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Abstract

Recently, some attempts have been made to construct new families of
models to extend well-known distributions and at the same time provide
great flexibility in modeling data in practice. So, several classes by
adding shape parameters to generate new models have been explored in
the statistical literature. We propose a new generalization of the three-
parameter extended Weibull distribution pioneered by Pappas et al.
(2012) by using the generator by Marshall and Olkin (1997). The new
model is called the (P-A-L) extended Weibull, where (P-A-L) denote
the first letters of the scientists Pappas, Adamidis and Loukas.
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1. Introduction

For more than half a century the Weibull distribution has attracted the attention
of statisticians working on theory and methods in various fields of applied researchers.
Thousands of papers have been written on this distribution. It is of most interest to the
theory because of its great number of special features and to practitioners because of
its ability to fit to real data from various fields, ranging from life data to weather data
or observations made in economics and business administration, hydrology, biology and
engineering sciences. When modeling monotone hazard rates, the Weibull distribution
may be an initial choice because of its negatively and positively skewed density shapes.
However, this distribution does not provide a reasonable parametric fit for some practical
applications where the underlying hazard rates may be bathtub or unimodal shapes.
[13] introduced a new generalization of any distribution, which is derived by using the
generator by [10]. In the literature, several generalizations of the Weibull distribution
have been proposed such as those studied by [3], [19], [14] and [20].

The extended Weibull (EW) distribution with parameters @ > 0, § > 0 and v > 0 has
probability density function (pdf) given by
vB (281 —(%)”
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The reliability function corresponding to (1.1) becomes
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Let G(t) be a baseline cumulative distribution function (cdf) with corresponding sur-
vival function G(t) = 1 — G(t), pdf g(t) = dG(t)/dt and hazard rate function (hrf) A(t).
[13] proposed the (P-A-L) extended family with the additional parameter p > 1, where
the survival function F(t), cdf F(t) and pdf f(t) are given by (for t > 0)
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respectively.

Further, [13] studied the (P-A-L) extended modified Weibull distribution. In this
paper, we take the EW distribution given by (1.1) as the baseline model to define a new
four-parameter (P-A-L) extended Weibull, say the (P-A-L)EW distribution.

The rest of the paper is organized as follows. In Section 2, we provide the pdf and
cdf of the new distribution and present some special models. In Section 3, we study
some of its structural properties including moments, moment generating function (mgf),
quantile and residual life functions. The mean deviations and two types of entropies
are determined in Sections 4 and 5, respectively. Section 6 is devoted to the reliability
function. In Section 7, we present the reliability function, hrf, cumulative hazard rate
function (chrf) and mean residual lifetime function (mrlf). The order statistics and the
minimum and maximum order statistics are investigated in Section 8. In Section 9, we
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obtain the maximum likelihood estimates (MLEs) of the model parameters. In Section
10, we apply a particle swarm optimization (PSO) method to estimate the parameters. In
Section 11, we provide one application to real data in order to illustrate the potentiality
of the new model. Concluding remarks are addressed in Section 12.

2. The (P-A-L) Extended Weibull Distribution
Combining (1.2) and (1.4), the cdf of the (P-A-L)EW distribution follows as
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By differentiating (2.1), the corresponding pdf reduces to
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Henceforth, we denote by T' ~(P-A-L)EW(«, 8,v,p) a random variable having pdf
(2.2). It is clear that the new distribution is very flexible (as it can seen from Table
1). In fact, several distributions can be obtained as special cases of the new model
for selected parameter values. These special cases include at least eleven distributions
displayed in Figure 1: the (P-A-L) extended Rayleigh (P-A-L)ER, (P-A-L) extended
Exponential (P-A-L)EE, (P-A-L) Weibull (P-A-L)W, (P-A-L) Rayleigh (P-A-L)R, (P-A-
L) exponential (P-A-L)E, extended Weibull (EW) (Marshall and Olkin, 1997), extended
Rayleigh (ER), extended exponential (EW), Weibull (W), Rayleigh (R) and exponential
(E) distributions.

(P-A-L)EW
/ \;

(P-A-L)EE (P-A-L)ER

(P-A-L)W

(P-A-L)R

Figure 1. Sub-models of the (P-A-L)EW distribution.

Figures 2(a) and 2(b) display some of the possible shapes of the pdf and cdf of the new
distribution, respectively, for different values of the parameters «, 8, v > 0 and p > 1.
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Table 1. Special cases of the (P-A-L)EW distribution.

Sub-Models Parameters of (P-A-L)EWD Cumulative distribution function
a B v P
1—(-—pe (& :
P-A-L)ER - 2 - - 1— log i=U=prje ral
( ) logp { 1—(1-1) (;)2
—(-pr)e (&)
P-A-L)EE _ 1 _ _ 1- 1 log{w}
( ) log p 17(17,})67(%) J
(P-A-L)W - - 1 - 1-— logp log {1 —(1-p)e” (&) }
(P-A-L)R - 2 1 - Ji-gheefi-a-pe (i)z}
(P-A-L)E R 1 1 R 1- logplog{lf (1— )e*(%)}
—(£)?
W - - 1 p—1 Ft)y=1—¢e \a
R - 2 1 p—1 F()y=1—c (&)
ED - 1 1 p—1 Fit)=1-e (&)

—u1|31v20p10
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Figure 2. The (P-A-L)EW for (a) densities and for (b) distributions.

3. Mathematical Properties

In this section, we derive some mathematical properties of the (P-A-L)EW distribution
such as the quantile, median, random number generator, central and non-central moments
and mgf.

3.1. Quantile Function. The quantile function (qf) is used to obtain the quantiles
of a probability distribution. Consider Fx : R — [0,1] a distribution function of the
continuous random variable X. The pth quantile of F'(z) is given by the value of x such
that

Qu) =inf{x e R:u<F(x)},

= F~'(u) of T comes by inverting (2.1) as

(3.1)  t=Q(v) {Blog( —p_;up+p>]l/5.

where u € (0,1). The qf Q(u)
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3.2. Central and Non-Central Moments. The rth non-central moment of T' can be
expressed as

o _awp—1) (T o~ (=)' (L—v)
(82 BT =w = ) F(BH)MZ_O A+it+)s*

The nth central moment of T', say m,, can be easily obtained from the non-central
moments by (for n > 1)

ma =BT —p)" = (”) (=) " B(T").
=0
Let « = 1.5, 8 =1.3, v = 1.2 and p = 1.2. We can easily check that equation (3.2) holds.
The following script written in the Julia language implements equation (3.2) with r = 2.
The Julia language can be obtained from http://julialang.org/downloads/ (see [4]).
So, we provide a numerical check for ¢ = 0,...,5000 and j = 0,...,5000. The code
follows below.

alpha = 1.5
beta = 1.3
nu=1.2
p=1.2
I = 5000
J = 5000

r=2 # Moment of order 2.
constant = alpha~r*nu*(p-1)/log(p)*gamma(r/beta+l)
sum_I = zeros(Float64,I+1,1)
sum_J = zeros(Float64,J+1,1)
for i = 0:I
for j = 0:J
numerator = (1-p*nu)~i * (1-nu)~j

denominator = (1+i+j) ~(r/betat+l)
sum_J[j+1] = numerador/denominador
end
sum_I[i+1] = sum(sum_J)

end
constant*sum(sum_I) # The result is 3.66655262332183.

Thus, for the fixed parameters, r = 2 and using the above code, we obtain E(T?) =
3.6665526. The same result follows by numerical integration of (2.2). Established alge-
braic expansions to determine the moments of 7' can be more efficient than computing
these moments directly by using this numerical integration, which can be prone to round-
ing off errors among others.

3.3. Residual life function. Given that a component survives up to time z > 0,
the residual life is the period beyond z until the time of failure and it is defined by
the expectation of the conditional random variable T|T > z. In reliability, it is well-
known that the mrlf and the ratio of two consecutive moments of residual life determine
the distribution uniquely (see [9]). Therefore, we obtain the rth order moment of the
residual life by

1

(33) mp(x)=E[(T—2)" |T>x]= )

/w(t — )" f(t)dt.


http://julialang.org/downloads/
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Applying the binomial expansion for (T — z)" and substituting F'(x) given by (1.3)
into equation (3.3), the rth moment of the residual life of T is

v 171/]'171/kaif:cT—i
() = =D ZZ() ) >i+<1)

(x)log ) (G+E+1)7

(3.4) XTI (%+1,(y+k+1) (g)ﬁ)

where ['(a,y) = fyoo %"t e™*dx is the upper incomplete gamma, function.

Another important characteristic for T is the mrlf obtained by setting » = 1 in equation
(3.4). It represents the mean lifetime left for an item of age . Whereas the hrf at z
provides information on a random variable T" about a small interval after x, the mrlf at

x considers information about the whole remaining interval (z, 00).
We obtain the mrlf of T" as

m@) = —o+ i (1 —pv) (1—v)k
f( ) 420 G+k+1)5"

X F(%+1,(j+k+1)(g)ﬁ).

3.4. Reversed residual life function. The waiting time since failure is the waiting
time elapsed since the failure of an item on condition that this failure had occurred in
[0,x]. The rth order moment of the reversed residual life function (rrlf) is given by
M. (z)=E[z-T)" | T <x]= z) INE f(t)dt.

Following similar algebra as before, we obtaln

" o' (0) (1= pv)! (1 —v)kgrt
F log Z Z

zngo G+k+1)8"
7 X x\ B
w<g+17(y+k+1)(a) )

where v(a,y) = foy 2%~ e™*dx is the lower incomplete gamma function.
Then, the mean reversed residual life of T" becomes

M, (x)

o)

1—pu 1-v
M(z) = z-— 1 Z )
Og ] k=0 +k+1)ﬁ

(3:5) x v<%+17(j+k+1) [g]ﬁ)

where M (z) represents the mean time elapsed since the failure of T' given that it fails at
or before x.

4. Mean Deviations

The amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. These are known as the mean deviations
about the mean and the median — defined by D1 (T) = [ [t — p| f(t)dt and D2(T) =
I |t = M| f(t)dt, respectively, where . = E(T) is the mean and M = Q(0.5) is the
median given by (3.1).
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The measures D1(T) and D2(T) can be expressed as D1 (T) = 2uF(u) — 2Z(u) and
Dy(T) = p —2Z(M), where Z(z) = [t f(t)dt is the first incomplete mean of T". This
integral can be determined from (2.2) by

(1) 2= s Gop 1oy r(lﬂ,(mm (E)‘*).
0g(p) 5= (i+j+1)FH B o
Thus, the mean deviations D1 (T") and D2(T') can be obtained from (4.1).

Important applications of (4.1) refer to the Bonferroni and Lorenz curves to study
income and poverty, but also in other fields such as reliability, demography, medicine
and insurance. For given probability p, they are given by B(p) = Z(q)/(pp) and L(p) =
Z(q)/u, respectively, where ¢ = Q(p) comes directly from (3.1).

5. Rényi and Shannon Entropies

The entropy of a random variable 7" with density function f(¢) is a measure of
variation of the uncertainty. One of the popular entropy measure is the Rényi entropy
given by

1
tog| | f"(t)dt],
1—n R

where > 0, n # 1. The quantity f"(t) for T reduces to

Ir(n) =

1 -1 ()" ()77 ()
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Using the power series in equation (5.1), we can write
(p=1" (v8Y" <= T+ )T (n+j) i (T
e = —= | — — I (1-pv)(1-v)y (-
[log(p)]” \ ;O [C(m)]* 5! «
w e lHFM(L)"

Then, after some calculations, Ir(n) reduces to

- 1 (pfl)nyn é n—1
Ir(n) = 1_nlog[[log(p)]n <0‘) ]

1 ~ T+ (n+4) (1—prv)i(l—wv) -1
- 1og[z (4 O0n +9) 0 —p 1)1 - 1) F<n777ﬂ )]
n G20 T3 G+ j+n)F
The Shannon entropy, which is defined by E{—log[f(T)]}, can be derived numerically
from lim1 Ir(n).
n—r

6. Reliability Function

In the context of reliability, the stress-strength model describes the life of a component
which has a random strength T4 that is subjected to a random stress T>. The component
fails at the instant when the stress applied to it exceeds the strength, and the component
will function satisfactorily whenever 71 > T>. Hence, R = Pr(T> < T1) is a measure of
component reliability. It has many applications especially in engineering concepts such
as strength failure and system collapse. Now, we obtain the reliability R when 77 and
T> have independent (P-A-L)EW(«, 3,v1,p1) and (P-A-L)EW(«, 8, v2, p2) distributions
with the same shape parameter 8 and scale parameter . The reliability R is defined by
R = fooo f1 (t) Fz(t)dm.
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By using the power series log(1 +z) = - x*, Fy(t) can be written as
i=1
RN S (R i G
F2(t):1_10( )Z i B0
g\P2 i=1 |:1—(1—y2)e7(5) ]
By expanding fi(t) and F (t) we can write f1 (t) Fy(t) as
)Z“F(Z +1) nB,vh
) (t) = t —1
J1(t)Fa(t) fi(t) — Tog (p1 £ p2) p1+p2 ;J 2. NCESMI (p1—1)
. ) £\ P! . Y
(6.1) x(p2— 1) (1—p1 1)’ (1 — 1)1 = 1)’ (a) o~ (kD (£)"
Inserting (6.1) into the general expression for R and, after some algebra, we obtain
DG+ D vr (n2)
R = 1-
log (p1 +p2) ;J;OF i+ D)UGE+i+k+1)

x(pr = 1) (p2 = 1) (1= prva)? (1= )" (1 =)',

7. Reliability Analysis
Here, we present the reliability function, hrf, chrf and mrlf of T'.

7.1. Survival function. The (P-A-L)EW distribution can be a useful characterization
of lifetime data analysis for a given system. Its survival function is

_ — (1= pr)e (&)’
F(t)= L log 1= (L=prje 5 -
log(p) 1—-(1- u)e_(i)
Figure 3 illustrates the survival behavior of the new distribution for some parameter
values.

n
- — =1, B=1, v=2.0, p=1.0
—— a=1, =1, v=0.5, p=1.1
— a=2, =2, v=0.5, p=1.5
—— a=2, =4, v=0.5, p=1.7
a=1, p=1, v=3.0, p=2.0
S 4 — a=2, =3, v=3.0, p=2.3
e
w
o
e
(=}

Figure 3. The survival function of the (P-A-L)EW distribution.
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7.2. Hazard rate function. The hrf of T is given by

h(t) =

1-(1-v)e®] 1o {M}
S B e o

We note that h(t) can be constant, increasing, or decreasing depending on the param-

eter values. For example, if p — 1, v =1 and 8 = 1, then h(t) = é is constant, whereas

if p— 1and v =1, then h(t) = g (é)ﬁil, which is increasing for S > 1 and decreasing

for 8 < 1. Figure 4 displays some plots of the hrf of T'.

2aeoaana
NENNER

Figure 4. The hrf of the (P-A-L)EW distribution

7.3. Cumulative hazard rate function. Many generalized Weibull models have been
proposed in reliability literature through the relationship between the reliability function
R(t) and the chrf H(t), which is a non—decreasing function of ¢, given by H(t) = —
log[R(t)]. The chrf of T' becomes

t —(1— Z/e_(&)ﬁ
H(t)=/0 h(U)dU=10g(10gp)log{log[ll ((11 p))_(t)ﬁ ]}

where H(t) is the total number of failures or deaths over an interval of time. Figure 5
illustrates the behavior of the chrf of T' for some parameter values.
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Figure 5. Cumulative Hazard Rate Function.

7.4. Mean residual lifetime function. The additional life time given that the com-
ponent has survived up to time ¢ is the rlf of the component. Then, the expectation of
the random variable T; represents the remaining lifetime reduces to

[ R(u)du

t

m(t) = B(T) = BT | T > ) = <0y

The mrlf and the hrf are important since they characterize uniquely the corresponding
lifetime distribution. We obtain

. o D (L+1,G+1) ()"
m(t) = —tF t )8 . P!
log 1—(1—p u)e’(E i=0 (t+1)7
17(171/)e7(§)ﬁ

7.5. Order Statistics. Let Ti,...,T, denote n independent random variables from
a distribution function F(t) with pdf f(t), and T(q),...,T(,) denote the order sample
arrangement. So, the pdf of T}; is given by

n!

mf(t)F(t)j_l [1—F@®)*7 for j=1,...,n.

fr) (8) =
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Using equations (2.1) and (2.2), the pdf of T};) becomes

fry) = — o fi o 1[0 &) a
() T G =Dln—j) logp © 1—(1—p)e (&)
(-2 ()" @)

t

log(p)]" 7+ 1= (1= pr)e= ()] [1 = (1 =) ()]

o 1-(1-p I/)e_(;)ﬁ]}n_j
X{l g[ 1—(1—1/)e_(§)ﬁ .

Therefore, the pdf’s of the smallest order statistic T{;y and of the largest order statistic
T(n) are easily obtained from the last equation with ¢ = 1 and ¢ = n, respectively. Then,
the minimum and maximum order statistics can be derived for some special models of the
new distribution. For example, for the (P-A-L)ER (8 = 2), (P-A-L)EE model (8 = 1),
(P-A-L)W (v =1), (P-A-L)R (v =1 and 8 =2), (P-A-L)E (v =1 and 8 =1) and EW
(p — 1) distributions, among others.

The pdf’s of the (k+ 1)th and kth ordered statistics from the (P-A-L)EW model obey

the relationship
t\B
1—(1—p v ei(a)
1 1 log|: (A—p v) - }

Jrgeny () = (n;k> )B:| e OF
B

X

8. Estimation of the Parameters

Inference can be carried out in three different ways: point estimation, interval esti-
mation and hypothesis testing. Several approaches for parameter point estimation were
proposed in the literature but the maximum likelihood method is the most commonly
employed. The maximum likelihood estimates (MLEs) enjoy desirable properties and
can be used in constructing confidence intervals and also in test-statistics. Large sample
theory for these estimates delivers simple approximations that work well in finite samples.
Statisticians often seek to approximate quantities such as the density of a test-statistic
that depend on the sample size in order to obtain better approximate distributions. The
resulting approximation for the MLEs in distribution theory is easily handled either an-
alytically or numerically. In this section, we use the method of likelihood to estimate the
model parameters and use them to obtain confidence intervals for the unknown parame-
ters.

8.1. Maximum Likelihood Estimation. Let t1,...,¢, be a sample of size n from
the (P-A-L)EW distribution. Let 6 = (a, 8,v,p)” be the parameter vector. Then, the
log-likelihood function ¢ = £(6) is given by

¢ = nlog[log(p)] + nlog(p — 1) — nlog (”5) +(8-1) izn;log <%>

«
t

_ i (l)ﬁ + ilog {1 1 —py)e*(z‘)ﬁ} - ilog {1 - u)e*(%)ﬁ] .

Then, the MLE of 6 can be derived from the derivatives of £. They should satisfy the
following equations:
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% - Z+§; 1_<t¢>5} 1og<tl)ﬂ_iz";e—(2)5 (5) 1og(2)
e e
S S )

o —p; [1 _a 7py)ef(%)ﬁ} —p; {1 —-(1- V)e’(%)ﬁ] -

and

or —n —n -
o _ i =0.
dp  plogp  p—1 V; [1_(1_p,,)e*(%)ﬁ}

These equations cannot be solved analytically, and statistical softwares are required
to solve them numerically. To solve these equations, it is usually more convenient to
use nonlinear optimization algorithms such as quasi-Newton algorithm to numerically

maximize the log-likelihood function. For interval estimation of the parameters, we
82%¢

obtain the 3 x 3 observed information matrix J(0) = {5

elements can be computed numerically.
Under standard regularity conditions when n — oo, the distribution of the MLE
can be approximated by a multivariate normal N4(0, J(6)™") distribution to construct

~

(for r,s = a, B,v,p), whose

approximate confidence intervals for the parameters. Here, J(6) is the total observed
information matrix evaluated at #. The method of the re-sampling bootstrap can be
used for correcting the biases of the MLEs of the model parameters. Good interval
estimates may also be obtained through the bootstrap percentile method.

9. Particle Swarm Optimization

In computer science, the particle swarm optimization (PSO) is a computational method
for optimization of parametric and multiparametric functions. The PSO algorithm is a
meta-heuristic which has been providing good solutions for problems of optimization
global functions with box-constrained. The use of meta-heuristic methods such as PSO
has proved to be useful for maximizing complicated log-likelihood functions without
the need for early kick functions as the BFGS, L-BFGS-B, Nelder-Mead and simulated
annealing methods. As in most heuristic methods that are inspired by biological phe-
nomena, the PSO is inspired by the behavior of flying birds. The philosophical idea of
the PSO algorithm is based on the collective behavior of birds (particle) in search of food
(point of global optimal). The PSO technique was first defined by [6] in a paper pub-
lished in the Proceedings of the IEEE International Conference on Neural Networks IV.
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A modification of the PSO algorithm was proposed by [16] published in the Proceedings
of IEEE International Conference on Evolutionary Computation. Further details on the
philosophy of the PSO method are given in the book Swarm Intelligence (see [8]).

The PSO optimizes a problem by having a population of candidate solutions and
moving these particles around in the search-space according to simple mathematical
formulae over the particle’s position and velocity. The movement of the particles in
the search space is randomized. Each iteration of the PSO algorithm, there is a leader
particle, which is the particle that minimizes the objective function in the respective
iteration. The remaining particles arranged in the search region will follow the leader
particle randomly and sweep the area around this leading particle. In this local search
process, another particle may become the new leader particle and the other particles
will follow the new leader randomly. Each particle arranged in the search region has a
velocity vector and position vector and its movement in the search region is given by
changes in these vectors. The PSO algorithm is presented below, where f : R" — R is
the objective function to be minimized, S is the number of particles in the swarm (set of
feasible points, i.e. search region), each having particle a vector position z; € R™ in the
search-space and a vector velocity defined by v; € R™. Let p; be the best known position
of particle ¢ and g the best position of all particles.

(1) For each particle i =1,...,.5 do:
e Initialize the particle’s position with a uniformly distributed random vector:
2; ~ U(bio, bup), where b, and by, are the lower and upper boundaries of
the search-space.
e Initialize the particle’s best known position to its initial position: p; <= x;.
e If f(pi) < f(g) update the swarm’s best known position: g < p;.
e Initialize the particle’s velocity: v; ~ U(—|bup — bio|, |bup — bio])-
(2) Until a termination criterion is met (e.g. number of iterations performed, or a
solution with adequate objective function value is found), repeat:
e For each particle i = 1,...,5 do:
— Pick random numbers: r,, 74 ~ U(0,1).
— For each dimension d =1,...,n do:
x Update the particle’s velocity: v;.a <+ wvi,a+@prp(Pi,a—Ti,a)+
©g7g(ga — Ti,a)-
— Update the particle’s position: x; <= x; + v;
It f(2) < f(pi) do:
+ Update the particle’s best known position: p; < z;
x If f(p:) < f(g) update the swarm’s best known position: g <
Di-
(3) Now g holds the best found solution.
The parameter w is called inertia coefficient and as the name implies controls the
inertia of each particle arranged in the search region. The quantities w, and wg control
the acceleration of each particle and are called acceleration coefficients.

10. Application

We consider an application using the (P-A-L)EW distribution. We use the AdequacyModel
script version 1.0.8 available for the programming language R. The script is currently
maintained by one of the authors of this paper and more information can be obtained f
rom http://cran.rstudio.com/web/packages/AdequacyModel/index.html. The pack-
age is distributed under the terms of the licenses GNU General Public License (GPL-2
or GPL-3).
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The application take into account the data relating to the percentage of body fat
determined by underwater weighing and various body circumference measurements for
250 men. For details about the data set, see http://1lib.stat.cmu.edu/datasets/.

Table 2. Descriptive statistics.

Real data sets

Statistics Body Fat (%)
Mean 19.3012
Median 19.2500
Mode 22.5000
Variance 67.7355
Skewness 0.1953
Kurtosis -0.3815
Maximum 47.5000
Minimum 3.0000
n 250

In order to determine the shape of the most appropriate hazard function for modeling,
graphical analysis data may be used. In this context, the total time in test (T'TT) plot
proposed by [1] is very useful. Let T be a random variable with non-negative values
which represents the survival time. The TTT curve is obtained by constructing the plot
of G(r/n) = [, Tim) + (n — r)Trn] /(321 Tiin) versus r/n, for r = 1,...,n and
Tin (i = 1,...,n) are the order statistics of the sample (see [11]). The plots can be
easily obtained using the function TTT of the script AdequacyModel. For more details on
this function, see help(TTT). The TTT plot for the current data is displayed in Figure
6, which is concave and according to [1] provides evidence that the monotonic hrf is
adequate.

0.8 1.0
1

0.6
1

T(i/n)

0.0 0.2 0.4 0.6 0.8 1.0

i/n

Figure 6. The TTT plot for percentage of body fat.
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Figure 7 displays the estimated density to the data obtained in a nonparametric
manner using kernel density estimation with the Gaussian filter. Let Xi,..., X, be a
random vector of independent and identically distributed random variables, when each
random variable follows an unknown pdf f. The kernel density estimator is given by

(10.0) ful) = 23 Kulw—2) = 30 K (255,

where K (-) is the kernel function usually symmetrical and [ K(z)dz = 1. Here, h > 0
is a smoothing parameter known in literature as bandwidth. Numerous kernel functions
are adopted in the literature. The normal standard distribution is the most widely used
because it has convenient mathematical properties. [17] demonstrated that for the K

1
standard normal, the bandwidth ideal is h = (43‘:) ® 1.066 n~Y/5, where & is the

standard deviation of the sample.

Density
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Figure 7. Gaussian kernel density estimation for percentage of body fat.

In order to verify which distribution fits better these data, we consider the Cramér-
von Mises (W*) and Anderson-Darling (A*) statistics described by [5]. Chen and Bal-
akrishnan (see [5]) constructed the Cramér-von Mises and Anderson-Darling corrected
statistics based on the suggestions from [18]. We use these statistics, where we have a
random sample (z1,...,2z,) with empirical distribution function F,(z) and we want to
test if the sample comes from a special distribution. The Cramér-von Mises (W*) and
Anderson-Darling (A*) statistics are, respectively, given by

{n/*""{Fn(x) — F(x;gn)}QdF(x;an)} (1 + %) W (1 N 0.5> |

— oo n

W*

~

" o[ AFa(2) = F(x;0.)} " 0.75 | 2.25
4 { /_oo i Fa) ’9”)} (H w T n2)

42 (1+ O.Z5 n 2.25),

n2

~

~—
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where F, () is the empirical distribution function, F(z;0,) is the postulated distribution
function evaluated at the MLE én of . Note that the statistics W* and A™ are given
by the differences of Fy,(z) and F(z;6,). Thus, the lower are the statistics W* and A*
more evidence we have that F(z; én) generates the sample. The details to compute the
statistics W* and A* are given by Chen and Balakrishnan.

The goodness.fit function provides various adequacy of fit statistics, among them,
the Cramér-von Mises (W*) and Anderson-Darling (A*) statistics proposed by [5], Con-
sistent Akaike Information Criterion (CAIC) defined by [2]|, Bayesian Information Crite-
rion (BIC) defined by [15] and Hannan-Quinn Information Criterion (HQIC) given by [7].
These statistics are used to assess the adequacy of the fit of the distributions considered
in the two real data sets.

The PSO methodology was used for the improvement of the MLEs. Initially, we use
the Nelder-Mead method to maximize the log-likelihood function of the models under
study using the goodness.fit function of the script AdequacyModel. After obtaining
convergence using the Nelder-Mead method (see [12]), we use the PSO method as an
attempt to obtain best candidates for global maximums of their log-likelihood functions
for the compared models. We consider S = 550 (550 particles) and 500 iterations as
stopping criterion. We choose as optimal candidates for the estimates, those MLEs cal-
culated by the PSO method when ¢ (the maximized log-likelihood function for the current
model) is higher than the log-likelihood function evaluated at the estimates computed
by the Nelder-Mead method. Figure 8 displays the fitted densities to the current data.
The MLEs used in Figure 8 are highlighted in Table 3. It is noted in Table 4 that the
proposed distribution provides the best fit to the data.

Table 3. MLEs obtained by Nelder-Mead and PSO methods.

Distributions Estimates l
(P-A-L)EW PSO 1.8571 0.7700 63.4424 | 37.5844 871.0364
Nelder-Mead | 19.6993 | 2.5831 | 0.2865 | 28.0810 | 874.7802
Kw-W PSO 71.3501 | 77.4079 | 0.1635 | 25.1942 | 888.7122
Nelder-Mead 0.6960 2.0492 3.3057 0.0314 875.8679
Exp-W PSO 45.30062 | 69.5828 | 55.3411 - 875.8749
Nelder-Mead | 0.0418 3.0356 | 0.7436 - 870.6432
Weibull PSO 21.7567 | 2.5373 - - 876.4216
Nelder-Mead | 21.7552 2.5371 - - 876.1854
Gamma PSO 5.8060 0.3036 - - 888.5930
Nelder-Mead 4.6090 0.2388 - - 884.6877
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Figure 8. Fitted densities to the percentage of body fat data.

Table 4. Statistics of adequacy to adjust.

Distributions AIC CAIC BIC HQIC A* W

(P-A-L)EW 1757.560 | 1757.724 | 1771.646 | 1763.230 | 0.1192 | 0.0144
Kw-W 1785.429 | 1785.592 | 1799.515 | 1791.098 | 1.8205 | 0.3005
Exp-W 1757.750 | 1757.847 | 1768.314 | 1762.002 | 0.2477 | 0.0334
Weibull 1756.843 | 1756.892 | 1763.886 | 1759.678 | 0.4357 | 0.0668
Gamma 1781.186 | 1781.235 | 1788.229 | 1784.021 | 1.9548 0.3233

11. Concluding Remarks

The idea of generating new extended models from classic ones has been of great
interest among researchers in the past decade. A new four-parameter generalization of the
Weibull model, called the (P-A-L) extended Weibull, (P-A-L)EW for short, distribution
is defined and some of its mathematical properties studied. They include moments,
generating, quantile, reliability and residual life functions, mean deviations and two types
of entropies. Many well-known distributions emerge as special cases of the proposed
distribution by using special parameter values. We use maximum likelihood and a particle
swarm optimization method to estimate the model parameters. By means of a real data
set, we prove that this model has the capability to provide consistent estimates from the
considered estimation methods.
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