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On quasi-contractions in metric spaces with a
graph
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Abstract

In the present work, we introduce G-quasi-contractions using directed
graphs in metric spaces with a graph and we show that this contrac-
tion generalizes a large number of contractions. We then investigate
the existence of �xed points for G-quasi-contractions under two dif-
ferent conditions and discuss the main theorem. Finally, we list some
consequences of our theorem where either the contractive condition is
replaced with a stronger one or the underlying space is changed to a
complete metric space or a complete cone metric space.
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1. Introduction and Preliminaries

In 1974, Lj. B. �iri¢ [9] introduced (single-valued) quasi-contractions in metric spaces
and gave an example to show that this new contraction is a real generalization of some
well-known linear contractions. He investigated the existence and uniqueness of �xed
points for quasi-contractions in T -orbitally complete metric spaces via a di�erent ap-
proach rather than using merely the iterates of a point. He also introduced multi-valued
quasi-contractions and showed that a similar result is valid for these contractions in
F -orbitally complete metric spaces.

In [21], B. E. Rhoades compared various de�nitions of contractive mappings in metric
spaces and showed that �iri¢'s contractive condition is one of the most general contractive
de�nitions in metric spaces and includes a large number of di�erent types of contractions.
Thus, many authors became interested in studying quasi-contractions. The existence and
uniqueness of �xed points for these contractions as well as some interesting properties
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of them have been investigated not only in metric spaces but in di�erent spaces such as
modular spaces (see, e.g., [17]) and cone metric spaces (see, e.g., [13, 15, 16, 20]) so far.
Quasi-contractions have also been studied in Banach spaces (see, e.g., [10]).

The most important graph theory approach to metric �xed point theory introduced
so far is attributed to J. Jachymski [14]. In this approach, the underlying metric space
is equipped with a directed graph and the Banach contraction is formulated in a graph
language. Using this simple but very interesting idea, J. Jachymski generalized several
well-known versions of Banach contraction principle in metric spaces simultaneously and
from various aspects. As an application, he proved the Kelisky-Rivlin theorem on the
iterates of the Bernstein operators de�ned on the Banach space of continuous functions
on [0, 1]. In the recent years, many authors followed J. Jachymski's idea to formulate
di�erent types of contractions via directed graphs in metric spaces and generalized the
concerned �xed point theorems (see, e.g. [1, 2, 3, 6]).

The main goal of this paper is to formulate single-valued quasi-contractions in metric
spaces with a graph and �nd su�cient conditions which guarantee the existence of a �xed
point. A large number of di�erent types of contractive mappings formulated using di-
rected graphs satisfy the presented contractive condition and our main result is a natural
generalization of [9, Theorem 1] from metric spaces to metric spaces with a graph.

We start by reviewing a few basic notions in graph and �xed point theory that are
frequently used in the paper. For more details on graphs, the reader is refered to [4].

In an arbitrary (not necessarily simple) graph G, a link is an edge of G with distinct
ends and a loop is an edge of G with identical ends. Two or more links of G with the
same pairs of ends are called parallel edges of G.

Suppose that (X, d) is a metric space and G is a directed graph whose vertex set V (G)
coincides with X and edge set E(G) contains all loops (note that in general, G can have
uncountably many vertices). Suppose further that G has no parallel edges. In this case,
(X, d) is called a metric space with the graph G.

By G−1, it is meant the conversion of G as usual, i.e. a directed graph obtained
from G by reversing the directions of the edges of G, and by G̃, it is always meant the
undirected graph obtained from G by ignoring the directions of the edges G. Thus, it is
clear that V (G−1) = V (G̃) = V (G) = X and we have

E(G−1) =
{
(x, y) ∈ X ×X : (y, x) ∈ E(G)

}
and E(G̃) = E(G) ∪ E(G−1).

If (X,4) is a partially ordered set, then by comparable elements of (X,4), it is meant
two elements x, y ∈ X satisfying either x 4 y or y 4 x, and following A.C.M. Ran and
M.C.B. Reurings [19, Theorem 2.1], a mapping T : X → X is called order-preserving
whenever x 4 y implies Tx 4 Ty for all x, y ∈ X. Furthermore, following the idea of A.
Petru³el and I.A. Rus in L-spaces [18, De�nitions 3.1 and 3.6] (see also [23]), one can
naturally formulate Picard and weakly Picard operators in metric spaces as follows:

1.1. De�nition ([14, 18, 23]). Let (X, d) be a metric space and T : X → X be a
mapping.

a) T is called a Picard operator if T has a unique �xed point x? ∈ X and Tnx→ x?

for all x ∈ X.
b) T is called a weakly Picard operator if {Tnx} is a convergent sequence and its

limit (which depends on x) is a �xed point of T for all x ∈ X.

Finally, we need a weaker type of continuity de�ned in metric spaces with a graph
which was �rst introduced by J. Jachymski (see [14, De�nition 2.4]). The idea of this
de�nition comes from the de�nition of orbital continuity de�ned by Lj. B. �iri¢ [8].

1.2. De�nition ([14]). Let (X, d) be a metric space with a graph G. A mapping T :
X → X is called orbitally G-continuous on X if T bnx → y implies T (T bnx) → Ty for
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all x, y ∈ X and all sequences {bn} of positive integers such that (T bnx, T bn+1x) ∈ E(G)
for all n ∈ N.

2. Main Results

Let (X, d) be a metric space with a graph G and let T : X → X be a mapping. In
this section, by CT , we mean the set of all points x ∈ X such that (Tmx, Tnx) is an edge
of G̃ for all m,n ∈ N ∪ {0}, i.e.

CT =
{
x ∈ X : (Tmx, Tnx) ∈ E(G̃) m,n = 0, 1, . . .

}
.

Note that CT may be an empty set. For instance, consider the set R of all real numbers
with the usual Euclidean metric and a graph G given by V (G) = R and E(G) = {(x, x) :
x ∈ R}. If T : R → R is de�ned by the rule Tx = x + 1 for all x ∈ R, then it is easily
seen that CT = ∅.

Given x ∈ X and n ∈ N ∪ {0}, the n-th orbit of x under T is denoted by O(x;n), i.e.

O(x;n) = {x, Tx, . . . , Tnx}.
Finally, if A is a subset of X, then by diam(A), it is meant the diameter of A in X,

i.e.
diam(A) = sup

{
d(x, y) : x, y ∈ A

}
.

Following the idea of S.M.A. Aleomraninejad et al. [1], we say that G is a (C̃)-graph
whenever the triple (X, d,G) has the following property:

If x ∈ X and {xn} is a sequence in (X, d,G) such that xn → x and (xn, xn+1) ∈
E(G̃) for all n ∈ N, then there exists a subsequence {xnk} of {xn} such that
(xnk , x) ∈ E(G̃) for all k ∈ N.

Now, we are ready to give the de�nition of G-quasi-contractions in metric spaces with
a graph which is motivated by [9, De�nition 1] and [14, De�nition 2.1].

2.1. De�nition. Let (X, d) be a metric space with a graph G and T : X → X be a
mapping. We say that T a G-quasi-contraction if

Q1) T preserves the edges of G, i.e. (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G) for all
x, y ∈ X;

Q2) there exists a λ ∈ [0, 1) such that

d(Tx, Ty) ≤ λ ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
for all x, y ∈ X with (x, y) ∈ E(G).

We also call the number λ in (Q2) a quasi-contractive constant of T .

We now give some examples of G-quasi-contractions.

2.2. Example. Suppose that (X, d) is a metric space with a graph G and x0 ∈ X. It
is easy to verify that the constant mapping x 7→ x0 is a G-quasi-contraction. So the
cardinality of the set of all G-quasi-contractions de�ned on a metric space (X, d) with a
graph G is no less than the cardinality of X.

2.3. Example. Suppose that (X, d) is a metric space and T : X → X is a quasi-
contraction in the sense of Lj. B. �iri¢ [9, De�nition 1], i.e. there exists a λ ∈ [0, 1) such
that

(2.1) d(Tx, Ty) ≤ λ ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
for all x, y ∈ X. De�ne a graph G0 by V (G0) = X and E(G0) = X × X, i.e. G0 is
the complete graph whose vertex set coincides with X. Clearly, T preserves the edges of
G0 and (2.1) guarantees that T satis�es (Q2) for the complete graph G0. Thus, T is a
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G0-quasi-contraction. Hence G0-quasi-contractions on metric spaces with the graph G0

are precisely the quasi-contractions on metric spaces, and so G-quasi-contractions are a
generalization of quasi-contractions from metric spaces to metric spaces with a graph.

2.4. Example. Suppose that (X,4) is a partially ordered set and d is a metric on X.
De�ne a graph G1 by V (G1) = X and E(G1) = {(x, y) ∈ X ×X : x 4 y}. A mapping
T : X → X preserves the edges of G1 if and only if T is order-preserving, and T satis�es
(Q2) for the graph G1 if and only if there exists a λ ∈ [0, 1) such that

d(Tx, Ty) ≤ λ ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
for all comparable elements x, y ∈ X.

2.5. Example. Suppose that (X,4) is a partially ordered set and d is a metric on X.
De�ne a graph G2 by V (G2) = X and E(G2) = {(x, y) ∈ X × X : x 4 y ∨ y 4 x}.
A mapping T : X → X preserves the edges of G2 if and only if T maps comparable
elements of (X,4) onto comparable elements, and T satis�es (Q2) for the graph G2 if
and only if there exists a λ ∈ [0, 1) such that

(2.2) d(Tx, Ty) ≤ λ ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
for all comparable elements x, y ∈ X. In particular, if T is a G1-quasi-contraction, then
T is a G2-quasi-contraction. Hence G-quasi-contractions are a generalization of ordered
quasi-contractions from metric spaces equipped with a partial order to metric spaces with
a graph.

2.6. Example. Suppose that (X, d) is a metric space and ε > 0 is a �xed real number.
Recall that two elements x, y ∈ X are said to be ε-close if d(x, y) < ε. De�ne a graph
G3 by V (G3) = X and E(G3) = {(x, y) ∈ X ×X : d(x, y) < ε}. A mapping T : X → X
preserves the edges of G3 if and only if T maps ε-close elements of (X, d) onto ε-close
elements, and T satis�es (Q2) for the graph G3 if and only if there exists a λ ∈ [0, 1)
such that

(2.3) d(Tx, Ty) ≤ λ ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
for all ε-close elements x, y ∈ X.

Hereafter, we assume that the graphs G0, G1, G2 and G3 are as de�ned in Examples
2.3, 2.4, 2.5 and 2.6, respectively.

2.7. Remark. In the de�nitions of (C̃)-graph and the set CT , let's set G the special
graphs G0, G1, G2 and G3. Then we obtain the following special cases:

• The set CT related to the complete graph G0 coincides with X and G0 is a
(C̃)-graph.

• If 4 is a partial order on X, then the set CT related to the graph G1 (and also
G2) consists of all points x ∈ X whose every two iterates under T are comparable
elements of (X,4). In addition, G1 (and also G2) is a (C̃)-graph whenever the
triple (X, d,4) has the following property:
(∗) If {xn} is a sequence in (X, d) converging to an x ∈ X whose successive

terms are pairwise comparable elements of (X,4), then there exists a sub-
sequence of {xn} whose terms and x are comparable elements of (X,4).

• If ε > 0, then the set CT relative to the graph G3 consists of all points x ∈ X
whose every two iterates under T are ε-close elements of (X, d). In addition, G3

is a (C̃)-graph. Indeed, if {xn} is a sequence in (X, d) converging to an x ∈ X,
then for su�ciently large indices n, say n ≥ N , we have d(xn, x) < ε. Therefore,
{xn+N} is a subsequence of {xn} whose terms and x are ε-close elements of
(X, d).
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2.8. Example. Suppose that (X, d) is a metric space with a graph G and T : X → X is
a Banach G-contraction in the sense of J. Jachymski [14, De�nition 2.1], i.e. T preserves
the edges of G and there exists an α ∈ (0, 1) such that

d(Tx, Ty) ≤ αd(x, y)

for all x, y ∈ X with (x, y) ∈ E(G). If (x, y) ∈ E(G), then

d(Tx, Ty) ≤ αd(x, y) ≤ α ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
.

Therefore, T satis�es (Q2) and so T is a G-quasi-contraction. Hence every G-contraction
is a G-quasi-contraction.

2.9. Example. Suppose that (X, d) is a metric space with a graph G and T : X → X
is a G-Kannan mapping in the sense of F. Bojor [2, De�nition 4], i.e. T preserves the
edges of G and there exists an α ∈ [0, 1

2
) such that

d(Tx, Ty) ≤ α
(
d(x, Tx) + d(y, Ty)

)
for all x, y ∈ X with (x, y) ∈ E(G). If (x, y) ∈ E(G), then

d(Tx, Ty) ≤ α
(
d(x, Tx) + d(y, Ty)

)
≤ 2α ·max

{
d(x, Tx), d(y, Ty)

}
≤ 2α ·max

{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
.

Therefore, T satis�es (Q2) and so T is a G-quasi-contraction. Hence every G-Kannan
mapping is a G-quasi-contraction.

2.10. Example. Suppose that (X, d) is a metric space with a graph G and T : X → X
is a G-Chatterjea mapping in the sense that T preserves the edges of G and there exists
an α ∈ [0, 1

2
) such that

d(Tx, Ty) ≤ α
(
d(x, Ty) + d(y, Tx)

)
for all x, y ∈ X with (x, y) ∈ E(G) (see [5, 21] for the de�nition in metric spaces). If
(x, y) ∈ E(G), then an argument similar to that appeared in Example 2.9 establishes
that

d(Tx, Ty) ≤ 2α ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
.

Therefore, T satis�es (Q2) and so T is a G-quasi-contraction. Hence every G-Chatterjea
mapping is a G-quasi-contraction.

2.11. Example. Suppose that (X, d) is a metric space with a graph G and T : X → X
is a G-�iri¢-Reich-Rus operator in the sense of F. Bojor [3, De�nition 7], i.e. T preserves
the edges of G and there exist a, b, c ≥ 0 with a+ b+ c < 1 such that

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty)

for all x, y ∈ X with (x, y) ∈ E(G). If (x, y) ∈ E(G), then an argument similar to that
appeared in Example 2.9 establishes that

d(Tx, Ty) ≤ (a+ b+ c) ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
.

Therefore, T satis�es (Q2) and so T is a G-quasi-contraction. Hence every G-�iri¢-Reich-
Rus operator is a G-quasi-contraction.

Now, suppose that T : X → X is a �iri¢-Reich-Rus G-contraction in the sense of C.
Chifu and G. Petru³el [6, De�nition 2.2], i.e. T preserves the edges of G and there exist
α, β, γ > 0 with α+ β + γ < 1 such that

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty)
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for all x, y ∈ X with (x, y) ∈ E(G). Then by a similar argument, one can easily see that
T is a G-quasi-contraction. Hence every �iri¢-Reich-Rus G-contraction is a G-quasi-
contraction.

2.12. Example. Suppose that (X, d) is a metric space and T : X → X is a λ-generalized
contraction in the sense of Lj. B. �iri¢ [7, De�nition 2.1], i.e. for all x, y ∈ X, there exist
four functions q, r, s, t : X ×X → [0,∞) with

sup
{
q(x, y) + r(x, y) + s(x, y) + 2t(x, y) : x, y ∈ X ×X

}
= λ < 1

such that

d(Tx, Ty) ≤ q(x, y)d(x, y) + r(x, y)d(x, Tx) + s(x, y)d(y, Ty)

+ t(x, y)
(
d(x, Ty) + d(y, Tx)

)
for all x, y ∈ X. In 1979, B. E. Rhoades [22] studied a more general form of λ-generalized
contractions (where the terms d(x, Ty) and d(y, Tx) have di�erent coe�cients) in se-
quentially complete uniform spaces via entourages and the Minkowski's pseudometrics
corresponding to them. One can combine �iri¢'s and Rhoades' ideas with Jachymski's
idea and formulate G-λ-generalized contractions in metric spaces with a graph as follows:

Let (X, d) be a metric space with a graph G. A mapping T : X → X is called
a G-λ-generalized contraction if T preserves the edges of G and there exist �ve
functions a1, a2, a3, a4, a5 : X ×X → [0,∞) with

(2.4) sup
{
a1(x, y) + a2(x, y) + a3(x, y) + a4(x, y) + a5(x, y) : x, y ∈ X ×X

}
= λ < 1

such that

d(Tx, Ty) ≤ a1(x, y)d(x, y) + a2(x, y)d(x, Tx) + a3(x, y)d(y, Ty)

+ a4(x, y)d(x, Ty) + a5(x, y)d(y, Tx)

for all x, y ∈ X with (x, y) ∈ E(G).

Now, suppose that (X, d) is a metric space with a graph G and T : X → X is a G-λ-
generalized contraction. If (x, y) ∈ E(G), then an argument similar to that appeared in
Example 2.9 establishes that

d(Tx, Ty) ≤
( 5∑

i=1

ai(x, y)
)
·max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty), d(y, Tx)
}

≤ λ ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
,

where a1, a2, a3, a4, a5 : X × X → [0,∞) satisfy (2.4). Therefore, T satis�es (Q2) and
so T is a G-quasi-contraction. Hence every G-λ-generalized contraction (in particular,
every λ-generalized contraction) is a G-quasi-contraction.

2.13. Example. Suppose that E is a nontrivial real Banach space and P is a closed
cone in E such that P ∩ (−P ) = {0}. It is well-known that P induces a partial order �P

on E given by
a �P b ⇔ b− a ∈ P (a, b ∈ E).

Assume that d : X × X → E is a cone metric on X and (X, d) is a cone metric space
(see [12, De�nition 1]). In 2010, W. -S. Du [11] showed that if the underlying cone P has
nonempty interior and ξe : E → R is the nonlinear scalarization function de�ned by

ξe(a) = inf
{
t ∈ R : a ∈ te− P

}
(a ∈ E),

where e is an interior point of P , then the function ρe : X ×X → R given by

(2.5) ρe(x, y) = ξe
(
d(x, y)

)
(x, y ∈ X)
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de�nes a metric on X, and the natural (cone) topology on X induced by the cone metric
d and the metric topology on X induced by the metric ρe coincide (see [11, Theorems
2.1 and 2.2]).

Now, suppose that T : (X, d) → (X, d) is a quasi-contraction in the sense of D. Ili¢
and V. Rako£evi¢ [13, De�nition 1.2], i.e. there exists a λ ∈ (0, 1) such that

d(Tx, Ty) �P λ · ux,y

for all x, y ∈ X and some

ux,y ∈
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
.

Suppose further that the underlying cone P has nonempty interior and pick an interior
point e of P . If x, y ∈ X, since ξe is positively homogeneous (i.e. a ∈ E and t ≥ 0 imply
ξe(ta) = tξe(a)) and nondecreasing (i.e. a, b ∈ E and a �P b imply ξe(a) ≤ ξe(b)) on E
(see [11, Lemma 1.1(v) and (vi)]), it follows that

ρe(Tx, Ty) = ξe
(
d(Tx, Ty)

)
≤ ξe(λ · ux,y)

= λ · ξe(ux,y)

≤ λ ·max
{
ξe
(
d(x, y)

)
, ξe
(
d(x, Tx)

)
, ξe
(
d(y, Ty)

)
,

ξe
(
d(x, Ty)

)
, ξe
(
d(y, Tx)

)}
= λ ·max

{
ρe(x, y), ρe(x, Tx), ρe(y, Ty), ρe(x, Ty), ρe(y, Tx)

}
.

Therefore, T : (X, ρe) → (X, ρe) is also a quasi-contraction and in particular, a G0-
quasi-contraction. Hence every quasi-contraction on a cone metric space is a G0-quasi-
contraction whose domain is a suitable metric space with the complete graph G0 provided
that the underlying cone has nonempty interior.

The following proposition is an immediate consequence of the de�nition of G-quasi-
contractions and gives a simple procedure to construct new G-quasi-contractions from
older ones.

2.14. Proposition. Let (X, d) be a metric space with a graph G and T : X → X be a
mapping.

a) If T preserves the edges of G, then T preserves the edges of G−1 and G̃.
b) If T satis�es (Q2) for the graph G, then T satis�es (Q2) for both the graphs G−1

and G̃.
c) If T is a G-quasi-contraction with a quasi-contractive constant λ ∈ [0, 1), then T

is both a G−1-quasi-contraction and a G̃-quasi-contraction with a quasi-contractive
constant λ.

To prove the existence of a �xed point for a G-quasi-contraction in a complete metric
space with a graph, we need some lemmas. The �rst one is the graph version of [9,
Lemma 1] proved by Lj. B. �iri¢ and the proof appears here is very similar to �iri¢'s
proof. Nevertheless, for convenience of the reader, we repeat the detailed proof here.

2.15. Lemma. Let (X, d) be a metric space with a graph G and T : X → X be a
G-quasi-contraction with a quasi-contractive constant λ. Then

d(T ix, T jx) ≤ λ · diam
(
O(x;n)

)
i, j = 1, . . . , n

for all x ∈ CT and all n ∈ N.
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Proof. Let x ∈ CT and n ∈ N be given. If i and j are arbitrary positive integers no
more than n, then (T i−1x, T j−1x) ∈ E(G̃). By Proposition 2.14(c), T is also a G̃-quasi-
contraction with a quasi-contractive constant λ. In particular, T satis�es (Q2) for the
graph G̃. Therefore,

d(T ix, T jx) = d(TT i−1x, TT j−1x)

≤ λ ·max
{
d(T i−1x, T j−1x), d(T i−1x, T ix), d(T j−1x, T jx),

d(T i−1x, T jx), d(T j−1x, T ix)
}

≤ λ · diam
(
O(x;n)

)
. �

The next example shows that both the integers i and j must be positive in Lemma
2.15. In other words, neither i nor j is allowed to be zero.

2.16. Example. Consider the set R of real numbers with the usual (Euclidean) metric
and the complete graph G0, and de�ne a mapping T : R → R by the rule Tx = x

2
for

all x ∈ R. Then T is a G0-quasi-contraction with a quasi-contractive constant λ = 1
2
. In

addition, Tnx = x
2n

and diam(O(x;n)) = |x|(1 − 1
2n

) for all x ∈ R and all n ∈ N ∪ {0}.
Now, let x0 be a positive real number and put n = 2, i = 0 and j = 1 in Lemma 2.15.
Then we have

|x0 − Tx0| =
x0
2
>
x0
2
·
(
1− 1

22
)
= λ · diam

(
O(x0; 2)

)
.

2.17. Lemma. Let (X, d) be a metric space with a graph G and T : X → X be a G-
quasi-contraction. Then for each x ∈ CT and each n ∈ N, there exists a positive integer
k no more than n such that

diam
(
O(x;n)

)
= d(x, T kx).

Proof. Let x ∈ CT and n ∈ N be given. If diam(O(x;n)) = 0, then O(x;n) is singleton.
In particular, x is a �xed point for T and d(T ix, T jx) = 0 for all i, j = 0, . . . , n. Thus,
the statement holds trivially for any positive integer k no more than n.

Otherwise, since O(x;n) is a �nite set, it follows that there exist distinct nonnegative
integers i and j no more that n such that diam(O(x;n)) = d(T ix, T jx). If both the
integers i and j are assumed to be positive, then from Lemma 2.15, we have

diam
(
O(x;n)

)
= d(T ix, T jx) ≤ λ · diam

(
O(x;n)

)
,

where λ ∈ [0, 1) is a quasi-contractive constant of T , a contradiction. Hence either i or j
must be zero and the proof is �nished. �

2.18. Remark. Combining Lemmas 2.15 and 2.17, one can easily obtain that if (X, d)
is a metric space with a graph G and T : X → X is a G-quasi-contraction with a quasi-
contractive constant λ, then for each x ∈ CT and each n ∈ N, there exists a positive
integer k no more than n such that

d(T ix, T jx) ≤ λ · diam
(
O(x;n)

)
= λ · d(x, T kx) i, j = 1, . . . , n.

2.19. Lemma. Let (X, d) be a metric space with a graph G and T : X → X be a
G-quasi-contraction with a quasi-contractive constant λ. Then

diam
(
O(x;n)

)
≤ 1

1− λ · d(x, Tx)

for all x ∈ CT and all n ∈ N ∪ {0}.
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Proof. Let x ∈ CT and n ∈ N ∪ {0} be given. If n = 0, since diam(O(x; 0)) = 0, there
remains nothing to prove. Otherwise, from Lemma 2.17, there exists a positive integer k
no more than n such that diam(O(x;n)) = d(x, T kx). Putting i = 1 and j = k in Lemma
2.15, we get

diam
(
O(x;n)

)
= d(x, T kx)

≤ d(x, Tx) + d(Tx, T kx)

≤ d(x, Tx) + λ · diam
(
O(x;n)

)
.

Now the inequality

diam
(
O(x;n)

)
≤ 1

1− λ · d(x, Tx)

follows immediately. �

2.20. Lemma. Let (X, d) be a metric space with a graph G and T : X → X be a
G-quasi-contraction. Then {Tnx} is Cauchy for all x ∈ CT .

Proof. Let x ∈ CT be given. If m,n ∈ N and m ≥ n ≥ 2, since Tn−1x ∈ CT , it follows
that putting i = m− n+ 1 and j = 1 in Lemma 2.15, we get

(2.6) d(Tmx, Tnx) = d(Tm−n+1Tn−1x, TTn−1x) ≤ λ · diam
(
O(Tn−1x;m− n+ 1)

)
,

where λ ∈ [0, 1) is a quasi-contractive constant of T . Moreover, by Lemma 2.17, there
exists a positive integer k no more than m− n+ 1 such that

(2.7) diam
(
O(Tn−1x;m− n+ 1)

)
= d(Tn−1x, T k+n−1x).

Because n ≥ 2, it follows that Tn−2x ∈ CT and so putting i = 1 and j = k+1 in Lemma
2.15 yields

d(Tn−1x, T k+n−1x) = d(TTn−2x, T k+1Tn−2x)

≤ λ · diam
(
O(Tn−2x;m− n+ 2)

)
.(2.8)

Finally, combining (2.6), (2.7) and (2.8), and using induction and Lemma 2.19, we obtain

d(Tmx, Tnx) ≤ λ · diam
(
O(Tn−1x;m− n+ 1)

)
= λ · d(Tn−1x, T k+n−1x)

≤ λ2 · diam
(
O(Tn−2x;m− n+ 2)

)
...

≤ λn · diam
(
O(x;m)

)
≤ λn

1− λ · d(x, Tx).

Letting m,n→∞, we �nd d(Tmx, Tnx)→ 0. Hence {Tnx} is Cauchy. �

Now we are ready to prove our main theorem on the existence of �xed points for
G-quasi-contractions in complete metric spaces with a graph.

2.21. Theorem. Let (X, d) be a complete metric space with a graph G and T : X → X
be G-quasi-contraction. Then the restriction of T to CT is a weakly Picard operator if
either T is orbitally G̃-continuous on X or G is a (C̃)-graph.

In particular, whenever T is orbitally G̃-continuous on X or G is a (C̃)-graph, T has
a �xed point in X if and only if CT 6= ∅.
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Proof. If CT = ∅, then there remains nothing to prove. So assume that CT is nonempty.
If x ∈ CT , since (Tmx, Tnx) ∈ E(G̃) for all m,n ∈ N ∪ {0}, it follows that Tx ∈ CT .
Thus, CT is T -invariant, i.e. T (CT ) ⊆ CT .

Now, let x ∈ CT be given. By Lemma 2.20, {Tnx} is a Cauchy sequence in X and
since (X, d) is complete, there exists an x? ∈ X (depending on x) such that Tnx → x?.
We show that x? is a �xed point for T .

To this end, note �rst that from x ∈ CT , we have (Tnx, Tn+1x) ∈ E(G̃) for all
n ∈ N ∪ {0}. If T is orbitally G̃-continuous on X, then Tnx → x? implies Tn+1x =
T (Tnx)→ Tx? and by uniqueness of the limit of convergent sequences in metric spaces,
we obtain Tx? = x?.

Otherwise, if G is a (C̃)-graph, since Tnx → x?, there exists a strictly increasing
sequence {nk} of positive integers such that (Tnkx, x?) ∈ E(G̃) for all k ∈ N. On the
other hand, if λ ∈ [0, 1) is a quasi-contractive constant of T , then by Proposition 2.14(c),
T is a G̃-quasi-contraction with a quasi-contractive constant λ. In particular, T satis�es
(Q2) for the graph G̃. Therefore,

d(Tnk+1x, Tx?) = d(TTnkx, Tx?)

≤ λ ·max
{
d(Tnkx, x?), d(Tnkx, Tnk+1x), d(x?, Tx?),

d(Tnkx, Tx?), d(x?, Tnk+1x)
}

(2.9)

for all k ∈ N. For a �xed positive integer k, one of the �ve terms appeared in the right
side of (2.9) is the maximum. So we consider the following �ve possible cases:

Case 1: If the �rst term is the maximum, then

d(Tnk+1x, Tx?) ≤ λ · d(Tnkx, x?);

Case 2: If the second term is the maximum, then

d(Tnk+1x, Tx?) ≤ λ · d(Tnkx, Tnk+1x);

Case 3: If the third term is the maximum, then

d(Tnk+1x, Tx?) ≤ λ · d(x?, Tx?)

≤ λ ·
(
d(x?, Tnk+1x) + d(Tnk+1x, Tx?)

)
.

Therefore,

d(Tnk+1x, Tx?) ≤ λ

1− λ · d(x
?, Tnk+1x) =

λ

1− λ · d(T
nk+1x, x?);

Case 4: If the forth term is the maximum, then

d(Tnk+1x, Tx?) ≤ λ · d(Tnkx, Tx?)

≤ λ ·
(
d(Tnkx, Tnk+1x) + d(Tnk+1x, Tx?)

)
.

Therefore,

d(Tnk+1x, Tx?) ≤ λ

1− λ · d(T
nkx, Tnk+1x);

Case 5: Finally, if the �fth term is the maximum, then

d(Tnk+1x, Tx?) ≤ λ · d(x?, Tnk+1x) = λ · d(Tnk+1x, x?).

Clearly, at least one of the above �ve cases happens for in�nitely many indices k.
Hence {Tnk+1x} has a subsequence converging to Tx?, and again by the uniqueness of
the limit of convergent sequences in metric spaces, we obtain Tx? = x?.

Finally, since CT contains all �xed points of T , it follows that x? ∈ CT . Consequently,
T |CT : CT → CT is a weakly Picard operator. �
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Before listing some important consequences of Theorem 2.21, it is worth having a
discussion on the hypotheses of Theorem 2.21.

2.22. Remark. In [9, Theorem 1], Lj. B. �iri¢ has used a weaker type of completeness
of metric spaces which had been de�ned by himself in [8] as follows:

Let (X, d) be a metric space and T : X → X be a mapping. The metric space
(X, d) is called T -orbitally complete if each Cauchy sequence of the iterates of a
point of X under T is convergent.

It is clear that every complete metric space (X, d) is T -orbitally complete for all
mappings T : X → X, but the converse is not true in general. For instance, the set Q
consisting of all rational numbers with the usual (Euclidean) metric is not a complete
metric space whereas Q is T -orbitally complete, where T : Q→ Q is de�ned by the rule
Tx = x

2
for all x ∈ Q.

The notion of T -orbital completeness of a metric space can be generalized to metric
spaces with a graph in several di�erent ways. However, by a subtle look at the proof
of Theorem 2.21, it is easily realized that we have only used the following weaker type
of T -orbital completeness (called, e.g., weak G̃-T -orbital completeness) in metric spaces
with a graph as follows:

Let (X, d) be a metric space with a graph G and T : X → X be a mapping.
The metric space (X, d) is called �weak G̃-T -orbitally complete" if for each x ∈
CT , the sequence {Tnx} is convergent whenever {Tnx} is Cauchy and satis�es
(Tnx, Tn+1x) ∈ E(G̃) for all n ∈ N.

Obviously, by replacing this new notion with the standard notion of completeness, a
new version of Theorem 2.21 is obtained.

2.23. Remark. By a subtle look at the proof of Theorem 2.21 in the case that the
mapping T is orbitally G̃-continuous on X, it is easily realized that not the whole but a
weaker type of the hypothesis of orbital G̃-continuity of T is used. Indeed, the sequence
{bn} of positive integers in De�nition 1.2 is replaced with the sequence {n}, i.e. the
sequence of all positive integers. Using this, a weaker type of orbital G̃-continuity (called,
e.g., weak orbital G̃-continuity) can be de�ned as follows:

Let (X, d) be a metric space with a graph G. A mapping T : X → X is called
�weakly orbitally G̃-continuous" on X if Tnx → y implies Tn+1x → Ty for all
x, y ∈ X such that (Tnx, Tn+1x) ∈ E(G̃) for all n ∈ N.

Obviously, by replacing this new notion with the notion of orbital G̃-continuity, The-
orem 2.21 is strengthened.

Now we present three important consequences of Theorem 2.21 where the graph G is
replaced with the special graphs. Firstly, we put G = G0 in Theorem 2.21 and we get
�iri¢'s �xed point theorem [9, Theorem 1] on single-valued quasi-contractions in complete
metric spaces instead of T -orbitally complete metric spaces as follows:

2.24. Corollary. Every quasi-contraction de�ned on a complete metric space is a Picard
operator.

Proof. Let (X, d) be a complete metric space and T : X → X be a quasi-contraction.
The set CT is nonempty because CT = X. Therefore, by Theorem 2.21, the mapping
T = T |CT is a weakly Picard operator. In particular, T has a �xed point in X. To see
that T is a Picard operator, it su�cies to show that T has a unique �xed point in X. To
this end, suppose that x? and x?? are two �xed points for T in X. Then from (2.1) we
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have

d(x?, x??) = d(Tx?, Tx??)

≤ λ ·max
{
d(x?, x??), d(x?, Tx?)︸ ︷︷ ︸

=0

, d(x??, Tx??)︸ ︷︷ ︸
=0

,

d(x?, Tx??)︸ ︷︷ ︸
=d(x?,x??)

, d(x??, Tx?)︸ ︷︷ ︸
=d(x??,x?)

}
= λ · d(x?, x??),

where λ ∈ [0, 1) is a constant. Hence d(x?, x??) = 0 or equivalently, x? = x??. �

2.25. Remark. By a subtle look at the proof of Corollary 2.24, and use an argument
similar to that appeared there, we see that both the ends of any link of G cannot be �xed
points for a G-quasi-contraction, i.e. if x 6= y, Tx = x and Ty = y, then (x, y) /∈ E(G).
Roughly speaking, no G-quasi-contraction can keep both the ends of a link of G �xed. In
particular, the following results on the number of the �xed points of G-quasi-contractions
are obtained:

• No quasi-contraction can have two distinct �xed points.
• If 4 is a partial order on X, then neither a G1-quasi-contraction nor a G2-quasi-
contraction can have two distinct �xed points which are comparable elements of
(X,4).

• If ε > 0, then no G3-quasi-contraction can have two distinct �xed points which
are ε-close elements of (X, d).

Secondly, we consider a partial order on the metric space (X, d) and put G = G1

or G = G2 in Theorem 2.21. Having done this, the following partially ordered version
of �iri¢'s �xed point theorem on ordered quasi-contractions in complete metric spaces
equipped with a partial order is obtained:

2.26. Corollary. Let (X,4) be a partially ordered set and d be a metric on X such that
(X, d) is a complete metric space. Let T : X → X be a mapping which maps comparable
elements of (X,4) onto comparable elements and satis�es (2.2). Then the restriction of
T to the set of all points x ∈ X whose every two iterates under T are comparable elements
of (X,4) is a weakly Picard operator if either T is orbitally G2-continuous on X or the
triple (X, d,4) satis�es (∗).

In particular, whenever T is orbitally G2-continuous on X or the triple (X, d,4)
satis�es (∗), T has a �xed point in X if and only if there exists an x ∈ X such than Tmx
and Tnx are comparable elements of (X,4) for all m,n ∈ N ∪ {0}.

Finally, we put G = G3 in Theorem 2.21 and we get the following version of �iri¢'s
�xed point theorem on quasi-contractions in complete metric spaces:

2.27. Corollary. Let (X, d) be a complete metric space and ε > 0 be a �xed real number.
Let T : X → X be a mapping which maps ε-close elements of (X, d) onto ε-close elements
and satis�es (2.3). Then the restriction of T to the set of all points x ∈ X whose every
two iterates under T are ε-close elements of (X, d) is a weakly Picard operator.

In particular, T has a �xed point in X if and only if there exists an x ∈ X such that
Tmx and Tnx are ε-close elements of (X, d) for all m,n ∈ N ∪ {0}.

Since Banach G-contractions, G-Kannan mappings, G-Chatterjea mappings, G-�iri¢-
Reich-Rus operators, �iri¢-Reich-Rus G-contractions and G-λ-generalized contractions
are all a G-quasi-contraction, we have also the following �xed point theorem for these
contractions as a consequence of Theorem 2.21:



1045

2.28. Corollary. Let (X, d) be a complete metric space with a graph G and T : X → X
be a Banach G-contraction (a G-Kannan mapping, a G-Chatterjea mapping, a G-�iri¢-
Reich-Rus operator, a �iri¢-Reich-Rus G-contraction, or a G-λ-generalized contraction).
Then the restriction of T to CT is a weakly Picard operator if either T is orbitally G̃-
continuous on X or G is a (C̃)-graph.

In particular, whenever T is orbitally G̃-continuous on X or G is a (C̃)-graph, T has
a �xed point in X if and only if CT 6= ∅.

By comparing Corollary 2.28 as a version of Theorem 2.21 for several types of con-
tractions with some recent results in graph metric �xed point theory, one can get the
followings:

• If we employ Corollary 2.28 for Banach G-contractions, then we obtain a simple
and weaker version of [14, Theorems 3.2(4o) and 3.3(2o)] and [3, Corollary 2];

• If we employ Corollary 2.28 for G-Kannan mappings, then we obtain another
version of [2, Theorem 3] and [3, Corollary 3] without imposing the assumption
of weak T -connectedness on the graph (see [3, De�nition 8]);

• If we employ Corollary 2.28 for G-Chatterjea mappings, then we obtain a new
version of Chatterjea's �xed point theorem [5] in complete metric spaces with a
graph;

• If we employ Corollary 2.28 for either G-�iri¢-Reich-Rus operators or �iri¢-
Reich-Rus G-contractions, then we obtain another version of [3, Theorem 6]
without imposing the assumption of weak T -connectedness on the graph and
another version of [6, Theorem 2.2 and Lemma 2.7];

• Finally, if we employ Corollary 2.28 for G-λ-generalized contractions, then we
obtain a new version of [7, Theorem 2.5] and a weaker version of [22, Theorem
1] in complete metric spaces with a graph.

Because convergence of sequences in a cone metric space has already been de�ned
in [12, De�nition 2], Picard operators can be generalized naturally from metric to cone
metric spaces in the following way:

Let E be a nontrivial real Banach space, P be a closed cone in E such that
P ∩ (−P ) = {0}, and (X, d) be a cone metric space. A mapping T : X → X is
called a Picard operator if T has unique �xed point x? ∈ X and Tnx → x? for
all x ∈ X.

Similar to the Cauchy property of sequences in metric spaces and using the idea of
formulating convergent sequences in cone metric spaces, the Cauchy property of sequences
is de�ned in cone metric spaces (see [12, De�nition 3]). So it is natural to say that a
cone metric space is complete if every Cauchy sequence is convergent (see [12, De�nition
4]). Hence we have also the following consequence of Corollary 2.24 in complete cone
metric spaces where the underlying cone has nonempty interior. This result is another
version of [20, Theorem 2.1] and generalizes [12, Theorem 1], [13, Theorem 2.1] and [16,
Theorems 2.2 and 2.3].

2.29. Corollary. Every quasi-contraction de�ned on a complete cone metric space is a
Picard operator provided that the underlying cone has nonempty interior.

Proof. Let E be a nontrivial real Banach space, P be a closed cone in E with nonempty
interior such that P ∩ (−P ) = {0}, and (X, d) be a complete cone metric space. Pick any
interior point e of P and consider the metric ρe given by (2.5). Since the cone metric
space (X, d) is complete, it follows from [11, Theorem 2.2(iii)] that the metric space
(X, ρe) is also complete.

Now, let T : (X, d) → (X, d) be a quasi-contraction. As it was shown in Example
2.13, T : (X, ρe) → (X, ρe) is also a quasi-contraction. Therefore, by Corollary 2.24,
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T : (X, ρe) → (X, ρe) is a Picard operator, i.e. T has a unique �xed point x? ∈ X and
Tnx→ x? in (X, ρe) for all x ∈ X.

On the other hand, it follows from [11, Theorem 2.2(i)] that a sequence {xn} consisting
of points of X converges to an x ∈ X in the cone metric space (X, d) if and only if {xn}
converges to the same point x in the metric space (X, ρe). Hence Tnx→ x? in (X, d) for
all x ∈ X. Consequently, T : (X, d)→ (X, d) is a Picard operator. �
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