaps in the literature. Some
of these omissions which are used to formulate the model with type-2 triangular fuzzy
number are as follows:

• So many ([26], [27], [28], [31], [32], [33],) solid transportation problems exist in
the literature to minimize the total transportation cost only but nobody can
formulate any STP to minimize the total transportation time, purchasing cost,
loading and unloading cost at a time.

• In spite of the above developments, very few can minimized the time objective
function which involves total transportation time, loading and unloading time
at a time.

• Lots of two stage transportation problems ([19]-[25]) exist in the literature where
the transportation cost is minimized. But nobody formulate and solved a multi-
stage multi-item multi-objective solid transportation problem to minimize the
"total cost" which involves transportation cost, purchasing cost, loading and
unloading cost and "total time" which involves transportation time, loading and
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unloading time.

• Sometimes, the value of the transportation parameters are not known to us pre-
cisely but at that time some imprecise data are known to us. For this reason,
lots of researchers solved so many transportation problems with fuzzy (triangu-
lar fuzzy number, trapezoidal fuzzy number, type-1 fuzzy number, type-2 fuzzy
number, interval type-2 fuzzy number etc.) transportation parameters. But
nobody solved any multi-stage multi-item multi-objective (cost and time) STP
with transportation parameters as type-2 triangular fuzzy number.

• So many STPs are developed in the literature to minimize the total transporta-
tion cost and time subjected to the supply constraints, demand constraints and
conveyances capacity constraints, budget constraint, safety constraint etc. but
nobody formulated any STP subjected to the weights constraints and volumes
constraints during transportation.

In this paper, a multi-item multi-stage solid transportation problem is formulated and
solved. Type-2 fuzzy theory is an appropriate �eld for research. To formulate the model,
we consider unit transportation cost, time, supplies, demands, conveyances capacities,
loading and unloading cost and time, volume and weights for each and every item, vol-
ume and weight capacities for each conveyances as type-2 triangular fuzzy variables. The
objective functions for the respective transportation model is to minimize the total cost
and time. To defuzzify the constraints and objective functions, we apply CV-based re-
duction method. The goal programming approach is used to solve the multi-objective
programming problem. The deterministic problems so obtained are then solved by using
the standard optimization solver - LINGO 13.0 software. We have provided numerical
examples illustrating the proposed model and techniques. Some sensitivity analyzes for
the model are also presented.
The paper is organized as follows. Problem descriptions are includes in the section 2.
In section 3 we brie�y introduce some fundamental concepts. The assumptions and
notations to construct the model are put in the section 4. In section 5, multi-stage multi-
objective solid transportation model with type-2 triangular fuzzy variable is formulated.
In section 6, we discuss about the methodology and defuzzi�cation method that used
to solve the model. A numerical example put in the section 7 is to illustrate the model
numerically. The results of solving the model numerically are put in the section 8. A
sensitivity analysis of the model is discussed in the section 9. In section 9, we discuss the
results obtained by solving the numerical example. The comparisons of the work with
the earlier research are discussed in the section 10. The conclusion and future extension
of the research work are discussed in the section 11. The references which are used to
prepare this manuscript are put in the last. In this work, we formulate and solve a multi-
stage multi-item solid transportation problem to minimize the total cost and time under
type-2 fuzzy environment. The real life applications of the research work are as follows:

• Basically to provide some relief to the survived peoples in disaster, we developed
our MSSTP model. In our paper, we consider all the transportation parameters
as type-2 fuzzy variables since after disaster, it is very di�cult to de�ne all
transportation parameters precisely. Since due to disaster roads, bridges, towers
etc. are damaged, thus it is not possible to survive the peoples smoothly with
the help of direct transportation network. This is the reason to formulate an
n-stage solid transportation model
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• To get the permit of a vehicle is a di�cult task for the owner of the vehicle.
Some vehicles are permitted to driver on a particular state or country. This
permit restricts us to carry the goods from one state to another or one country
to another. So in the transportation period, it is important to load and unload
the goods so many times at the destination centers (the destination centers are
lies between supply points and customers).So to overcome these transportation
di�culties we can apply this newly developed model.

1.2. Motivations: The motivation for this research dated back to September 2014,
the Kashmir region witnessed disastrous �oods across majority of its districts caused
by torrential rainfall. The Indian administrated Jammu and Kashmir, as well as Azad
Kashmir, Gilgit-Baltistan and Punjab in Pakistan, were a�ected by these �oods. By
September 24, 2014, nearly 277 people in India and 280 people in Pakistan died due to
the �oods and more than 1.1 million were a�ected by the �oods. During this period,
it is tedious to send the necessary foods to the survived peoples. For this reason, it is
important to impose so many destination centers in between supply point and customers.

2. Problem Description:

Disaster (earthquick, �ood etc.) is an extra ordinary situation for any country or state
and to provide relief to the survived person which is a risky and tedious task to us. But
at that time transportation is required to serve the foods, clothes etc. to the peoples.
Also due to the disaster, it is not possible to deliver the necessary things directly to
the survived people. It required some destination centers in between source point and
survived peoples such that the total cost and time should be minimized. This also mo-
tivated us to formulate a multi-stage multi-objective solid transportation problem. The
exact �gure of the survived peoples due to disaster is not known to us exactly. For this
reason, the transportation parameters are also remains unknown to us. Since all the
transportation parameters are not known to us precisely, so we consider the transporta-
tion parameters as type-2 triangular fuzzy variables. In this multi-stage transportation
network, destination center for stage-1 is reduced to the supply point for stage-2 and
destination center for stage-2 is reduced to the supply point for stage-3 and similarly the
destination center for the stage-(n-1) is converted to the supply point to the stage-n. The
pictorial representation of the multi-stage solid transportation problem is as follows:

Figure 1. Multi-stage solid transportation network
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3. Fundamental Concepts

De�nition 1. (Regular Fuzzy Variable)
Let Γ be the universe of discourse. An ample �eld [32] A on Γ is a class of subsets of Γ
that is closed under arbitrary unions, intersections, and complements in Γ.
Let Pos : A→ [0, 1] be a set function on the ample�eld Γ. Pos is said to be a possibility
measure [32] if it satis�es the following conditions:
(p1) Pos(ϕ) = 0 and Pos(Γ) = 1.
(p2) For any subclass {Ai|i ∈ I} of A (�nite, counter or uncountable), Pos(

⋃
i∈I(Ai)) =

Supi∈IPos(Ai)
The triplet (Γ,A, Pos) is referred to as a possibility space, in which a credibility measure
[33] is de�ned as Cr(A) = 1

2
(1 + Pos(A)− Pos(Ac)), A ∈ A.

If (Γ,A, Pos) is a possibility space, then an m-ary regular fuzzy vector ξ = (ξ1, ξ2, ..., ξm)
is de�ned as a membership map from Γ to the space [0, 1]m in the sense that for every
t = (t1, t2, ..., tm) ∈ [0, 1]m, one has
{γ ∈ Γ|ξ(γ) ≤ t} = {γ ∈ Γ|ξ1(γ) ≤ t1, ξ2(γ) ≤ t2, ..., ξm(γ) ≤ tm} ∈ A

When m = 1, ξ is called a regular fuzzy variable (RFV).

3.1. Critical values for RFVs. .
De�nition 2.(Qin et al. [1]) Let ξ be an RFV. Then the optimistic CV of ξ, denoted
by CV ∗[ξ], de�ned as CV ∗[ξ] = Sup{α ∧ Pos{ξ ≥ α}}︸ ︷︷ ︸

α∈[0,1]

, while the pessimistic CV of ξ,

denoted by CV∗[ξ], is de�ned as CV∗[ξ] = Sup{α ∧Nec{ξ ≥ α}}︸ ︷︷ ︸
α∈[0,1]

.

The CV of ξ , denoted by CV [ξ], is de�ned as CV [ξ] = Sup{α ∧ Cr{ξ ≥ α}}︸ ︷︷ ︸
α∈[0,1]

.

Theorem 1. (Qin et al. [1]) Let ξ = (r1, r2, r3, r4) be a trapezoidal RFV. Then we have

(i) The optimistic CV of ξ is CV ∗[ξ] = r4
1+r4−r3

.

(ii) The pessimistic CV of ξ is CV∗[ξ] = r2
1+r2−r1

.

(iii) The CV of ξ is CV [ξ] =


2r2−r1

1+2(r2−r1)
, if r2 >

1
2

1
2
, if r2 ≤ 1

2
≤ r3

r4
1+2(r4−r3)

, r3 ≤ 1
2

3.2. Methods of reduction for type-2 fuzzy variables (CV-Based Reduction
Methods). Due to the fuzzy membership function of a type-2 fuzzy number, the com-
putation complexity is very high in practical applications. To avoid this di�culty, some
defuzzi�cation methods have been proposed in the literature (see [6-8]). In this section,
we propose some new methods of reduction for a type-2 fuzzy variable. Compared with
the existing methods, the new methods are very much easier to implement when we em-
ploy them to build a mathematical model with type-2 fuzzy coe�cients.
Let (Γ,A, ˜Pos) be a fuzzy possibility space and ξ̃ a type-2 fuzzy variable with a known
secondary possibility distribution function µξ̃(x). To reduce the type-2 fuzziness, one

approach is to give a representing value for RFV µξ̃(x). For this purpose, we suggest

employing the CVs of ˜Pos{γ|ξ̃(γ) = x} as the representing values. This methods the

CV-based methods for the type-2 fuzzy variable ξ̃
Theorem 2.(Qin et al. [1]) Let ξ̃ be a type-2 triangular fuzzy variable de�ned as

ξ̃ = (r̃1, r̃2, r̃3; θl, θr). Then we have
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(i) Using the optimistic CV reduction method, the reduction ξ1 of ξ̃ has the following
possibility distribution:

µξ1(x) =


(1+θr)(x−r1)

(r2−r1+θr(x−r1))
, if x ∈ [r1,

r1+r2
2

]
(1−θr)x+θrr2−r1
(r2−r1+θl(r2−x))

, if x ∈ [ r1+r2
2

, r2]
(−1+θr)x−θrr2+r3
r3−r2+θr(x−r2)

, if x ∈ [r2,
r2+r3

2
]

(1+θr)(r3−x)
r3−r2+θr(r3−x)

, if x ∈ [ r2+r3
2

, r3]

(ii) Using the pessimistic CV reduction method, the reduction ξ2 of ξ̃ has the fol-
lowing possibility distribution:

µξ2(x) =


x−r1

r2−r1+θl(x−r1)
, if x ∈ [r1,

r1+r2
2

]
x−r1

r2−r1+θl(r2−x)
, if x ∈ [ r1+r2

2
, r2]

r3−x
r3−r2+θl(x−r2)

, if x ∈ [r2,
r2+r3

2
]

r3−x
r3−r2+θl(r3−x)

, if x ∈ [ r2+r3
2

, r3]

(iii) Using the CV reduction method, the reduction ξ3 of ξ̃ has the following possi-
bility distribution:

µξ3(x) =


(1+θr)(x−r1)

r2−r1+2θr(x−r1)
, if x ∈ [r1,

r1+r2
2

]
(1−θl)x+θlr2−r1
r2−r1+2θl(r2−x)

, if x ∈ [ r1+r2
2

, r2]
(−1+θl)x−θlr2+r3
r3−r2+2θl(x−r2)

, if x ∈ [r2,
r2+r3

2
]

(1+θr)(r3−x)
r3−r2+2θr(r3−x)

, if x ∈ [ r2+r3
2

, r3]

3.3. Generalized credibility and its properties. Suppose ξ is a general fuzzy vari-
able with the distribution µ. The generalized credibility measure C̃r of the event {ξ ≥ α}
is de�ned by
C̃r({ξ ≥ α}) = 1

2
(Supx∈Rµ(x) + Supx≥rµ(x)− Supx<rµ(x)), r ∈ R.

Therefore, if ξ is normalized, it is easy to check that Cr(ξ ≥ α) + Cr(ξ < α) =

Supx∈Rµξ(x) = 1; then C̃r coincides with the usual credibility measure. The concept
of independence for normalized fuzzy variables and its properties were discussed in [35].
In the following, we also need to extend independence to general fuzzy variables. The
general fuzzy variables ξ1, ξ2, ξ2..., ξn are said to be mutually independent if and only if
C̃r{ξi ∈ Bi, i = 1, 2, ...n} = Min1≤i≤nC̃r{ξi ∈ Bi} for any subsets Bi, i = 1, 2, ...n of R
Like the α-optimistic value of the normalized fuzzy variable [36], the α-optimistic value
of general fuzzy variables can be de�ned through the generalized credibility measure.
Let ξ be a fuzzy variable (not necessary normalized). Then ξSup(α) = Sup{r|C̃r{ξ ≥
r} ≥ α}, α ∈ [0, 1] is called the α-optimistic value of ξ, while ξinf = Inf{r|C̃r{ξ ≤ r} ≥
α}, α ∈ [0, 1] , is called the α− pessimistic value of ξ.

Theorem 3. (Qin et al. [1]) Let ξi be the reduction of the type-2 fuzzy variableξ̃i =
(r̃i1, r̃

i
2, r̃

i
3; θl,i, θr,i) obtained by the CV reduction method for i = 1, 2, ...n. Suppose

ξ1, ξ2, ..., ξn are mutually independent, and ki ≥ o for i = 1, 2, ...n.
Case-I: If α ∈ (0, 0.25], then eqnarray C̃r{

∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑
i=1

(1− 2α+ (1− 4α)θr,i)kir
i
1 + 2αkir

i
2

1 + (1− 4α)θr,i

Case-II: If α ∈ (0.25, 0.50], then eqnarray C̃r{
∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑
i=1

(1− 2α)kir
i
1 + (2α+ (4α− 1)θl,i)kir

i
2

1 + (1− 4α)θl,i
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Case-III: If α ∈ (0.50, 0.75], then eqnarray C̃r{
∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑
i=1

(2α− 1)kir
i
3 + (2(1− α) + (3− 4α)θl,i)kir

i
2

1 + (3− 4α)θl,i

Case-IV: If α ∈ (0.75, 1], then eqnarray C̃r{
∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑
i=1

(2α− 1 + (4α− 3)θr,i)kir
i
3 + 2(1− α)kir

i
2

1 + (4α− 3)θr,i

3.4. Goal programming Method. .
The goal programming method is used to solve the multi-objective programming problem
(MOPP). A general MOPP is of the following form:

Find the values of L decision variablesx1, x2, ..., xLwhich minimizes
F (x) = (f1(x), f2(x), ..., fQ(x))T

subject tox ∈ X
(3.1)

Where, X = {x = (x1, x2, ..., xL) such that gt(x) ≤ 0, xl ≥ 0, t = 1, 2, ..., T ; l = 1, 2, ..., L}
and f1(x), f2(x), ..., fQ(x) are Q(≥ 2) objective functions.
The di�erent steps of the goal programming method are as follows:
Step-1: Solve the multi-objective programming problem (1) as a single objective problem
using only one objective at a time ignoring the others, and determine the ideal objective
vector, say fmin1 , fmin2 , ..., fminQ .
Step-2: Formulate the following GP problem using the ideal objective vector obtained is
Step-1,

Min{
Q∑
q=1

[(d+q )p + (d−q )p]}
1
p

subject to fq(x) + d+q − d−q = fminq , d+q ≥ 0, d−q ≥ 0, d+q d
−
q = 0(q = 1, 2, ..., Q), for all

x ∈ X.
Step-3: Now, solve the above single objective problem described in Step-2 by GRG
method and obtain the compromise solution.

4. Notations and assumptions for the proposed model

(i) C̃1
ijk1q

, C̃2
jkk2q

, C̃nlmknq = Fuzzy unit transportation cost is to transport the q-th
item from i-th plant to j-th DC by k1-th vehicle, j-th plant to k-th DC k2-th
vehicle and l-th plant to m-th customer kn-th vehicle respectively.

(ii) t̃1ijk1q, t̃
2
jkk2q

, t̃nlmknq = Fuzzy unit transportation time is to transport the q-th
item from i-th plant to j-th DC by k1-th vehicle, j-th plant to k-th DC k2-th
vehicle and l-th plant to m-th customer kn-th vehicle respectively.

(iii) x̃1ijk1q, x̃
2
jkk2q

, x̃nlmknq, x̃
n
ulk(n−1)q

, x̃nlmknq = Unknown quantities which is to be

transported from i-th plant to j-th DC of q-th item by k1-th vehicle for stage-1,
j-th plant to k-th DC of q-th item by k2-th vehicle for stage-2, u-th plant to l-th
DC of q-th item by k(n−1)-th vehicle for stage-(n − 1), and l-th plant to m-th
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customer of q-th item by kn-th vehicle for stage-n respectively.

(iv) P̃C = Fuzzy purchasing cost of q-th item at i-th source.

(v) L̃O
1
i , L̃O

2
j , ..., L̃O

n
l = Fuzzy loading cost at i-th plant of stage-1, j-th plant of

stage-2 and l-th plant of stage-n respectively.

(vi) ŨD
1
j , ŨD

2
k, ..., ŨD

n
m =Fuzzy unloading cost at j-th DC of stage-1, k-th DC of

stage-2 and m-th customer of stage-n respectively.

(vii) ˜LTO
1
i , ˜LTO

2
j , ..., ˜LTO

n
l = Fuzzy loading time at i-th plant of stage-1, j-th plant

of stage-2 and l-th plant of stage-n respectively.

(viii) ˜UTD
1
j , ˜UTD

2
k, ..., ˜UTD

n
m =Fuzzy unloading time at j-th DC of stage-1, k-th DC

of stage-2 and m-th customer of stage-n respectively.

(ix) y1ijk1q =

{
1, if x1ijk1q > 0
0, otherwise

, y2jkk2q =

{
1, if x2jkk2q > 0
0, otherwise

, ynlmknq =

{
1, if xnlmknq > 0
0, otherwise

5. Formulation of solid transportation problem with transporta-

tion parameters as type-2 triangular fuzzy variables

Let us consider ′I ′ supply points (or sources), ′J ′ destination centers, K1 conveyances
for stage-1 transportation; ′J ′ supply points (or sources), ′K′ destination centers, K2

conveyances for stage-2 transportation; ′U ′ supply points, ′L′ destination centers, k(n−1)

conveyances for stage-(n− 1) transportation; ′L′ supply points (or sources), ′M ′ desti-
nation centers, Kn conveyances for stage-n transportation. Also we consider that Q be
the number of items which is to be transported from plants to DC by di�erent modes of
conveyances.

Minf1 =

Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(C̃1
ijk1q + L̃O

1
i + ŨD

1
j + P̃C

1
iq)x

1
ijk1q(5.1)

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(C̃2
jkk2q + L̃O

2
j + ŨD

2
k + P̃C

2
jq)x

2
jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(C̃nlmknq + L̃O
n
l + ŨD

n
m + P̃C

n
lq)x

n
lmknq

Minf2 =

Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(t̃1ijk1q + ˜LTO
1
i + ˜UTD

1
j )yijk1q(5.2)

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(t̃2jkk2q + ˜LTO
2
j + ˜UTD

2
k)y2jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(t̃nlmknq + ˜LTO
n
l + ˜UTD

n
m)ynlmknq
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J∑
j=1

K1∑
k1=1

x1ijk1q ≤ ã
1
iq, i = 1, 2, ..., I; q = 1, 2, ..., Q,(5.3)

I∑
i=1

K1∑
k1=1

x1ijk1q ≥ b̃
1
jq, j = 1, 2, ..., J ; q = 1, 2, ..., Q,(5.4)

Q∑
q=1

I∑
i=1

J∑
j=1

x1ijk1q ≤ ẽ
1
k1 , k1 = 1, 2, ...,K1,(5.5)

Q∑
q=1

I∑
i=1

J∑
j=1

w̃qx
1
ijk1q ≤ W̃

1
k1 , k1 = 1, 2, ...,K1,(5.6)

Q∑
q=1

I∑
i=1

J∑
j=1

ṽqx
1
ijk1q ≤ Ṽ

1
k1 , k1 = 1, 2, ...,K1,(5.7)

K∑
k=1

K2∑
k2=1

x2jkk2q ≤
I∑
i=1

K1∑
k1=1

x1ijk1q, j = 1, 2, ..., J ; q = 1, 2, ..., Q,(5.8)

J∑
j=1

K2∑
k2=1

x2jkk2q ≥ b̃
2
kqk = 1, 2, ...K; q = 1, 2, ..., Q,(5.9)

Q∑
q=1

J∑
j=1

K∑
k=1

x2jkk2q ≤ ẽ
2
k2 , k2 = 1, 2, ...,K2,(5.10)

Q∑
q=1

J∑
j=1

K∑
k=1

w̃qx
2
jkk2q ≤ W̃

2
k2 , k2 = 1, 2, ...,K2,(5.11)

Q∑
q=1

J∑
j=1

K∑
k=1

ṽqx
2
jkk2q ≤ Ṽ

2
k2 , k2 = 1, 2, ...,K2,(5.12)

...............................................................
M∑
m=1

Kn∑
kn=1

xnlmknq ≤
U∑
u=1

K(n−1)∑
k(n−1)=1

x
(n−1)
ulk(n−1)q

, l = 1, 2, ..., L; q = 1, 2, ..., Q,(5.13)

L∑
l=1

K1∑
kn=1

xnlmknq ≥ b̃
n
mq,m = 1, 2, ...M ; q = 1, 2, ..., Q,(5.14)

Q∑
q=1

L∑
l=1

M∑
m=1

xnlmknq ≤ ẽ
n
kn , kn = 1, 2, ...,Kn,(5.15)

Q∑
q=1

L∑
l=1

M∑
m=1

w̃qx
n
lmknq ≤ W̃

n
kn , kn = 1, 2, ...,Kn,(5.16)

Q∑
q=1

L∑
l=1

M∑
m=1

ṽqx
n
lmknq ≤ Ṽ

n
kn , kn = 1, 2, ...,Kn,(5.17)

x1ijk1q ≥ 0, x2jkk2q ≥ 0, ..., x
(n−1)
ulk(n−1)q

≥ 0, xnlmknq ≥ 0,

for all i, j, k, u, l,m, q, k1, k2, k(n−1), kn.
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where, W̃ 1
k1
, W̃ 2

k2
, W̃n

kn are the fuzzy weight capacity of k1-th vehicle of stage-1, k2-th

vehicle of stage-2, kn-th vehicle of stage-n. Ṽ 1
k1
, Ṽ 2
k2
, Ṽ nkn are the fuzzy volume capacity

of k1-th vehicle of stage-1, k2-th vehicle of stage-2, kn-th vehicle of stage-n. w̃q, ṽq are
the fuzzy weight and volume of the q-th item. Also ã1iq be the fuzzy availabilities of

the q-th item at i-th source of stage-1. b1jq, b
2
kq, and b

n
mq are the fuzzy demands of q-th

item at j-th DC, k-th DC and m-th customer for stage-1, stage-2 and stage-3 respec-
tively. Also, ẽ1k1 ẽ

2
k2
, ẽnkn are the fuzzy conveyances capacities of the k1-th, k2-th,kn-th

conveyances for stage-1, stage-2 and stage-n respectively. In this model formulation, we
are to minimize two objective functions as total cost and time under supply, demand,
conveyance capacity, weight and volume constraints. Here the �rst summation of the �rst
objective indicates the total cost for stage-1 transportation. Similarly, second and last
summation of the �rst objective function indicates the total cost for stage-2 and stage-n
transportation respectively. Also the three summations of second objective denotes the
total time in transportation respectively for stage-1, stage-2 and stage-n respectively.
We formulate the model in such a way that the goods are loaded at the supply point
and it is unloaded at the DC for stage-1 transportation. Since due to disaster, it is
not possible to move the vehicle directly to the survived people so after unloading at
the �rst DC it again loaded to another vehicle and goes to the next DC and it is un-
loaded again in second DC for stage-2. In this way the necessary goods are transported
to the survived peoples or customers. For this reason, we impose the loading and un-
loading cost and time for each stage. Again purchasing cost is also imposed in our model.

6. Methodology and defuzzi�cation technique used to solve the

Model

6.1. Methodology. The world has become more complex and almost every important
real-world problem involves more than one objective. In such cases, decision makers
�nd imperative to evaluate best possible approximate solution alternatives according to
multiple criteria. To solve such multi-objective programming problem we apply goal
programming method. Using CV -based reduction method and generalized credibility
measure we �nd the deterministic form of type-2 fuzzy transportation parameters. Fi-
nally generalized reduced gradient technique (LINGO 13.0 optimization software) is used
to solve the developed model.

6.2. Defuzzi�cation. The deterministic form of the objective functions and constraints
obtained by using CV -based reduction method and generalized credibility measure are
as follows:

Cr{(
Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(C̃1
ijk1q + L̃O

1
i + ŨD

1
j + P̃C

1
iq)x

1
ijk1q(6.1)

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(C̃2
jkk2q + L̃O

2
j + ŨD

2
k + P̃C

2
jq)x

2
jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(C̃nlmknq + L̃O
n
l + ŨD

n
m + P̃C

n
lq)x

n
lmknq) ≥ f1} ≤ αc
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Cr{(
Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(t̃1ijk1q + ˜LTO
1
i + ˜UTD

1
j )y

1
ijk1q(6.2)

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(t̃2jkk2q + ˜LTO
2
j + ˜UTD

2
k)y2jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(t̃nlmknq + ˜LTO
n
l + ˜UTD

n
m)ynlmknq) ≥ f2} ≤ αt

Cr(

J∑
j=1

K1∑
k1=1

x1ijk1q ≤ ã
1
iq) ≥ αavail., i = 1, 2, ..., I; q = 1, 2, ..., Q,(6.3)

Cr(

I∑
i=1

K1∑
k1=1

x1ijk1q ≥ b̃
1
jq) ≥ αdemand, j = 1, 2, ..., J ; q = 1, 2, ..., Q,(6.4)

Cr(

Q∑
q=1

I∑
i=1

J∑
j=1

x1ijk1q ≤ ẽ
1
k1) ≥ αcon.cap., k1 = 1, 2, ...,K1,(6.5)

Cr(

Q∑
q=1

I∑
i=1

J∑
j=1

w̃qx
1
ijk1q ≤ W̃

1
k1) ≥ αweight, k1 = 1, 2, ...,K1,(6.6)

Cr(

Q∑
q=1

I∑
i=1

J∑
j=1

ṽqx
1
ijk1q ≤ Ṽ

1
k1) ≥ αvolume, k1 = 1, 2, ...,K1,(6.7)

Cr(

J∑
j=1

K2∑
k2=1

x2jkk2q ≥ b̃
2
kq) ≥ αdemand, k = 1, 2, ...K; q = 1, 2, ..., Q,(6.8)

Cr(

Q∑
q=1

J∑
j=1

K∑
k=1

x2jkk2q ≤ ẽ
2
k2) ≥ αcon.cap., k2 = 1, 2, ...,K2,(6.9)

Cr(

Q∑
q=1

J∑
j=1

K∑
k=1

w̃qx
2
jkk2q ≤ W̃

2
k2) ≥ αweight, k2 = 1, 2, ...,K2,(6.10)

Cr(

Q∑
q=1

J∑
j=1

K∑
k=1

ṽqx
2
jkk2q ≤ Ṽ

2
k2) ≥ αvolume, k2 = 1, 2, ...,K2,(6.11)

...............................................................

Cr(

L∑
l=1

K1∑
kn=1

xnlmknq ≥ b̃
n
mq) ≥ αdemand,m = 1, 2, ...M ; q = 1, 2, ..., Q,(6.12)

Cr(

Q∑
q=1

L∑
l=1

M∑
m=1

xnlmknq ≤ ẽ
n
kn) ≥ αcon.cap.v, kn = 1, 2, ...,Kn,(6.13)

Cr(

Q∑
q=1

L∑
l=1

M∑
m=1

w̃qx
n
lmknq ≤ W̃

n
kn) ≥ αweight, kn = 1, 2, ...,Kn,(6.14)

Cr(

Q∑
q=1

L∑
l=1

M∑
m=1

ṽqx
n
lmknq ≤ Ṽ

n
kn) ≥ αvolume, kn = 1, 2, ...,Kn,(6.15)
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Let us consider αc, αt, αavail., αdemand, αcon.cap., αweight, αvolume be the credibility level
for cost, time, availabilities, demands, conveyances capacities, weights, volume respec-
tively for stage-1, stage-2,...,stage-n.
The crisp conversion of the constraints (6.1)-(6.15) are as follows:

Minf1 =

Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(SC̃1
ijk1q

+ S
L̃O

1
i

+ S
ŨD

1
j

+ S
P̃C

1
iq

)x1ijk1q

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(SC̃2
jkk2q

+ S
L̃O

2
j

+ S
ŨD

2
k

+ S
P̃C

2
jq

)x2jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(SC̃n
lmknq

+ SL̃On
l

+ SŨDn
m

+ SP̃Cn
lq

)xnlmknq

Minf2 =

Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(St̃1
ijk1q

+ S ˜LTO
1
i

+ S ˜UTD
1
j
)yijk1q

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(St̃2
jkk2q

+ S ˜LTO
2
j

+ S ˜UTD
2
k
)y2jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(St̃n
lmknq

+ S ˜LTO
n
l

+ S ˜UTD
n
m

)ynlmknq

J∑
j=1

K1∑
k1=1

x1ijk1q ≤ Sã1iq , i = 1, 2, ..., I; q = 1, 2, ..., Q,

I∑
i=1

K1∑
k1=1

x1ijk1q ≥ Sb̃1jq , j = 1, 2, ..., J ; q = 1, 2, ..., Q,

Q∑
q=1

I∑
i=1

J∑
j=1

x1ijk1q ≤ Sẽ1k1

, k1 = 1, 2, ...,K1,

Q∑
q=1

I∑
i=1

J∑
j=1

Sw̃qx
1
ijk1q ≤ SW̃1

k1

, k1 = 1, 2, ...,K1,

Q∑
q=1

I∑
i=1

J∑
j=1

Sṽqx
1
ijk1q ≤ SṼ 1

k1

, k1 = 1, 2, ...,K1,
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J∑
j=1

K2∑
k2=1

x2jkk2q ≥ Sb̃2kq
k = 1, 2, ...K; q = 1, 2, ..., Q,

Q∑
q=1

J∑
j=1

K∑
k=1

x2jkk2q ≤ Sẽ2k2

, k2 = 1, 2, ...,K2,

Q∑
q=1

J∑
j=1

K∑
k=1

Sw̃qx
2
jkk2q ≤ SW̃2

k2

, k2 = 1, 2, ...,K2,

Q∑
q=1

J∑
j=1

K∑
k=1

Sṽqx
2
jkk2q ≤ SṼ 2

k2

, k2 = 1, 2, ...,K2,

...............................................................
L∑
l=1

K1∑
kn=1

xnlmknq ≥ Sb̃nmq
,m = 1, 2, ...M ; q = 1, 2, ..., Q,

Q∑
q=1

L∑
l=1

M∑
m=1

xnlmknq ≤ Sẽnkn
, kn = 1, 2, ...,Kn,

Q∑
q=1

L∑
l=1

M∑
m=1

Sw̃qx
n
lmknq

≤ SW̃n
kn
, kn = 1, 2, ...,Kn,

Q∑
q=1

L∑
l=1

M∑
m=1

Sṽqx
n
lmknq ≤ SṼ n

kn
, kn = 1, 2, ...,Kn,

Where SC̃1
ijk1q

, SC̃2
jkk2q

, SC̃n
lmknq

, St̃1
ijk1q

, St̃2
jkk2q

, St̃n
lmknq

S
L̃O

1
i
, S

L̃O
2
j
, SL̃On

l
, S

ŨD
1
j
,

S
ŨD

2
k
, SŨDn

m
, S

P̃C
1
iq
, S

P̃C
2
jq
, SP̃Cn

lq
, S ˜LTO

1
i
, S ˜LTO

2
j
, S ˜LTO

n
l
, S ˜UTD

1
j
, S ˜UTD

2
k
, S ˜UTD

n
m
,,

Sã1iq
, Sb̃1jq

, Sb̃2
kq
, Sb̃nmq

, Sẽ1
k1

, Sẽ2
k2

, Sẽn
kn
, Sw̃q , SW̃1

k1

, Sṽq , SṼ 1
k1

, SW̃2
k2

, SṼ 2
k2

, SW̃n
kn
, SṼ n

kn

are equivalent crisp form of fuzzy parameters respectively and given as follows:

SC̃1
ijk1q

=



(1−2α+(1−4αc)θr,C̃1
ijk1q

)r
C̃1
ijk1q

1 +2αcr
C̃1
ijk1q

2

(1+(1−4αc)θr,C̃1
ijk1q

)
, if 0 < αc ≤ 0.25

(1−2αc)r
C̃1
ijk1q

1 +(2αc+(4αc−1)θ
l,C̃1

ijk1q
)r

C̃1
ijk1q

2

(1+(1−4αc)θl,C̃1
ijk1q

)
, if 0.25 < αc ≤ 0.50

(2αc−1)r
C̃1
ijk1q

3 +(2(1−αc)+(3−4αc)θl,C̃1
ijk1q

)r
C̃1
ijk1q

2

(1+(3−4αc)θl,C̃1
ijk1q

)
, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,C̃1

ijk1q
)r

C̃1
ijk1q

3 +2(1−αc)r
C̃1
ijk1q

2

(1+(4αc−3)θ
r,C̃1

ijk1q
)

, if 0.75 < αc ≤ 1

S
L̃O

1
i

=



(1−2αc+(1−4αc)θr,L̃O1
i
)r

L̃O1
i

1 +2αcr
L̃O1

i
2

(1+(1−4αc)θr,L̃O1
i
)

, if 0 < αc ≤ 0.25

(1−2αc)r
L̃O1

i
1 +(2αc+(4αc−1)θ

l,L̃O1
i
)r

L̃O1
i

2

(1+(1−4αc)θl,L̃O1
i
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
L̃O1

i
3 +(2(1−αc)+(3−4αc)θl,L̃O1

i
)r

L̃O1
i

2

(1+(3−4αc)θl,L̃O1
i
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,L̃O1

i
)r

L̃O1
i

3 +2(1−αc)r
L̃O1

i
2

(1+(4αc−3)θ
r,L̃O1

i
)

, if 0.75 < αc ≤ 1
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S
ŨD

1
j

=



(1−2αc+(1−4αc)θr,ŨD1
j
)r

ŨD1
j

1 +2αcr
ŨD1

j
2

(1+(1−4αc)θr,ŨD1
j
)

, if 0 < αc ≤ 0.25

(1−2αc)r
ŨD1

j
1 +(2αc+(4αc−1)θ

l,ŨD1
j
)r

ŨD1
j

2

(1+(1−4αc)θl,ŨD1
j
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
ŨD1

j
3 +(2(1−αc)+(3−4αc)θl,ŨD1

j
)r

ŨD1
j

2

(1+(3−4αc)θl,ŨD1
j
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,ŨD1

j
)r

ŨD1
j

3 +2(1−αc)r
ŨD1

j
2

(1+(4αc−3)θ
r,ŨD1

j
)

, if 0.75 < αc ≤ 1

SP̃Ciq
=



(1−2αc+(1−4αc)θr,P̃Ciq
)r

P̃Ciq
1 +2αcr

P̃Ciq
2

(1+(1−4αc)θr,P̃Ciq
)

, if 0 < αc ≤ 0.25

(1−2αc)r
P̃Ciq
1 +(2αc+(4αc−1)θ

l,P̃Ciq
)r

P̃Ciq
2

(1+(1−4αc)θl,P̃Ciq
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
P̃Ciq
3 +(2(1−αc)+(3−4αc)θl,P̃Ciq

)r
P̃Ciq
2

(1+(3−4αc)θl,P̃Ciq
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,P̃Ciq

)r
P̃Ciq
3 +2(1−αc)r

P̃Ciq
2

(1+(4αc−3)θ
r,P̃Ciq

)
, if 0.75 < αc ≤ 1

SC̃2
jkk2q

=



(1−2αc+(1−4αc)θr,C̃2
jkk2q

)r
C̃2
jkk2q

1 +2αcr
C̃2
jkk2q

2

(1+(1−4αc)θr,C̃2
jkk2q

)
, if 0 < αc ≤ 0.25

(1−2αc)r
C̃2
jkk2q

1 +(2αc+(4αc−1)θ
l,C̃2

jkk2q
)r

C̃2
jkk2q

2

(1+(1−4αc)θl,C̃2
jkk2q

)
, if 0.25 < αc ≤ 0.50

(2αc−1)r
C̃2
jkk2q

3 +(2(1−αc)+(3−4αc)θl,C̃2
jkk2q

)r
C̃2
jkk2q

2

(1+(3−4αc)θl,C̃2
jkk2q

)
, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,C̃2

jkk2q
)r

C̃2
jkk2q

3 +2(1−αc)r
C̃2
jkk2q

2

(1+(4αc−3)θ
r,C̃2

jkk2q
)

, if 0.75 < αc ≤ 1

S
L̃O

2
j

=



(1−2αc+(1−4αc)θr,L̃O2
j
)r

L̃O2
j

1 +2αcr
L̃O2

j
2

(1+(1−4αc)θr,L̃O2
j
)

, if 0 < αc ≤ 0.25

(1−2αc)r
L̃O2

j
1 +(2αc+(4αc−1)θ

l,L̃O2
j
)r

L̃O2
j

2

(1+(1−4αc)θl,L̃O2
j
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
L̃O2

j
3 +(2(1−αc)+(3−4αc)θl,L̃O2

j
)r

L̃O2
j

2

(1+(3−4αc)θl,L̃O2
j
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,L̃O2

j
)r

L̃O2
j

3 +2(1−αc)r
L̃O2

j
2

(1+(4αc−3)θ
r,L̃O2

j
)

, if 0.75 < αc ≤ 1
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S
ŨD

2
k

=



(1−2αc+(1−4αc)θr,ŨD2
k
)r

ŨD2
k

1 +2αcr
ŨD2

k
2

(1+(1−4αc)θr,ŨD2
k
)

, if 0 < αc ≤ 0.25

(1−2αc)r
ŨD2

k
1 +(2αc+(4αc−1)θ

l,ŨD2
k
)r

ŨD2
k

2

(1+(1−4αc)θl,ŨD2
k
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
ŨD2

k
3 +(2(1−αc)+(3−4αc)θl,ŨD2

k
)r

ŨD2
k

2

(1+(3−4αc)θl,ŨD2
k
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,ŨD2

k
)r

ŨD2
k

3 +2(1−αc)r
ŨD2

k
2

(1+(4αc−3)θ
r,ŨD2

k
)

, if 0.75 < αc ≤ 1

SC̃n
lmknq

=



(1−2αc+(1−4αc)θr,C̃n
lmknq

)r
C̃n
lmknq

1 +2αcr
C̃n
lmknq

2

(1+(1−4αc)θr,C̃n
lmknq

)
, if 0 < αc ≤ 0.25

(1−2αc)r
C̃n
lmknq

1 +(2αc+(4αc−1)θ
l,C̃n

lmknq
)r

C̃n
lmknq

2

(1+(1−4αc)θl,C̃n
lmknq

)
, if 0.25 < αc ≤ 0.50

(2αc−1)r
C̃n
lmknq

3 +(2(1−αc)+(3−4αc)θl,C̃n
lmknq

)r
C̃n
lmknq

2

(1+(3−4αc)θl,C̃n
lmknq

)
, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,C̃n

lmknq
)r

C̃n
lmknq

3 +2(1−αc)r
C̃n
lmknq

2

(1+(4αc−3)θ
r,C̃n

lmknq
)

, if 0.75 < αc ≤ 1

SL̃On
l

=



(1−2αc+(1−4αc)θr,L̃On
l
)r

L̃On
l

1 +2αcr
L̃On

l
2

(1+(1−4αc)θr,L̃On
l
)

, if 0 < αc ≤ 0.25

(1−2αc)r
L̃On

l
1 +(2αc+(4αc−1)θ

l,L̃On
l
)r

L̃On
l

2

(1+(1−4αc)θl,L̃On
l
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
L̃On

l
3 +(2(1−αc)+(3−4αc)θl,L̃On

l
)r

L̃On
l

2

(1+(3−4αc)θl,L̃On
l
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,L̃On

l
)r

L̃On
l

3 +2(1−αc)r
L̃On

l
2

(1+(4αc−3)θ
r,L̃On

l
)

, if 0.75 < αc ≤ 1

SŨDn
m

=



(1−2αc+(1−4αc)θr,ŨDn
m

)r
ŨDn

m
1 +2αcr

ŨDn
m

2

(1+(1−4αc)θr,ŨDn
m

)
, if 0 < αc ≤ 0.25

(1−2αc)r
ŨDn

m
1 +(2αc+(4αc−1)θ

l,ŨDn
m

)r
ŨDn

m
2

(1+(1−4αc)θl,ŨDn
m

)
, if 0.25 < αc ≤ 0.50

(2αc−1)r
ŨDn

m
3 +(2(1−αc)+(3−4αc)θl,ŨDn

m
)r

ŨDn
m

2

(1+(3−4αc)θl,ŨDn
m

)
, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,ŨDn

m
)r

ŨDn
m

3 +2(1−αc)r
ŨDn

m
2

(1+(4αc−3)θ
r,ŨDn

m
)

, if 0.75 < αc ≤ 1

St̃1
ijk1q

=



(1−2αt+(1−4αt)θr,t̃1
ijk1q

)r
t̃1ijk1q
1 +2αtr

t̃1ijk1q
2

(1+(1−4αt)θr,t̃1
ijk1q

)
, if 0 < αt ≤ 0.25

(1−2αt)r
t̃1ijk1q
1 +(2αt+(4αt−1)θ

l,t̃1
ijk1q

)r
t̃1ijk1q
2

(1+(1−4αt)θl,t̃1
ijk1q

)
, if 0.25 < αt ≤ 0.50

(2αt−1)r
t̃1ijk1q
3 +(2(1−αt)+(3−4αt)θl,t̃1

ijk1q
)r

t̃1ijk1q
2

(1+(3−4αt)θl,t̃1
ijk1q

)
, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r,t̃1

ijk1q
)r

t̃1ijk1q
3 +2(1−αt)r

t̃1ijk1q
2

(1+(4αt−3)θ
r,t̃1

ijk1q
)

, if 0.75 < αt ≤ 1



1500

S ˜LTO
1
i

=



(1−2αt+(1−4αt)θr, ˜LTO1
i
)r

˜LTO1
i

1 +2αtr
˜LTO1

i
2

(1+(1−4αt)θr, ˜LTO1
i
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜LTO1

i
1 +(2αt+(4αt−1)θ

l, ˜LTO1
i
)r

˜LTO1
i

2

(1+(1−4αt)θl, ˜LTO1
i
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜LTO1

i
3 +(2(1−αt)+(3−4αt)θl, ˜LTO1

i
)r

˜LTO1
i

2

(1+(3−4αt)θl, ˜LTO1
i
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜LTO1

i
)r

˜LTO1
i

3 +2(1−αt)r
˜LTO1

i
2

(1+(4αt−3)θ
r, ˜LTO1

i
)

, if 0.75 < αt ≤ 1

S ˜UTD
1
j

=



(1−2αt+(1−4αt)θr, ˜UTD1
j
)r

˜UTD1
j

1 +2αtr
˜UTD1

j
2

(1+(1−4αt)θr, ˜UTD1
j
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜UTD1

j
1 +(2αt+(4αt−1)θ

l, ˜UTD1
j
)r

˜UTD1
j

2

(1+(1−4αt)θl, ˜UTD1
j
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜UTD1

j
3 +(2(1−αt)+(3−4αt)θl, ˜UTD1

j
)r

˜UTD1
j

2

(1+(3−4αt)θl, ˜UTD1
j
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜UTD1

j
)r

˜UTD1
j

3 +2(1−αt)r
˜UTD1

j
2

(1+(4αt−3)θ
r, ˜UTD1

j
)

, if 0.75 < αt ≤ 1

St̃2
jkk2q

=



(1−2αt+(1−4αt)θr,t̃2
jkk2q

)r
t̃2jkk2q
1 +2αtr

t̃2jkk2q
2

(1+(1−4αt)θr,t̃2
jkk2q

)
, if 0 < αt ≤ 0.25

(1−2αt)r
t̃2jkk2q
1 +(2αt+(4αt−1)θ

l,t̃2
jkk2q

)r
t̃2jkk2q
2

(1+(1−4αt)θl,t̃2
jkk2q

)
, if 0.25 < αt ≤ 0.50

(2αt−1)r
t̃2jkk2q
3 +(2(1−αt)+(3−4αt)θl,t̃2

jkk2q
)r

t̃2jkk2q
2

(1+(3−4αt)θl,t̃2
jkk2q

)
, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r,t̃2

jkk2q
)r

t̃2jkk2q
3 +2(1−αt)r

t̃2jkk2q
2

(1+(4αt−3)θ
r,t̃2

jkk2q
)

, if 0.75 < αt ≤ 1

S ˜LTO
2
j

=



(1−2αt+(1−4αt)θr, ˜LTO2
j
)r

˜LTO2
j

1 +2αtr
˜LTO2

j
2

(1+(1−4αt)θr, ˜LTO2
j
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜LTO2

j
1 +(2αt+(4αt−1)θ

l, ˜LTO2
j
)r

˜LTO2
j

2

(1+(1−4αt)θl, ˜LTO2
j
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜LTO2

j
3 +(2(1−αt)+(3−4αt)θl, ˜LTO2

j
)r

˜LTO2
j

2

(1+(3−4αt)θl, ˜LTO2
j
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜LTO2

j
)r

˜LTO2
j

3 +2(1−αt)r
˜LTO2

j
2

(1+(4αt−3)θ
r, ˜LTO2

j
)

, if 0.75 < αt ≤ 1



1501

S ˜UTD
2
k

=



(1−2αt+(1−4αt)θr, ˜UTD2
k
)r

˜UTD2
k

1 +2αtr
˜UTD2

k
2

(1+(1−4αt)θr, ˜UTD2
k
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜UTD2

k
1 +(2αt+(4αt−1)θ

l, ˜UTD2
k
)r

˜UTD2
k

2

(1+(1−4αt)θl, ˜UTD2
k
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜UTD2

k
3 +(2(1−αt)+(3−4αt)θl, ˜UTD2

k
)r

˜UTD2
k

2

(1+(3−4αt)θl, ˜UTD2
k
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜UTD2

k
)r

˜UTD2
k

3 +2(1−αt)r
˜UTD2

k
2

(1+(4αt−3)θ
r, ˜UTD2

k
)

, if 0.75 < αt ≤ 1

Sl̃n
lmknq

=



(1−2αt+(1−4αt)θr,l̃n
lmknq

)r
l̃nlmknq
1 +2αtr

l̃nlmknq
2

(1+(1−4αt)θr,l̃n
lmknq

)
, if 0 < αt ≤ 0.25

(1−2αt)r
l̃nlmknq
1 +(2αt+(4αt−1)θ

l,l̃n
lmknq

)r
l̃nlmknq
2

(1+(1−4αt)θl,l̃n
lmknq

)
, if 0.25 < αt ≤ 0.50

(2αt−1)r
l̃nlmknq
3 +(2(1−αt)+(3−4αt)θl,l̃n

lmknq
)r

l̃nlmknq
2

(1+(3−4αt)θl,l̃n
lmknq

)
, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r,l̃n

lmknq
)r

l̃nlmknq
3 +2(1−αt)r

l̃nlmknq
2

(1+(4αt−3)θ
r,l̃n

lmknq
)

, if 0.75 < αt ≤ 1

S ˜LTO
n
l

=



(1−2αt+(1−4αt)θr, ˜LTOn
l
)r

˜LTOn
l

1 +2αtr
˜LTOn

l
2

(1+(1−4αt)θr, ˜LTOn
l
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜LTOn

l
1 +(2αt+(4αt−1)θ

l, ˜LTOn
l
)r

˜LTOn
l

2

(1+(1−4αt)θl, ˜LTOn
l
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜LTOn

l
3 +(2(1−αt)+(3−4αt)θl, ˜LTOn

l
)r

˜LTOn
l

2

(1+(3−4αt)θl, ˜LTOn
l
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜LTOn

l
)r

˜LTOn
l

3 +2(1−αt)r
˜LTOn

l
2

(1+(4αt−3)θ
r, ˜LTOn

l
)

, if 0.75 < αt ≤ 1

S ˜UTD
n
m

=



(1−2αt+(1−4αt)θr, ˜LTDn
m

)r
˜LTDn

m
1 +2αtr

˜LTDn
m

2

(1+(1−4αt)θr, ˜LTDn
m

)
, if 0 < αt ≤ 0.25

(1−2αt)r
˜LTDn

m
1 +(2αt+(4αt−1)θ

l, ˜LTDn
m

)r
˜LTDn

m
2

(1+(1−4αt)θl, ˜LTDn
m

)
, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜LTDn

m
3 +(2(1−αt)+(3−4αt)θl, ˜LTDn

m
)r

˜LTDn
m

2

(1+(3−4αt)θl, ˜LTDn
m

)
, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜LTDn

m
)r

˜LTDn
m

3 +2(1−αt)r
˜LTDn

m
2

(1+(4αt−3)θ
r, ˜LTDn

m
)

, if 0.75 < αt ≤ 1

Sã1iq
=



(1−2αavail.+(1−4αavail.)θr,ã1
iq

)r
ã1
iq

1 +2αavail.r
ã1
iq

2

(1+(1−4αavail.)θr,ã1
iq

)
, if 0 < αavail. ≤ 0.25

(1−2αavail.)r
ã1
iq

1 +(2αavail.+(4αavail.−1)θ
l,ã1

iq
)r

ã1
iq

2

(1+(1−4αavail.)θl,ã1
iq

)
, if 0.25 < αavail. ≤ 0.50

(2αavail.−1)r
ã1
iq

3 +(2(1−αavail.)+(3−4αavail.)θl,ã1
iq

)r
ã1
iq

2

(1+(3−4αavail.)θl,ã1
iq

)
, if 0.50 < αavail. ≤ 0.75

(2αavail.−1+(4αavail.−3)θ
r,ã1

iq
)r

ã1
iq

3 +2(1−αavail.)r
ã1
iq

2

(1+(4αavail.−3)θ
r,ã1

iq
)

, if 0.75 < αavail. ≤ 1



1502

Sb̃1jq
=



(1−2αdemand+(1−4αdemand)θr,b̃1
jq

)r
b̃1jq
1 +2αdemandr

b̃1jq
2

(1+(1−4αdemand)θr,b̃1
jq

)
, if 0 < αdemand ≤ 0.25

(1−2αdemand)r
b̃1jq
1 +(2αdemand+(4αdemand−1)θ

l,b̃1
jq

)r
b̃1jq
2

(1+(1−4αdemand)θl,b̃1
jq

)
, if 0.25 < αdemand ≤ 0.50

(2αdemand−1)r
b̃1jq
3 +(2(1−αdemand)+(3−4αdemand)θl,b̃1

jq
)r

b̃1jq
2

(1+(3−4αdemand)θl,b̃1
jq

)
, if 0.50 < αdemand ≤ 0.75

(2αdemand−1+(4αdemand−3)θ
r,b̃1

jq
)r

b̃1jq
3 +2(1−αdemand)r

b̃1jq
2

(1+(4αdemand−3)θ
r,b̃1

jq
)

, if 0.75 < αdemand ≤ 1

Sẽ1
k1

=



(1−2αcon.cap.+(1−4αcon.cap.)θr,tildee1
k1

)r
tildee1k1
1 +2αcon.cap.r

tildee1k1
2

(1+(1−4αcon.cap.)θr,tildee1
k1

)
, if 0 < αcon.cap. ≤ 0.25

(1−2αcon.cap.)r
tildee1k1
1 +(2αcon.cap.+(4αcon.cap.−1)θ

l,tildee1
k1

)r
tildee1k1
2

(1+(1−4αcon.cap.)θl,tildee1
k1

)
, if 0.25 < αcon.cap. ≤ 0.50

(2αcon.cap.−1)r
tildee1k1
3 +(2(1−αcon.cap.)+(3−4αcon.cap.)θl,tildee1

k1

)r
tildee1k1
2

(1+(3−4αcon.cap.)θl,tildee1
k1

)
, if 0.50 < αcon.cap. ≤ 0.75

(2αcon.cap.−1+(4αcon.cap.−3)θ
r,tildee1

k1

)r
tildee1k1
3 +2(1−αcon.cap.)r

tildee1k1
2

(1+(4αcon.cap.−3)θ
r,tildee1

k1

)
, if 0.75 < αcon.cap. ≤ 1

Sw̃q =



(1−2αweight+(1−4αweight)θr,w̃q )r
w̃q
1 +2αweightr

w̃q
2

(1+(1−4αweight)θr,w̃q )
, if 0 < αweight ≤ 0.25

(1−2αweight)r
w̃q
1 +(2αweight+(4αweight−1)θl,w̃q )r

w̃q
2

(1+(1−4αweight)θl,w̃q )
, if 0.25 < αweight ≤ 0.50

(2αweight−1)r
w̃q
3 +(2(1−αweight)+(3−4αweight)θl,w̃q )r

w̃q
2

(1+(3−4αweight)θl,w̃q )
, if 0.50 < αweight ≤ 0.75

(2αweight−1+(4αweight−3)θr,w̃q )r
w̃q
3 +2(1−αweight)r

w̃q
2

(1+(4αweight−3)θr,w̃q )
, if 0.75 < αweight ≤ 1

SW̃1
k1

=



(1−2αweight+(1−4αweight)θr,W̃1
k1

)r
W̃1

k1
1 +2αweightr

W̃1
k1

2

(1+(1−4αweight)θr,W̃1
k1

)
, if 0 < αweight ≤ 0.25

(1−2αweight)r
W̃1

k1
1 +(2αweight+(4αweight−1)θ

l,W̃1
k1

)r
W̃1

k1
2

(1+(1−4αweight)θl,W̃1
k1

)
, if 0.25 < αweight ≤ 0.50

(2αweight−1)r
W̃1

k1
3 +(2(1−αweight)+(3−4αweight)θl,W̃1

k1

)r
W̃1

k1
2

(1+(3−4αweight)θl,W̃1
k1

)
, if 0.50 < αweight ≤ 0.75

(2αweight−1+(4αweight−3)θ
r,W̃1

k1

)r
W̃1

k1
3 +2(1−αweight)r

W̃1
k1

2

(1+(4αweight−3)θ
r,W̃1

k1

)
, if 0.75 < αweight ≤ 1

Sṽq =



(1−2αvolume+(1−4αvolume)θr,ṽq )r
ṽq
1 +2αvolumer

ṽq
2

(1+(1−4αvolume)θr,ṽq )
, if 0 < αvolume ≤ 0.25

(1−2αvolume)r
ṽq
1 +(2αvolume+(4αvolume−1)θl,ṽq )r

ṽq
2

(1+(1−4αvolume)θl,ṽq )
, if 0.25 < αvolume ≤ 0.50

(2αvolume−1)r
ṽq
3 +(2(1−αvolume)+(3−4αvolume)θl,ṽq )r

ṽq
2

(1+(3−4αvolume)θl,ṽq )
, if 0.50 < αvolume ≤ 0.75

(2αvolume−1+(4αvolume−3)θr,ṽq )r
ṽq
3 +2(1−αvolume)r

ṽq
2

(1+(4αvolume−3)θr,ṽq )
, if 0.75 < αvolume ≤ 1



1503

SṼ 1
k1

=



(1−2αvolume+(1−4αvolume)θr,Ṽ 1
k1

)r
Ṽ 1
k1

1 +2αvolumer
Ṽ 1
k1

2

(1+(1−4αvolume)θr,Ṽ 1
k1

)
, if 0 < αvolume ≤ 0.25

(1−2αvolume)r
Ṽ 1
k1

1 +(2αvolume+(4αvolume−1)θ
l,Ṽ 1

k1

)r
Ṽ 1
k1

2

(1+(1−4αvolume)θl,Ṽ 1
k1

)
, if 0.25 < αvolume ≤ 0.50

(2αvolume−1)r
Ṽ 1
k1

3 +(2(1−αvolume)+(3−4αvolume)θl,Ṽ 1
k1

)r
Ṽ 1
k1

2

(1+(3−4αvolume)θl,Ṽ 1
k1

)
, if 0.50 < αvolume ≤ 0.75

(2αvolume−1+(4αvolume−3)θ
r,Ṽ 1

k1

)r
Ṽ 1
k1

3 +2(1−αvolume)r
Ṽ 1
k1

2

(1+(4αvolume−3)θ
r,Ṽ 1

k1

)
, if 0.75 < αvolume ≤ 1

Sb̃2
kq

=



(1−2αdemand+(1−4αdemand)θr,b̃2
kq

)r
b̃2kq
1 +2αdemandr

b̃2kq
2

(1+(1−4αdemand)θr,b̃2
kq

)
, if 0 < αdemand ≤ 0.25

(1−2αdemand)r
b̃2kq
1 +(2αdemand+(4αdemand−1)θ

l,b̃2
kq

)r
b̃2kq
2

(1+(1−4αdemand)θl,b̃2
kq

)
, if 0.25 < αdemand ≤ 0.50

(2αdemand−1)r
b̃2kq
3 +(2(1−αdemand)+(3−4αdemand)θl,b̃2

kq
)r

b̃2kq
2

(1+(3−4αdemand)θl,b̃2
kq

)
, if 0.50 < αdemand ≤ 0.75

(2αdemand−1+(4αdemand−3)θ
r,b̃2

kq
)r

b̃2kq
3 +2(1−αdemand)r

b̃2kq
2

(1+(4αdemand−3)θ
r,b̃2

kq
)

, if 0.75 < αdemand ≤ 1

Sẽ2
k2

=



(1−2αcon.cap.+(1−4αcon.cap.)θr,ẽ2
k2

)r
ẽ2k2
1 +2αcon.cap.r

ẽ2k2
2

(1+(1−4αcon.cap.)θr,ẽ2
k2

)
, if 0 < αcon.cap. ≤ 0.25

(1−2αcon.cap.)r
ẽ2k2
1 +(2αcon.cap.+(4αcon.cap.−1)θ

l,ẽ2
k2

)r
ẽ2k2
2

(1+(1−4αcon.cap.)θl,ẽ2
k2

)
, if 0.25 < αcon.cap. ≤ 0.50

(2αcon.cap.−1)r
ẽ2k2
3 +(2(1−αcon.cap.)+(3−4αcon.cap.)θl,ẽ2

k2

)r
ẽ2k2
2

(1+(3−4αcon.cap.)θl,ẽ2
k2

ẽ2
k2

)
, if 0.50 < αcon.cap. ≤ 0.75

(2αcon.cap.−1+(4αcon.cap.−3)θ
r,ẽ2

k2

)r
ẽ2k2
3 +2(1−αcon.cap.)r

ẽ2k2
2

(1+(4αcon.cap.−3)θ
r,ẽ2

k2

)
, if 0.75 < αcon.cap. ≤ 1

SW̃2
k2

=



(1−2αweight+(1−4αweight)θr,W̃2
k2

)r
W̃2

k2
1 +2αweightr

W̃2
k2

2

(1+(1−4αweight)θr,W̃2
k2

)
, if 0 < αavail. ≤ 0.25

(1−2αweight)r
W̃2

k2
1 +(2αweight+(4αweight−1)θ

l,W̃2
k2

)r
W̃2

k2
2

(1+(1−4αweight)θl,W̃2
k2

)
, if 0.25 < αavail. ≤ 0.50

(2αweight−1)r
W̃2

k2
3 +(2(1−αweight)+(3−4αavail.)θl,W̃2

k2

)r
W̃2

k2
2

(1+(3−4αweight)θl,W̃2
k2

)
, if 0.50 < αavail. ≤ 0.75

(2αweight−1+(4αweight−3)θ
r,W̃2

k2

)r
W̃2

k2
3 +2(1−αweight)r

W̃2
k2

2

(1+(4αweight−3)θ
r,W̃2

k2

)
, if 0.75 < αavail. ≤ 1
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SṼ 2
k2

=



(1−2αvolume+(1−4αvolume)θr,Ṽ 2
k2

)r
Ṽ 2
k2

1 +2αvolumer
Ṽ 2
k2

2

(1+(1−4αvolume)θr,Ṽ 2
k2

)
, if 0 < αvolume ≤ 0.25

(1−2αvolume)r
Ṽ 2
k2

1 +(2αvolume+(4αvolume−1)θ
l,Ṽ 2

k2

)r
Ṽ 2
k2

2

(1+(1−4αvolume)θl,Ṽ 2
k2

)
, if 0.25 < αvolume ≤ 0.50

(2αvolume−1)r
Ṽ 2
k2

3 +(2(1−αvolume)+(3−4αvolume)θl,Ṽ 2
k2

)r
Ṽ 2
k2

2

(1+(3−4αvolume)θl,Ṽ 2
k2

)
, if 0.50 < αvolume ≤ 0.75

(2αvolume−1+(4αvolume−3)θ
r,Ṽ 2

k2

)r
Ṽ 2
k2

3 +2(1−αvolume)r
Ṽ 2
k2

2

(1+(4αvolume−3)θ
r,Ṽ 2

k2

)
, if 0.75 < αvolume ≤ 1

Sb̃nmq
=



(1−2αdemand+(1−4αdemand)θr,b̃nmq
)r

b̃nmq
1 +2αdemandr

b̃nmq
2

(1+(1−4αdemand)θr,b̃nmq
)

, if 0 < αdemand ≤ 0.25

(1−2αdemand)r
b̃nmq
1 +(2αdemand+(4αdemand−1)θ

l,b̃nmq
)r

b̃nmq
2

(1+(1−4αdemand)θl,b̃nmq
)

, if 0.25 < αdemand ≤ 0.50

(2αdemand−1)r
b̃nmq
3 +(2(1−αdemand)+(3−4αdemand)θl,b̃nmq

)r
b̃nmq
2

(1+(3−4αdemand)θl,b̃nmq
)

, if 0.50 < αdemand ≤ 0.75

(2αdemand−1+(4αdemand−3)θ
r,b̃nmq

)r
b̃nmq
3 +2(1−αdemand)r

b̃nmq
2

(1+(4αdemand−3)θ
r,b̃nmq

)
, if 0.75 < αdemand ≤ 1

Sẽn
kn

=



(1−2αcon.cap.+(1−4αcon.cap.)θr,ẽn
kn

)r
ẽnkn
1 +2αcon.cap.r

ẽnkn
2

(1+(1−4αcon.cap.)θr,ẽn
kn

)
, if 0 < αcon.cap. ≤ 0.25

(1−2αcon.cap.)r
ẽnkn
1 +(2αcon.cap.+(4αcon.cap.−1)θl,ẽn

kn
)r

ẽnkn
2

(1+(1−4αcon.cap.)θl,ẽn
kn

)
, if 0.25 < αcon.cap. ≤ 0.50

(2αcon.cap.−1)r
ẽnkn
3 +(2(1−αcon.cap.)+(3−4αcon.cap.)θl,ẽn

kn
)r

ẽnkn
2

(1+(3−4αcon.cap.)θl,ẽn
kn

)
, if 0.50 < αcon.cap. ≤ 0.75

(2αcon.cap.−1+(4αcon.cap.−3)θr,ẽn
kn

)r
ẽnkn
3 +2(1−αcon.cap.)r

ẽnkn
2

(1+(4αcon.cap.−3)θr,ẽn
kn

)
, if 0.75 < αcon.cap. ≤ 1

SW̃n
kn

=



(1−2αweight+(1−4αweight)θr,W̃n
kn

)r
W̃n

kn
1 +2αweightr

W̃n
kn

2

(1+(1−4αweight)θr,W̃n
kn

)
, if 0 < αweight ≤ 0.25

(1−2αweight)r
W̃n

kn
1 +(2αweight+(4αweight−1)θ

l,W̃n
kn

)r
W̃n

kn
2

(1+(1−4αweight)θl,W̃n
kn

)
, if 0.25 < αweight ≤ 0.50

(2αweight−1)r
W̃n

kn
3 +(2(1−αweight)+(3−4αweight)θl,W̃n

kn

)r
W̃n

kn
2

(1+(3−4αweight)θl,W̃n
kn

)
, if 0.50 < αweight ≤ 0.75

(2αweight−1+(4αweight−3)θ
r,W̃n

kn

)r
W̃n

kn
3 +2(1−αweight)r

W̃n
kn

2

(1+(4αweight−3)θ
r,W̃n

kn

)
, if 0.75 < αweight ≤ 1
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SṼ n
kn

=



(1−2αvolume+(1−4αvolume)θr,Ṽ n
kn

)r
Ṽ n
kn

1 +2αvolumer
Ṽ n
kn

2

(1+(1−4αvolume)θr,Ṽ n
kn

)
, if 0 < αvolume ≤ 0.25

(1−2αvolume)r
Ṽ n
kn

1 +(2αvolume+(4αvolume−1)θ
l,Ṽ n

kn

)r
Ṽ n
kn

2

(1+(1−4αvolume)θl,Ṽ n
kn

)
, if 0.25 < αvolume ≤ 0.50

(2αvolume−1)r
Ṽ n
kn

3 +(2(1−αvolume)+(3−4αvolume)θl,Ṽ n
kn

)r
Ṽ n
kn

2

(1+(3−4αvolume)θl,Ṽ n
kn

)
, if 0.50 < αvolume ≤ 0.75

(2αvolume−1+(4αvolume−3)θ
r,Ṽ n

kn

)r
Ṽ n
kn

3 +2(1−αvolume)r
Ṽ n
kn

2

(1+(4αvolume−3)θ
r,Ṽ n

kn

)
, if 0.75 < αvolume ≤ 1

7. Numerical Example

A �rm produces two types of food as Bread and Biscuit and stored at two plants which
are the supply points of our problem. The goods are delivered to two destination cen-
ters (DCs) from these supply points then �nally these products are transported to the
�nal destination centers or customers or survived peoples on disaster via the �rst DCs.
That is the transportation happened in two stages. Due to disaster, the requirements,
availabilities and other transportation parameters are not known to us precisely. For this
reason, we consider all the transportation parameters as type-2 triangular fuzzy numbers.
The type-2 triangular fuzzy inputs for unit transportation costs and times, availabilities,
demands, conveyances capacities, purchasing cost, loading and unloading cost and time,
weights and volumes etc. for stage-1 and stage-2 are as follows:

Type-2 fuzzy unit transportation cost, time for stage-1 and stage-2:
C1

1111 = (11, 12, 14; .4, .6), C1
1211 = (12, 13, 14; .2, .3), C1

1121 = (11, 13, 14; .2, .3), C1
1221 =

(12, 14, 16; .1, .2),
C1

2111 = (13, 15, 16; .6, .7), C1
2211 = (4, 5, 6; .3, .5), C1

2121 = (13, 15, 16; .3, 1.2), C1
2221 =

(14, 16, 17; .2, .5),
C1

1112 = (13, 14, 17; .4, .6),C1
1212 = (13, 14, 16; .2, .8),C1

1122 = (11, 15, 18; .2, .7),C1
1222 =

(12, 14, 16; .5, 1.2),
C1

2112 = (11, 15, 17; .6, .9),C1
2212 = (12, 13, 19; .3, .5),C1

2122 = (13, 17, 19; .3, .9),C1
2222 =

(15, 16, 18; .4, .5),
t11111 = (2, 3, 5; .4, .6),t11211 = (3, 4, 7; .7, .9),t11121 = (7, 9, 12; .9, 1),t11221 = (2, 4, 6; .1, .2),
t12111 = (7, 10, 13; .6, .9),t12211 = (5, 7, 8; .8, 1),t12121 = (4, 5, 8; .8, 1.3),t12221 = (6, 7, 9; .7, 1.5),
t11112 = (5, 9, 13; .2, .8),t11212 = (5, 7, 9; .8, 1.4),t11122 = (5, 8, 9; .9, 1.9),t11222 = (4, 5, 6; .5, .7),
t12112 = (4, 6, 9; .4, .7),t12212 = (2, 3, 9; .3, .5),t12122 = (3, 7, 10; .3, .9),t12222 = (5, 6, 8; .4, 1.5),
C2

1111 = (8, 9, 11; .4, .6),C2
1211 = (12, 13, 14; .2, 1),C2

1121 = (11, 13, 14; .2, 1.3),C2
1221

= (13, 15, 16; .1, .7),
C2

2111 = (13, 15, 16; .6, 1.9),C2
2211 = (14, 15, 16; .3, .5),C2

2121 = (13, 15, 16; .3, 1.2),C2
2221 =

(14, 16, 17; .6, 1.5),
C2

1112 = (13, 14, 17; .4, .6),C2
1212 = (14, 15, 17; .2, 1), C2

1122 = (11, 15, 18; .2, .7),C2
1222 =

(3, 4, 7; .7, .9),
C2

2112 = (11, 15, 17; .6, .9),C2
2212 = (12, 17, 19; .3, .5),C2

2122 = (16, 17, 19; .3, .9),C2
2222 =

(5, 7, 8; .8, 1),
t21111 = (2, 4, 8; .6, .7),t21211 = (3, 5, 7; .4, .8),t21121 = (2, 3, 4; .6, 1.7),t21221 = (2, 4, 6; .1, .2),
t22111 = (7, 8, 11; .2, 1.1),t22211 = (3, 7, 9; .8, 1.1),t22121 = (2, 5, 9; .8, 1.9),t22221 = (2, 6, 8; .7, 1.5),
t21112 = (3, 9, 12; .3, .8),t21212 = (2, 3, 4; .5, 1.1),t21122 = (3, 4, 11; .7, 1.4),t21222 = (4, 5, 6; .7, 1.3),
t22112 = (3, 6, 8; .3, .4), t22212 = (2, 6, 9; .2, .8), t22122 = (7, 9, 13; .2, .7), t22222 = (2, 6, 9; .9, 1.2).
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Table-2: Type-2 fuzzy availabilities, demands, conveyances capacities, loading and un-

loading time and cost, weights and volume for stage-1 and stage-2
Availabilities ã1

11 = (60, 66, 67; .2, .5),ã1
21 = (54, 56, 60; .1, .2),ã1

12 = (42, 47, 55; .2, .4),ã1
22 = (47, 53, 55; .5, .6)

Demands for stage-1 b̃111 = (19, 26, 30; .1, .3),b̃121 = (21, 24, 25; .2, .3),b̃112 = (20, 21, 22; .7, 2.1),b̃122 = (22, 23, 25; .5, 1.2)

Demands for stage-2 b̃211 = (18, 20, 23; .2, .3),b̃221 = (17, 18, 25; .1, .3),b̃212 = (15, 16, 17; .1, .4),b̃222 = (12, 14, 16; .9, 1.3)

Conveyances Capacities ẽ11 = (52, 54, 56; .2, .3),ẽ12 = (53, 55, 57; .6, .9),ẽ21 = (42, 44, 49; 1.8, 2.3),ẽ22 = (45, 49, 50; .4, .9)

Loading Cost L̃O
1
1 = (2, 4, 6; .2, .3),L̃O

1
2 = (5, 6, 7; .2, .3),L̃O

2
1 = (5, 6, 9; .2, .6),L̃O

2
2 = (2, 9, 10; .3, .4)

Unloading Cost ŨD
1
1 = (2, 3, 4; .4, .6),ŨD

1
2 = (3, 7, 8, .6; .7, ),ŨD

2
1 = (2, 3, 5; .4, .9),ŨD

2
2 = (6, 8, 9; .6, 1)

Loading Time ˜LTO
1
1 = (3, 7, 9; 1.2, 1.3), ˜LTO

1
2 = (1, 2, 3; 1.1, 1.2), ˜LTO

2
1 = (4, 6, 8; .2, .3), ˜LTO

2
2 = (1, 3, 6; .1, .2)

Unloading Time ˜UTD
1
1 = (3, 7, 10; .3, .8), ˜UTD

1
2 = (2, 9, 11; .1, .4), ˜UTD

2
1 = (2, 4, 5; .1, .5), ˜UTD

2
2 = (4, 5, 6; .5, .6)

Purchasing Cost P̃C11 = (10, 11, 12; 1.2, 1.4),P̃C12 = (13, 15, 16; 1.1, 1.4),P̃C21 = (11, 12, 13; 1.1, 1.2),P̃C22 = (14, 16, 17; .9, 1.3)

Weights capacity W̃ 1
1 = (185, 190, 225; .6, .7),W̃ 1

2 = (288, 320, 400; .7, .8), W̃ 2
1 = (310, 320, 331; .1, .9),W̃ 2

2 = (368, 340, 345; .6, .7)

Volumes capacity Ṽ 1
1 = (334, 360, 370; 1.2, 1.3),Ṽ 1

2 = (231, 294, 370; .6, .7), Ṽ 2
1 = (393, 395, 399; .6, .8),Ṽ 2

2 = (353, 354, 356; .8, .9)
weight,volume of items w̃1 = (1, 5, 7; .4, .5),w̃2 = (1, 4, 5; .7, .9),ṽ1 = (1, 2, 6; 1.1, 1.3),ṽ2 = (1, 3, 8; .2, .5)

8. Results

The fuzzy multi-stage STP is converted to its equivalent crisp problem by using CV-
based reduction method and generalized credibility measure. Then using LINGO.13.0
optimization software, we obtain the optimal solution of the deterministic STP. The val-
ues of the credibility level for the transportation parameters are sometime lies in the
interval (0, 0.25] or (0.25, 0.5] or (0.5, 0.75] or (0.75, 1]. For this reason, we obtain the
optimal solution of the newly developed model with the four limitations of the credibility
level. A sensitivity analysis is taken into consideration to show the change of the opti-
mal values of the objective functions and the transported amounts with respect to the
credibility level of availabilities, demands and conveyances capacities.
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Table-3: Changes of optimum cost and transported amount for di�erent cred-
ibility levels

Credibility Level Item-1 Item-2 Item-1 Item-2 Stage-1 Stage-2 Opt. cost Opt. time

αc = 0.07 x11111 = 21.02 x21111 = 18.58
αt = 0.10 x12211 = 21.90 x22221 = 17.29

αavail. = 0.13 x11122 = 20.20 x22112 = 15.28
αdemand = 0.16 41.92 42.40 35.87 27.71 x11222 = 22.20 x22212 = 6.88 3482.99 105.86
αcon.cap. = 0.19 x21222 = 5.49
αweight = 0.22 x22222 = 0.06
αvolume = 0.25

αc = 0.26 x11111 = 13.81, x21111 = 22,
αt = 0.29 x12211 = 26.19, x21211 = 3.25,

αavail. = 0.31 x11121 = 11.45, x22211 = 15.59,
αdemand = 0.33 51.40 64.08 40.84 41.44 x12212 = 14.30, x22112 = 14.7, 5730.85 188.26
αcon.cap. = 0.35 x11122 = 32.68, x21122 = 2.04,
αweight = 0.37 x11222 = 17.10, x21222 = 24.7
αvolume = 0.40

αc = 0.56 x12211 = 24.58, x21111 = 15.87,
αt = 0.59 x11121 = 15.87, x22121 = 4.84,

αavail. = 0.61 x11112 = 14.56, x22221 = 19.74,
αdemand = 0.63 40.45 44.62 40.45 30.60 x11122 = 6.64, x21112 = 4.43, 4912.23 186.70
αcon.cap. = 0.65 x11222 = 23.42 x22112 = 9.48,
αweight = 0.67 x21212 = 14.36,
αvolume = 0.69 x21122 = 2.33.

αc = 0.76 x12211 = 4.04, x21111 = 22.26
αt = 0.79 x11121 = 29.01, x21211 = 6.75,

αavail. = 0.83 x11221 = 20.71, x22211 = 12.57,
αdemand = 0.86 53.76 46.48 45.53 32.41 x11112 = 21.85, x22221 = 3.95, 6055.26 284.63
αcon.cap. = 0.90 x11212 = 17.62, x21212 = 6.24,
αweight = 0.95 x11222 = 7.01 x22122 = 16.76,
αvolume = 0.98 x21222 = 9.41
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8.1. Particular Case. Let us consider, the credibility level for costs, times, availabili-
ties, demands, conveyances capacities, weights and volume are all equal. i.e., αc = αt =
αavail. = αdemand = αcon.cap. = αweight = αvolume = α, say.

Table-4: Optimal results of the model with same credibility level

Credibility Level Item-1 Item-2 Item-1 Item-2 Stage-1 Stage-2 Opt. cost Opt. time

x11111 = 22.32, x21111 = 18.95
x12211 = 22.42, x21111 = 3.37,
x11122 = 20.44, x21111 = 5.09,

α = 0.24 44.74 42.90 36.43 28.38 x11222 = 22.46, x22221 = 9.02, 4022.51 115.49
x22112 = 15.47,
x21222 = 12.91

x12211 = 25.70, x21111 = 21.61,
x11121 = 24.90, x21211 = 3.29,
x11212 = 19.88, x22211 = 15.37,

α = 0.32 50.60 60.86 40.27 39.02 x12212 = 10.19, x21212 = 14.24, 7588.72 210.61
x11122 = 30.79, x22212 = 8.23,

x21122 = 16.55.

x12211 = 25.84, x21111 = 16.49,
x11121 = 16.49, x22111 = 4.8,
x11112 = 5.91, x22211 = 14.93,

α = 0.72 42.33 45.24 42.33 31.22 x11122 = 15.5, x22221 = 6.11, 5317.32 215.64
x11222 = 23.83, x21112 = 6.61,

x22122 = 9.82,
x21222 = 14.79.

x12211 = 8.02, x21111 = 21.87,
x11121 = 28.49, x21211 = 3.67,
x11221 = 16.6, x22211 = 18.69,

α = 0.80 53.11 46.07 44.23 31.99 x11112 = 21.72, x21212 = 3.4, 6037.55 268.83
x11212 = 13.12, x22122 = 16.63,
x11222 = 11.23, x21222 = 11.96.

8.2. Sensitivity Analysis of the availabilities and demands of the model. We
know that the sensitivity analysis is used to analyze the outputs with the given inputs
data. For this reason, in Table-5 and -6 we analyze some inputs data and outputs as sen-
sitivity analysis. Basically the minimization of cost objective and time objective in the
STP depend on the values of the transportation parameters such as unit transportation
costs, times, demands, supplies etc.
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Table-5: Sensitivity analysis on availabilities

αc αt αavail. αdemand αcon.cap. αweight αvolume Opt. cost Opt. time Item-1 Item-2

0.10 3574.57 101.08 35.93 27.78
0.12 3584.04 100.11 35.99 27.84

0.11 0.15 0.16 0.17 0.20 0.22 0.25 3584.13 91.03 36.00 27.85
0.19 3587.07 99.96 36.02 27.87
0.25 3601.32 109.94 36.06 27.92

0.26 5541.09 201.52 40.27 39.02
0.29 5600.76 189.59 40.27 39.02

0.26 0.29 0.32 0.32 0.35 0.38 0.40 5556.28 211.09 40.27 39.02
0.35 5544.85 197.75 40.27 39.02
0.38 5508.48 163.44 40.27 39.02

0.53 4821.18 216.28 39.85 30.45
0.58 4811.73 180.94 40.24 30.56

0.52 0.56 0.63 0.60 0.64 0.68 0.72 4857.09 185.68 40.85 30.72
0.68 4905.02 195.65 40.46 30.91
0.73 4938.51 179.64 41.72 31.07

0.77 6093.96 256.79 45.73 32.46
0.83 6139.95 259.16 46.11 32.56

0.77 0.83 0.87 0.87 0.91 0.95 0.99 6148.66 277.31 46.49 32.66
0.92 6173.94 280.47 46.83 32.95
0.98 6187.11 280.50 46.93 33.04

Table-6: Sensitivity analysis on demands

αc αt αavail. αdemand αcon.cap. αweight αvolume Opt. cost Opt. time Item-1 Item-2

0.13 3539.57 101.08 35.68 27.54
0.16 3565.36 100.18 35.87 27.71

0.11 0.15 0.17 0.19 0.19 0.22 0.25 3594.08 102.09 36.06 27.92
0.22 3626.59 101.59 36.27 28.18
0.25 3664.37 100.28 36.50 28.50

0.26 4534.36 184.54 37 29.69
0.29 4962.18 151.40 38.6 33.82

0.26 0.29 0.32 0.32 0.35 0.38 0.40 5563.87 186.38 40.27 39.02
0.35 6193.2 201.54 42.01 45.83
0.38 7072.83 199.66 43.83 55.23

0.53 4751.82 157.77 38.54 30.12
0.58 4798.8 164.77 39.47 30.35

0.52 0.56 0.60 0.63 0.64 0.68 0.72 4833.92 195.21 40.44 30.61
0.68 4913.07 200.54 41.47 30.92
0.73 5013.48 184.95 42.55 31.32

0.77 5921.35 255.83 43.5 31.71
0.83 6049.3 273.49 44.89 32.22

0.77 0.83 0.87 0.87 0.91 0.95 0.99 6213.72 234.95 45.74 32.46
0.92 6237.77 266.98 46.67 32.69
0.98 6271.87 233.34 47.69 32.93

8.3. Pictorial representation of the sensitivity analysis. The Pictorial represen-
tation of the sensitivity analysis are shown in the �gure-2 - �gure-17 and those are given
below:
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Figure 2. Change of total optimum cost and time with Credibility level
of availability, αavail. ∈ (0, 0.25]

Figure 3. Change of total optimum cost and time with Credibility level
of availability αavail. ∈ (0.25, 0.50]
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Figure 4. Change of total optimum cost and time with Credibility level
of availability, αavail. ∈ (0.50, 0.75]

Figure 5. Change of total optimum cost and time with Credibility level
of availability, αavail. ∈ (0.t5, 1]

9. Discussion

Since the credibility level of the availabilities, demands, conveyances capacities, weights
and volumes for each transported item and each vehicle are di�erent, so after taking
the variation of each transportation parameters, we obtained lots of results of our STP
model where all the transportation parameters are type-2 fuzzy variables and which are
discussed below: Following Table-3, we see that the least amount of total cost and time
are 3482.99 and 105.86 units respectively and these are obtained when the credibility
level of the transportation parameters lies within the interval (0, 0.25]. Again, in Table-
4, we put some optimal results which are obtained by taking the credibility level of all
the transportation parameters are equal. After careful investigation, we found that the
total cost and time are least when the credibility levels are same and it is lies in the
interval (0, 0.25]. In Table-5 we have the following:
(i) When credibility level of the availabilities increases with the limit (0, 0.25], then the
values of the cost objective also increases and the time objective are sometime increases
and decreases. The increase or decrease of the total time within the variation of the cred-
ibility level is also signi�cant i.e., if we change the credibility level then the allocations
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Figure 6. Change of total optimum cost and time with Credibility level
of demand, αdemand ∈ (0, 0.25]

Figure 7. Change of total optimum cost and time with Credibility level
of demand, αdemand ∈ (0.25, 0.50]

are changed and for this reason, it is happening.
(ii) From the third row of the Table-5, we obtained some optimal results of the objec-
tives where the credibility level of availabilities are lies within (0.25, 0.5]. Due to change
of credibility level of availabilities, sometimes the value of total cost are increased and
sometimes decreased but there is no signi�cant change in time objective. This is found
when credibility level increases within the range (0.25, 0.5].
(iii) The value of the cost objective increases when we increase the credibility level of
availabilities within the range (0.5, 0.75] but there are some random changes found in
the time objective function.
(iv) When credibility level of the availabilities increases within the limit (0.75, 1], then
the value of the objectives and transported amounts (item-1 and item-2) are increased.
Again if we can change the value of the credibility level of the demand, then we found
some signi�cant changes on the objective functions as well as transported amounts. From
Table-6, it is seen that when we increase the credibility level of the demands, then the
cost and time objectives are also increases and same type of changes is found on the
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Figure 8. Change of total optimum cost and time with Credibility level
of demand, αdemand ∈ (0.50, 0.75]

Figure 9. Change of total optimum cost and time with Credibility level
of demand, αdemand ∈ (0.75, 1]

transported amount in the �nal stages.

10. Comparison with the earlier Research work

Heragu [13] introduced the problem called two stages TP and gave the mathematical
model for this problem. The model includes both the inbound and outbound transporta-
tion cost and aims to minimize the overall cost. Hindi et al. [12] addressed a two-stage
distribution-planning problem. They considered two additional requirements on their
problem. First, each customer must be served from a single DC. Second, it must be pos-
sible to ascertain the plant origin of each product quantity delivered. A mathematical
formulation called PLANWAR presented by Pirkul and Jayaraman [20] to locate a num-
ber of sources and destination centers and to design distribution network so that the total
operating cost can be minimized. Syarif and Gen [23] considered production/distribution
problem formulated as two-stage TP and proposed a hybrid genetic algorithm (GA) for
solution. But in our research, we develop a new concept which is totally di�erent from the
concept of [20], [13], [12], [23] etc. Here our concept is to supply the commodities from
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Figure 10. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αdemand ∈ (0, 0.25]

Figure 11. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αdemand ∈ (0.25, 0.50]

sources to destination centers with their requirements in stage-1 and then the transported
amounts in stage-1 is converted to the availabilities of the stage-2. The transportation of
the stage-2 happened according to requirements of the destination centers of the stage-2
where the availabilities for the stage-2 are the transported amounts for stage-1 and so on
for the other stage transportations. So we can't make comparison of our approach to the
existing one. But we validate our technique and optimum result by sensitivity analysis.

11. Conclusion and Future Extension of the Research Work

11.1. Conclusion. In this paper, we propose a newly developed STP model under type-
2 fuzzy environment. Weight and volume of the transported items and vehicle are more
signi�cant in the transportation network. So we add two new additional constraints as
weight constraints and volume constraints for each vehicle to handle the STP with dif-
ferent stages. We apply the goal programming method is to solve our multi-objective
multi-stage STP since goal programming technique gives the better optimal result of the
objective function than the other methods. Here we study four cases of the credibility
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Figure 12. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αdemand ∈ (0.50, 0.75]

Figure 13. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αdemand ∈ (0.75, 1]

level of the di�erent transportation parameters. Also, after solving the transportation
model, we see that the least transportation cost is obtained when the credibility level lies
within the range (0, 0.25] and in particular when the credibility level of the transporta-
tion parameters are all equal, then a similar type of change is observed in the objective
functions. We obtain the optimal solution of the model by using generalized reduced
gradient technique (LINGO 13.0 optimization solver) and the results are very e�ective
in real-life sense. So we conclude that, if the credibility levels of the transportation pa-
rameters lies within (0, 0.25], then any multi-stage or single stage STP with type-2 fuzzy
parameter gives the least value of the objective function.

11.2. Future Extension of the Research Work. The future extensions of our re-
search work are as follows:
• We have formulated the STP model under type-2 fuzzy environment but this model
can be developed under fuzzy-rough, fuzzy-random, interval type-2 fuzzy environments
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Figure 14. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αavail. ∈ (0, 0.25]

Figure 15. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αavail. ∈ (0.25, 0.50]

etc.
• In our model we imposed two extra restrictions with the help of weights and volume of
each items and vehicles. There is a scope to formulate and solve the model with safety
constraints, budget constraint etc.
• In the objective function we considered the unit transportation cost, time, purchasing
cost, loading and unloading cost and time etc. but there is a scope to develop the cost
objective function of our model with �xed charges, vehicle carrying cost etc.
• In the solution of the imprecise STP model, the transported amounts have been con-
sidered as crisp. Hence there is a scope of taking these transported amount as fuzzy also
i.e. the models can be formulated as fully fuzzy models.
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