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Calibration of the empirical likelihood for
semiparametric varying-coe�cient partially linear

models with diverging number of parameters
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Abstract

This article is concerned with the calibration of the empirical likeli-
hood for semiparametric varying-coe�cient partially linear models with
diverging number of parameters. However, there is always substan-
tial lack-of-�t, when the empirical likelihood ratio is calibrated by a
bias-corrected empirical likelihood, producing tests with type I errors
much larger than nominal levels. So we consider an e�ective calibration
method and study the asymptotic behavior of this bias-corrected em-
pirical likelihood ratio function. Some simulation studies are conducted
to illustrate our approach.
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1. Introduction

Consider the following semiparametric varying-coe�cient partially linear models

(1.1) Y = XTα(U) + ZTβ + ε

where α(·) = (α1(·), ..., αq(·))T is a q-dimensional vector of unknown regression functions,
β = (β1, ..., βp)

T is a p-dimensional of unknown regression coe�cients, and ε is an inde-
pendent random error with E(ε|X,Z,U) = 0 almost surely. Without loss of generality,
we assume that the variable U is de�ned on the unit interval [0, 1].

As the extension of the usual linear regression model and partially linear regression
model, semiparametric varying-coe�cient partially linear model (1.1) has attracted great
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research interest. For example, Fan and Huang [4] proposed a pro�le-kernel inference and
established the asymptotic normality of the pro�le least-square estimator for this model.
You and Zhou [16] studied the model (1.1) using the empirical likelihood method when
p is �xed. When dimensionality p of the parameters tends to in�nity as the sample size
n→∞, this generalized varying-coe�cient partially linear model was considered by Lam
and Fan [7]. More relevant works on the varying-coe�cient partially linear model can be
found in Huang and Zhang [6], Li et al. [8] and references therein.

Empirical likelihood method has taken much attention in literatures since it was in-
troduced and developed by Owen [10,11]. One of the motivation is that the empir-
ical likelihood-based con�dence regions not only have natural shape and respect the
range of the parameter, but also have the advantages of studentising automatically. In
many cases, empirical likelihood-based con�dence regions are shown to be Bartlett cor-
rectable(DiCiccio et al. [3], Chen and Cui [1]). Owen [12] and Xue and Zhu [15] are
fairly comprehensive references.

However, in practical application, there is always lack-of-�t for the asymptotic nor-
mality distribution of empirical likelihood ratio with expectation p and variance 2p when
we refer to the coverage probability, especially when p/n is not small. We �nd that this is
mainly due to the underestimation of the expectation and variance of the empirical like-
lihood ratio, producing tests with type I errors much larger than the nominal level. And
this inspires us to look for an e�ective estimation of the expectation and variance. Liu et
al. [9] proposed a new method which is �tted for the calibration of empirical likelihood
for high-dimensional data. Through the calibration of the expectation and variance of
the empirical likelihood for the population mean, they got a considerable improvements
for the coverage probabilities. Guo et al. [5] considered this calibration method for high-
dimensional data in linear models and discussed the asymptotic behavior of the empirical
likelihood ratio function in random and �xed design cases, respectively. Recently, Li et
al. [8] showed that under some conditions, the bias-correction empirical likelihood for
the semiparametric varying-coe�cient partially linear models is asymptotic normal.

Taking these issues into account, in this paper, we consider a new calibration of empir-
ical likelihood for semiparametric varying-coe�cient partially linear models with diverg-
ing number of parameters and investigate the asymptotic behavior of this bias-corrected
empirical likelihood ratio function. Numerical studies show that this new calibration
method will have a great improvement.

The rest of this paper is organized as follows. In Section 2, we introduce the bias-
corrected empirical likelihood(BCEL) for semiparametric varying-coe�cient partially lin-
ear models. A new calibration of bias-corrected empirical likelihood is given in Section 3.
In Section 4, some simulations are carried out to assess the performance of the proposed
method. Technical proofs are stated in Section 5.

2. Bias-corrected Empirical Likelihood

Let (Yi;X
T
i , Z

T
i , Ui, 1 ≤ i ≤ n) be an independent identically distributed(i.i.d) random

sample which come from the model (1.1) with the β and Zi having the dimension p→∞
as n→∞. Then for any given β, we get

(2.1) Yi − ZTi β = XT
i α(Ui) + εi

Following Fan and Huang [4], we apply a local linear regression technique to estimate
the varying-coe�cient functions αj(·), j = 1, ..., q. For v in a small neighborhood of u,
one can approximate αj(v) by

(2.2) αj(v) ≈ αj(u) + α′j(u)(v − u) ≡ aj + bj(v − u) j = 1, ..., q



232

This leads to the following weighted local least squares problem: �nd {(aj , bj), j =
1, ..., q} to minimize

(2.3)
n∑
i=1

{Yi −XT
i (a+ b(Ui − u))− ZTi β}2Kh(Ui − u)

where K(·) is a kernel function, h is a bandwidth and Kh(·) = Kh(·/h)/h.
The solution of problem (2.3) is

(2.4) α̂(u, β) = (Iq, Oq)(D
T
uWuDu)−1DT

uWu(Y − Z∗β)

where Iq denotes a q-dimensional identity matrix, Oq is the q × q matrix with all the
entries being 0 and Let

Du =

 XT
1

U1−u
h

XT
1

...
...

XT
n

Un−u
h

XT
n

 , Z∗ = (Z1, . . . , Zn) =

 Z11 . . . Z1p

...
. . .

...
Zn1 . . . Znp


Y = (Y1, . . . , Yn), Wu = diag(Kh(U1 − u), . . . ,Kh(Un − u))

and

µ(u) = (E(XXT|U = u))−1E(XZ|U = u)

So we can write the auxiliary random vectors as follows

(2.5) η̂i(β) = (Zi − µ̂T(Ui)Xi)(Yi −XT
i µ̂(Ui, β)− ZT

i β)

where µ̂(u) = (Ê(XiX
T
i |Ui = u))−1Ê(XiZ

T
i |Ui = u) is the estimator ofµ(u).

E(XiX
T
i |Ui = u) and E(XiZ

T
i |Ui = u) can be estimated easily by using the kernel

smoothing method. For convenience, we can also de�ne the estimator ofXT
i µ(Ui) directly

as follows

(2.6) XT
i µ̂(Ui) =

n∑
k=1

SikZk

where Sik is the (i, k)-th element of the smoothing matrix S, which depends only on the
observations {(Ui, Xi), i = 1, . . . , n}, with

S =

 (XT
1 , O)(DT

u1
Wu1Du1)−1DT

u1
Wu1

...
(XT

n , O)(DT
un
WunDun)−1DT

un
Wun


Thus, the bias-corrected auxiliary random vectors can be expressed as

(2.7) η̂i(β) = (Zi − µ̂T(Ui)Xi)(Yi −XT
i µ̂(Ui, β)− ZT

i β) , Ẑi(Ŷi − βTẐi)

where Ẑi = Zi −
∑n
k=1 SikZk, Ŷi = Yi −

∑n
k=1 SikYk.

Therefore, a bias-corrected empirical log-likelihood ratio is de�ned as

(2.8) ln(β) = −2 max

{
n∑
i=1

log(nωi)

∣∣∣∣ωi ≥ 0,

n∑
i=1

ωi = 1,

n∑
i=1

ωiη̂i(β) = 0

}
By the Lagrange multiplier method, we can obtain

(2.9) ln(β) = 2

n∑
i=1

log(1 + λT η̂i(β))
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where λ = λ(β) is determined by

(2.10)
1

n

n∑
i=1

η̂i(β)

1 + λT η̂i(β)
= 0

According to Qin and Lawless [13], if α(u) is given and p is �xed, under some con-
ditions, ln(β) is asymptotically χ2 with p degree of freedom, which is a non-parametric
version of Wilks' theorem. And when the number of p grows with the sample size n, Li
et al. [8] showed that under some conditions, the conclusion below is valid.

(2.11)
ln(β0)− p√

2p

d−→ N(0, 1), as n→∞

where β0 is the true value of the parameter vector β.

3. A new Calibration method for BCEL

When testing hypotheses with the BCEL method, we would calculate the critical
values based on normal approximation (2.11). However, these critical values often deviate
from the true ones when p/n is not small. We �nd that this awkward fact is mainly due
to the large di�erence between the true expectation and variance pair (En, Vn) of ln(β0)
and (p, 2p). And our simulation also indicates that this method is not good. We know
that the foundation of using (2.11) to calibrate the BCEL are that ln(β0) is close to
Kn = n¯̂ηT

nΣ−1 ¯̂ηn, and that E(Kn) = p, V ar(Kn) ≈ 2p. But in practice, we always
use the moment estimation of Kn, which is, Tn = n¯̂ηT

nS
−1
n

¯̂ηn, whose expectation and
variance are denoted as (Ên1, V̂n1), for statistical inference and it can always get a better

approximation to ln(β0). But when (En, Vn) deviates from (p, 2p) or (Ên1, V̂n1), these
calibration methods do not work any more.

We expect that replacing (p, 2p) with (Ên2, V̂n2), the expectation and variance of
Tnc(see (3.2)), in (2.11), will improve the performance of the usual normal calibration.
Let

f(λ) = 2

n∑
i=1

log(1 + λTη̂i(β))

Obviously, ln(β0) = supλ f(λ) = f(λ∗), and λ∗ is the maximum point of f(λ). By
second-order Taylor expansion, we have

(3.1) f(λ) ≈ g1(λ) = 2

n∑
i=1

{
λTη̂i −

1

2
(λTη̂i)

2

}
provided λTη̂i's are small. So an approximation of ln(β0) is

ln(β0) ≈ sup
λ
f(λ) = sup

λ
g1(S−1

n
¯̂ηn) = Tn

However, in the case of moderate n and large p, this approximation may not work
any more. The remainder of each Taylor expansion in (3.1) is under control only for
λTη̂i ∈ (−1, 1). We �nd in our simulation that when p/n is not small, some of λT η̂i's are
greater than 1 with a large probability. Note that when

x ∈ (−1, 1), log(1 + x) ≈ x− x2

2

while if

x > 1, log(1 + x) > log(2) > x− x2

2
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Therefore, roughly we have f(λ) ≥ g1(λ) in the neighborhood of 0. This �nding also
restrict us to approximate ln(β0) by two terms Taylor expansion, because Taylor expan-
sion of (3.1) would deviate from ln(β0) if more terms are extracted and some of λ∗η̂i are
not small.

To reduce the approximation error of g1(λ), we add a high-order term (λTη̂i)
2 to g1(λ).

Intuitively g2(λ) = g1(λ) + (λTη̂i)
2 is the better approximate to f(λ). So is supλ g2(λ)

to ln(β0) = supλ f(λ). It can be veri�ed

(3.2) sup
λ
g2(λ) = n¯̂ηT

nS
−1
nc

¯̂ηn = Tnc

with

Snc =
1

n

n∑
i=1

(η̂i − ¯̂ηn)(η̂i − ¯̂ηn)T

The following theorem establishes the asymptotic behavior of ln(β0)− Tnc.

3.1. Theorem. Under Conditions (C1) − (C9) in Section 5, if p3+4/(k−2)/n → 0, for
k ≥ 4, then we have

(ln(β0)− Tnc)/p
1
2 = op(1)

This theorem implies that using Tnc to approximate ln(β0) is equivalent to using Kn

or Tn from the asymptotic viewpoints. However, these approximations exhibit quite
di�erent �nite-sample behaviors, especially when p/n is not small. Based on some sim-
ulations, we �nd that Tnc is amazingly close to ln(β0) regardless of the choices of (n, p)

in the sense that (ln(β0) − Tnc)/p
1
2 = op(1) is always pretty small. To appreciate this,

Fig.1 shows the scatter plots of 200 simulated values of (ln(β0), Tn) and (ln(β0), Tnc) for
the model(4.1) with the εi ∼ N(0, 1). We choose p=10, 16 for n=200. From Fig.1, we
can see that the value of (ln(β0), Tnc) are always around the line y = x, but Tn tends to
under-approximate ln(β0). See Sect.4 for more analysis and comparison.

Given the foregoing discussion and evidence, we expect that the expectation and
variance of Tnc are good approximations of En and Vn, respectively. Let (Ên2, V̂n2) be
the moment estimation of (En, Vn). We may calculate critical values according to

(3.3) ln(β0)−An/
√
Bn

d−→ N(0, 1)

where (An, Bn) could be chosen as (p, 2p) or (Êni, V̂ni)(i = 1, 2). We will show that the

method based on (Ên2, V̂n2) is the best. Hence, it is our �nal recommendation.

4. Numerical Analysis

Here we report a simulation study designed to evaluate the performance of the pro-
posed calibration method of BCEL. Throughout this section, we use the Epanechnikow
kernel K(u) = 0.75(1 − u2)+, and use the "leave-one-out" cross-validation method to
select the optimal bandwidth hopt.

Consider the following semiparametric varying-coe�cient partially linear model

(4.1) Yi = Xi
Tα(Ui) + ZT

i β + εi, i = 1, . . . , n

In our simulations, β = [0.5, 0.3,−0.5, 1, 0.1,−0.25, 0, . . . , 0]T, the covariate Ui is uni-
formly distributed on [0, 1], the nonparametric component α(u) = (α1(u), α2(u))T with
α1(u) = 4 + sin(2πu), α2(u) = 2u(1 − u), Xi = (Xi1, Xi2)T with Xi1 = 1 and Xi2 ∼
N(0, 1), the covariates Zi is a p-dimensional normal random vector with mean zero and

covariance matrix (σij) with σij = 0.5|i−j|.
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Fig.1. Scatter plots of n simulated values (ln(β0), Tn) (triangles),
(ln(β0), Tnc) (circles) for the model (4.1) with (a) n=200 and p=10,
(b) n=200 and p=16. The solid line is y = x.

4.1. Simulation I. For this simulation, we evaluate the asymptotic normality of BCEL
ratio using the following methods. The proposed method is based on the calibrated ln(β0)
with the sample mean and variance of Tnc obtained from 500 Bootstrap samples for each
simulation data set(denoted as MEL). The normal calibration is based on the calibrated
ln(β0) with the sample mean and variance of Tn obtained from 500 Bootstrap samples for
each simulation data set(denoted as SEL). And the standard normal calibration is base
on the calibrated ln(β0) with (An, Bn) = (p, 2p)(denoted as STEL). Through QQ-plots,
we will demonstrate the advantages of MEL in di�erent growth rates of p for each sample
size. Here we only consider the case of noise εi ∼ N(0, 1).

We draw 1000 random samples of size 200, 400 or 600 from model (4.1). For com-

parison, we here take the dimensionality of the parametric component as p = [cn1/3].
By assigning c = 1.8, 2.8 and 3.8, the corresponding dimensions p = 10, 16 and 22 for
n = 200; p = 13, 20 and 27 for n = 400; p = 15, 23 and 32 for n = 600. The results are
reported in Fig.2.

From Fig 2., we can observe from the QQ-plots that the MEL outperforms better than
SEL and STEL as n increases or p decreases. Therefore, the MEL can be regarded as a
reasonable alternative for the calibration of the BCEL in practice.



236

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,10)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,10)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,10)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,16)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,16)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,16)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,22)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,22)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,22)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,13)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,13)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,13)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,20)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,20)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,20)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,27)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,27)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,27)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,15)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,15)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,15)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,23)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,23)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,23)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4
(n,p)=(600,32)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4
(n,p)=(600,32)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4
(n,p)=(600,32)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

Fig.2. Normal QQ-plots of the BCEL ratio with εi ∼ N(0, 1) :
MEL(black and − ◦ −), SEL(red and ·� ·), STEL(blue and − · ∗ · −)

4.2. Simulation II. In this simulation, We draw 1000 random samples of size 200, 400
and 600, respectively. The choice of (n, p) is the same as Simulation I. As for noise, two
error distributions were chosen: (i) the standard normal distribution; (ii) the chi-square
distribution with freedom 3.

In this simulation, we will compare four calibration methods for the BCEL. Besides
the MEL, SEL and STEL methods mentioned in Section 4.1, there also consider the
ordinary χ2

p calibration(denoted as OEL). Talbes 1 and 2 report the coverage probability
comparison for constructing con�dence region on parameter β with nominal level 0.95.

It can be concluded from Tables 1 and 2 that the empirical coverage probabilities
based on MEL are higher than that based on OEL, STEL and SEL. Especially for the
case of n = 600, p = 15 and εi ∼ N(0, 1), the coverage probabilities of MEL is closed to
the nominal level. Thus the calibration method of MEL is a good alternative. We can
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Table 1. Coverage percentages for model (4.1) with the εi ∼ N(0, 1)

n p MEL OEL SEL STEL Ên1 V̂n1 Ên2 V̂n2

200 10 0.920 0.838 0.846 0.854 10.67 19.15 11.69 25.80
16 0.838 0.726 0.756 0.750 17.23 26.81 19.04 37.04
22 0.764 0.552 0.593 0.615 23.46 38.75 26.79 56.09

400 13 0.937 0.899 0.910 0.914 13.24 26.39 13.81 29.77
20 0.925 0.846 0.864 0.842 20.42 31.33 21.94 53.69
27 0.841 0.741 0.777 0.789 27.98 51.72 30.24 58.93

600 15 0.936 0.898 0.904 0.911 15.36 29.69 15.62 37.41
23 0.921 0.873 0.893 0.899 23.98 42.90 24.10 50.65
32 0.896 0.836 0.872 0.849 32.88 54.57 34.72 64.91

Table 2. Coverage percentages for model (4.1) with the εi ∼ χ2
3

n p MEL OEL SEL STEL Ên1 V̂n1 Ên2 V̂n2

200 10 0.863 0.796 0.810 0.821 11.01 17.60 11.38 22.29
16 0.803 0.694 0.721 0.698 16.73 25.31 18.27 34.76
22 0.755 0.576 0.610 0.599 23.32 33.63 26.08 57.37

400 13 0.908 0.878 0.889 0.866 13.34 20.50 14.05 27.17
20 0.844 0.772 0.798 0.763 20.45 31.61 22.07 41.41
27 0.828 0.692 0.728 0.720 27.68 47.28 29.80 61.13

600 15 0.916 0.868 0.888 0.878 15.46 26.70 16.08 33.56
23 0.890 0.852 0.869 0.871 23.83 43.75 24.62 47.74
32 0.839 0.745 0.785 0.776 33.07 53.54 34.60 64.03

also observed from Table 1 and Table 2 that the MEL has improving coverage accuracy
along with the increasing sample size. However, when the dimension p increases, the
coverage probabilities of both MEL, OEL, STEL and SEL decrease. When n = 200 and
p = 22, the performances of OEL, SEL and STEL are unacceptable. In comparison, our
proposed method, MEL, can always attain the desired coverage percent and outperform
the other three methods. The advantages get more remarkable when n decreases or p
increases.

5. Proof of main results

Throughout the paper, we denote γ1(A) ≤ · · · ≤ γp(A) as the eigenvalues and tr(A)
as the trace operator of a matrix A. To derive our main results, the following conditions
required to be made.

(C1) The random variable U has a compact support Ω. The density function fU (u) of
the U has a continuous second derivative and is uniformly bounded away from zero.
(C2) The q × q matrix E(XXT|U = u) is non-singular for each U ∈ Ω. Furthermore,

E(XXT|U = u)
−1

and E(XZ|U = u) are all Lipschitz continuous and each element of

E(XXT |U = u)
−1

and E(XZ|U = u) is bounded.
(C3) {αi(·), i = 1, . . . , q} has continuous second derivatives in u ∈ Ω.
(C4) The kernel K(·) is bounded symmetric density function with bounded support.
(C5) The bandwidth h satis�es that nh6 → 0 and nh3/(log(n))3 →∞.

(C6) Σ = E[ε2(Z − µT(U)X)(Z − µT(U)X)
T

] is a positive de�nite matrix with all the
eigenvalues being uniformly bounded away from zero and in�nity.
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(C7) For some integer k ≥ 4, E(‖ Xε ‖k) <∞, E(‖ X ‖k) <∞, E(‖ ε ‖k) <∞.
(C8) Let η = ε(Z − µT(U)X), and ηj be the j-th component of η, j = 1 . . . p. For k of
condition (C7), there is a positive constant c such that

E(‖ η√p ‖k) < c,E(‖ ZXT/
√
p ‖k) < c,E(‖ µ(U)XXT/

√
p ‖k) < c

and

1

p

p∑
l1=1

E(| ηl1 |(‖ ZX
T/
√
p ‖4 + ‖ µ(U)XXT/

√
p ‖4)) < c

.
(C9) max1≤l1,l2,l3≤pE(ηl1ηl2ηl3)2 is bounded, where ηli are the components of η.

In order to prove the main results, we introduce the following notations. Simple
calculation yields that

(5.1) η̂i(β) = ηi(β) +
3∑
k=1

Mi,k =: ηi(β) +Ri

where

ηi(β) = (Zi − µT(Ui)Xi)(Yi −XT
i α(Ui)− ZT

i β) = (Zi − µT(Ui)Xi)εi

Mi,1 = (Zi − µT(Ui)Xi)X
T
i (α(Ui)− α̂(Ui, β))

Mi,2 = (µ(Ui)− µ̂(Ui))
TXiεi

Mi,3 = [(µ(Ui)− µ̂(Ui))
TXi][X

T
i (α(Ui)− α̂(Ui, β))]

5.1. Lemma. Suppose that Conditions (C1)-(C5) hold. If h → 0 and nh → ∞ as

n→∞, then letting cn = { logn
nh
}1/2 + h2 and dn = { logn

nh
}1/2,

sup
u∈Ω

1

n

n∑
i=1

Kh(Ui − u)

(
Ui − u
h

)l
Xijεi = Op(dn)

sup
u∈Ω

∣∣∣∣ 1n
n∑
i=1

Kh(Ui − u)

(
Ui − u
h

)l
Xij1Xij2 − f(u)µ1Γj1j2(u)

∣∣∣∣ = Op(cn)

sup
u∈Ω

∣∣∣∣ 1n
n∑
i=1

Kh(Ui − u)

(
Ui − u
h

)l
XijZik − f(u)φjk(u)

∣∣∣∣ = Op(cn)

where j1, j2, j = 1, . . . , q, k = 1, . . . , p, l = 0, 1, 2, 4, Γj1j2(u) is the (j1, j2)-th the element

of Γ(u) and φjk(u) is the (j, k)-th element of φ(u).

We refer to Xia and Li [14] for details.

5.2. Lemma. Under the Conditions of Lemma 5.1, we have,

(5.2) ‖ α̂(u, β)− α(u) ‖= Op(cn)

and

(5.3) max
1≤j≤q

sup
u∈Ω
| α̂j(u, β)− αj(u) |= Op(cn)

holds uniformly in u ∈ Ω, the support of U .

Proof. We �rst give the proof of (5.2). Let

Sn,l =

n∑
i=1

Kh(Ui − u)XiX
T
i

(
Ui − u
h

)l
, l = 0, 1, 2
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Then, we can rewrite

DT
uWuDu =

(
Sn,0 Sn,1
Sn,1 Sn,2

)
The elements of the above matrix are in the form of a kernel regression. From Lemma
5.1 and some simple calculation, we have

(5.4) Sn,l = nf(u)µlΓ(u)(1 +Op(cn))

holds uniformly in u ∈ Ω. So

(5.5) α̂(u, β) = [nf(u)Γ(u)]−1
n∑
i=1

Kh(Ui − u)Xi{XT
i α(Ui) + εi}+Op(cn)

Applying Lemma 5.1 and (5.4), we can easily get

(5.6)
1

n

n∑
i=1

Kh(Ui − u)XiX
T
i α(Ui) = f(u)Γ(u)α(u){1 +Op(cn)}

and

(5.7)
1

n

n∑
i=1

Kh(Ui − u)Xiεi = op(1)

holds uniformly in u ∈ Ω. From (5.5)-(5.7), α̂(u, β) = α(u) + Op(cn) holds uniformly in
u ∈ Ω. This completes the proof of (5.2).

By the similar method of Xia and Li [14], we can conclude the result (5.3), so we omit
the details here. �

5.3. Lemma. Under the Conditions of Lemma 5.1, we have∣∣∣∣∣∣∣∣ 1√
n

n∑
i=1

Ri

∣∣∣∣∣∣∣∣ = Op(n
1/2p1/2c2n)

where Ri =
∑3
k=1 Mi,k can be found in (5.1).

The proof of Lemma 5.3 is similar as that of Lemma B.3 in Li et al. [5].

5.4. Lemma. Under conditions (C1)-(C8), we have

(5.8) tr[(Snc − Σ)2] = Op(p
2(c4n + 1/n))

Proof. From the de�nition of ηi and Snc, we can get

Snc − Σ =
1

n

n∑
i=1

ηiη
T
i +

1

n

n∑
i=1

(Riη
T
i + ηiR

T
i +RiR

T
i )− ¯̂ηn ¯̂η

T
n = J1 + J2 + J3

It is easy to see that

tr[(Snc − Σ)2] =tr[(J1 + J2 + J3)2] ≤ 4tr[(J1)2] + 4tr[(J2)2] + 2tr[(J3)2]

=I1 + I2 + I3

Thus, we know that

I1 = Op(p/n
2), I2 = Op(p

2c4n)

For I3, �rst we can get ¯̂ηn = Op(
√
p/n), then

I3 = tr[(¯̂ηn ¯̂η
T
n )2] = Op(p

3/n2) =
p

n
Op(p

2/n) = Op(p
2/n)

Therefore, we have

tr[(Snc − Σ)2] = I1 + I2 + I3 = Op(p
2/n) +Op(p

2c4n) +Op(p
2/n) = Op(p

2(c4n + 1/n))

The proof is complete. �
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5.5. Lemma. Under conditions (C1)-(C8), if p3+4/(k−2)/n→ 0, we have

(5.9) n

{(
1

n

n∑
i=1

η̂i

)T

(S−1
nc − Σ−1)

(
1

n

n∑
i=1

η̂i

)}
= op(p

1/2)

Proof. Let D̂n = Σ−1/2SncΣ
−1/2− Ip, similar arguments used in the proof of Lemma 6

in Chen et al. [2] yield

S−1
nc − Σ−1 =Σ−1/2(Σ1/2S−1

n Σ1/2 − Ip)Σ−1/2

=Σ−1/2[−D̂n + D̂2
n + D̂2

n{Σ1/2S−1
n Σ1/2 − Ip}]Σ−1/2

Note that

tr((Snc − Σ)2) =tr((Σ1/2(Σ−1/2SnΣ−1/2 − Ip)Σ1/2)2)

=tr(D̂nΣD̂nΣ)

≥γ2
1(Σ)tr(D̂2

n)

By Lemma 5.4 , we have

tr(D̂2
n) ≤ 1

γ2
1(Σ)

tr((Snc − Σ)2) = Op(p
2(c4n + 1/n))

Thus, we have

(5.10)

tr(S−1
nc − Σ−1)2 ≤ 2tr{Σ−2(−D̂n + D̂2

n)2}+ 2tr{D̂4
n(S−1

nc − Σ−1)2}

≤ 2tr{Σ−2(−D̂n + D̂2
n)2}+ 2[trD̂2

n]2tr{(S−1
nc − Σ−1)2}

= 2tr{Σ−2(−D̂n + D̂2
n)2}+ op(tr{(S−1

nc − Σ−1)2})

= op(p
2(c4n + 1/n))

Then

(5.11)

∥∥∥∥∥ 1

n

n∑
i=1

η̂T
i

∥∥∥∥∥ = Op(
√
p/n)

This together with p3+4/(k−2)/n→ 0, c2n = o(1/
√
n) and condition (C5), we can obtain

n

{(
1

n

n∑
i=1

η̂i

)T

(S−1
nc − Σ−1)

(
1

n

n∑
i=1

η̂i

)}
≤ n

∥∥∥∥∥ 1

n

n∑
i=1

η̂T
i

∥∥∥∥∥
2√

tr(S−1
nc − Σ−1)2

= op(p
2(c2n + 1/

√
n))

= op(p
1/2)

The proof is �nished. �

Proof of Theorem 3.1 Applying the Taylor expansion to (2.9) and invoking Lemmas
5.3-5.5, we obtain that

ln(β0) = 2

n∑
i=1

log(1 + λTη̂i(β)) =n
{

¯̂η
T
nΣ−1 ¯̂ηn

}
+ op(p1/2)

=n
{

¯̂η
T
n (Σ−1 − S−1

nc )¯̂ηn

}
+ n

{
¯̂η
T
nS
−1
nc

¯̂ηn

}
+ op(p1/2)

From Lemma 5.4, we have

n
{

¯̂η
T
n (Σ−1 − S−1

nc )¯̂ηn

}
= op(p1/2)
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So

ln(β0) − Tnc

p1/2
=
n
{

¯̂ηT
n(Σ−1 − S−1

nc )¯̂ηn
}

+ n
{

¯̂η
T
nS
−1
nc

¯̂ηn

}
+ op(p1/2) − n

{
¯̂η
T
nS
−1
nc

¯̂ηn

}
p1/2

=
n
{

¯̂η
T
n (Σ−1 − S−1

nc )¯̂ηn

}
p1/2

=op(1)

The proof is complete. �
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