L Hacettepe Journal of Mathematics and Statistics $\bigcap \ \text{Volume } 45 \ (4) \ (2016), \ 1023 - 1032$

Some normal subgroups of extended generalized Hecke groups

Bilal Demir^{∗†}, Özden Koruoğlu[‡] and Recep Şahin[§]

In memory of my dear son Can Sahin.

Abstract

Generalized Hecke group $H_{p,\infty}(\lambda)$ is generated by $X(z) = -(z - \lambda_p)^{-1}$ and $Y(z) = -(z + \lambda)^{-1}$ where $\lambda_p = 2 \cos \frac{\pi}{p}$, $p \ge 2$ integer and $\lambda \ge 2$. Extended generalized Hecke group $\overline{H}_{p,\infty}(\lambda)$ is obtained by adding the reflection $R(z) = 1/\overline{z}$ to the generators of generalized Hecke group $H_{p,\infty}(\lambda)$. In this paper, we study the commutator subgroups of extended generalized Hecke groups $\overline{H}_{p,\infty}(\lambda)$. Also, we determine the power subgroups of generalized Hecke groups $H_{p,\infty}(\lambda)$ and extended generalized Hecke groups $\overline{H}_{p,\infty}(\lambda)$.

Keywords: Generalized Hecke groups, Extended generalized Hecke groups, Commutator subgroups, Power subgroups.

 2000 AMS Classification: 20H10, 11F06.

Received : 13.01.2015 Accepted : 24.08.2015 Doi : 10.15672/HJMS.20164513108

[∗]Balkesir University, Necatibey Faculty of Education, Department of Secondary Mathematics Education,10100 Balkesir, Turkey, Email: bdemir@balikesir.edu.tr

[†]Corresponding Author.

[‡]Balkesir University, Necatibey Faculty of Education, Department of Elementary Mathematics Education,10100 Balkesir, Turkey, Email: ozdenk@balikesir.edu.tr

 \S Balikesir University, Faculty of Arts and Sciences,Department of Mathematics,10145 Çağış Campus, Balkesir, Turkey, Email: rsahin@balikesir.edu.tr

1. Introduction

In [1], Hecke introduced the groups $H(\lambda)$ generated by two linear fractional transformations

$$
T(z) = -\frac{1}{z}
$$
 and $U(z) = z + \lambda$,

where λ is a fixed positive real number. Let $S = TU$, i.e.,

$$
S(z) = -\frac{1}{z + \lambda}.
$$

Hecke showed that $H(\lambda)$ is discrete if and only if either $\lambda = \lambda_q = 2\cos(\frac{\pi}{q}), q \ge 3$ integer, or $\lambda \geq 2$. These groups have come to be known as the *Hecke groups* and we will denote them by H_q , or by $H(\lambda)$, respectively. The first few Hecke groups are $H_3 = PSL(2, \mathbb{Z})$ (the modular group), $H_4 = H(\sqrt{2})$, $H_5 = H(\frac{1+\sqrt{5}}{2})$, and $H_6 = H(\sqrt{3})$ for $q = 3, 4, 5$ and 6, respectively.

It is known that when $\lambda = \lambda_q = 2\cos(\frac{\pi}{q}), q \geq 3$ integer, Hecke group H_q is isomorphic to the free product of two finite cyclic groups of orders 2 and q ,

$$
H_q = \langle T, S \mid T^2 = S^q = I \rangle \cong C_2 * C_q,
$$

and when $\lambda \geq 2$, Hecke group $H(\lambda)$ is a free product of a cyclic group of order 2 and infinity, so all such $H(\lambda)$ have the same algebraic structure, i.e.

$$
H(\lambda) = \langle T, S \mid T^2 = I \rangle \cong C_2 * \mathbb{Z}.
$$

Also Hecke group H_q or $H(\lambda)$ is the Fuchsian group of the first kind when either $\lambda = \lambda_q = 2\cos(\frac{\pi}{q}), q \ge 3$ integer or $\lambda = 2$, and $H(\lambda)$ is the Fuchsian group of the second kind when $\lambda > 2$.

On the other hand, Lehner studied in [2] more general class $H_{p,q}$ of Hecke groups H_q , by taking

$$
X = \frac{-1}{z - \lambda_p} \text{ and } V = z + \lambda_p + \lambda_q,
$$

where $2\leq p\leq q\leq\infty,$ $p+q>4.$ Here if we take $Y= X V = -\frac{1}{z+\lambda_q},$ then we have the presentation,

$$
(1.1) \tH_{p,q} = \langle X, Y \mid X^p = Y^q = I \rangle \cong C_p * C_q.
$$

We call these groups as *generalized Hecke groups* $H_{p,q}$. We know from [2] that $H_{2,q}$ = H_q , $|H_q: H_{q,q}| = 2$, and there is no group $H_{2,2}$. Also, all Hecke groups H_q are included in generalized Hecke groups $H_{p,q}$. Also, generalized Hecke groups $H_{p,q}$ have been studied extensively for many aspects in the literature (for examples, please see, [3], [4], [5], [6], [7] and [8]).

Extended generalized Hecke groups $\overline{H}_{p,q}$ have been defined in [9] and [10], similar to extended Hecke groups \overline{H}_q (please see, [11] and [12]), by adding the reflection $R(z) = 1/\overline{z}$ to the generators of generalized Hecke group $H_{p,q}$. From [9], extended generalized Hecke groups $\overline{H}_{p,q}$ have a presentation

$$
\overline{H}_{p,q} = ,
$$

or

$$
\overline{H}_{p,q} = \langle X, Y, R \mid X^p = Y^q = R^2 = (XR)^2 = (YR)^2 = I \rangle \cong D_p *_{C_2} D_q.
$$

The group $H_{p,q}$ is a subgroup of index 2 in $\overline{H}_{p,q}$.

In (1.1), if $q = \infty$, then we have more general class $H_{p,\infty}$, of Hecke groups $H(\lambda)$. Now we can give the following definitions;

1.1. Definition. Let $\lambda_p = 2\cos{\frac{\pi}{p}}, p \ge 2$ integer and let $\lambda \ge 2$. Generalized Hecke groups $H_{p,\infty}(\lambda)$ are defined as the groups generated by

$$
X = \frac{-1}{z - \lambda_p} \text{ and } Y = -\frac{1}{z + \lambda},
$$

and have a presentation

$$
H_{p,\infty}(\lambda) = \langle X, Y \mid X^p = Y^{\infty} = I \rangle \cong C_p * \mathbb{Z}.
$$

1.2. Definition. Extended generalized Hecke groups $\overline{H}_{p,\infty}(\lambda)$, are defined by adding reflection $R(z) = 1/\overline{z}$ to the generators of generalized Hecke groups $H_{p,\infty}(\lambda)$ and have a presentation

$$
\overline{H}_{p,\infty}(\lambda) = \langle X, Y, R \mid X^p = Y^{\infty} = R^2 = I, RX = X^{p-1}R, RY = Y^{-1}R >,
$$

or

$$
\overline{H}_{p,\infty}(\lambda) = \langle X, Y, R \mid X^p = Y^{\infty} = R^2 = (XR)^2 = (YR)^2 = I \rangle,
$$

\n
$$
\cong D_{p} *_{C_2} D_{\infty}.
$$

In this paper, we study the commutator subgroups of extended generalized Hecke groups $\overline{H}_{p,\infty}(\lambda)$. Then, we determine the power subgroups of generalized Hecke groups $H_{p,\infty}(\lambda)$ and extended generalized Hecke groups $\overline{H}_{p,\infty}(\lambda)$. We use the Reidemeister-Schreier method to get the generators of all these subgroups.

Let G be a group and N be a normal subgroup of G with finite index. According to the Reidemeister-Schreier method we get the generators of N as follows: We first choose a Schreier transversal Σ for the quotient group G/N such that all certain words of generators including.Note that this transversal is not unique. Then we get the generators of N as following order:

> (An element of Σ) × (A generator of G) × (coset representative of the preceeding product)⁻¹.

For more details please see [13].

Commutator subgroups and power subgroups of Hecke and extended Hecke groups have been studied in, $[14]$, $[15]$, $[17]$, $[20]$, $[23]$, $[24]$ and $[25]$. Here, our aim is to generalize the results given in [14] and [15] for Hecke groups $H(\lambda)$ and extended Hecke groups $\overline{H}(\lambda)$ to extended generalized Hecke groups $\overline{H}_{p,\infty}(\lambda)$.

2. Commutator Subgroups of Extended Generalized Hecke Groups $H_{p,\infty}(\lambda)$

Since the index of the commutator subgroup $H'_{p,\infty}(\lambda)$ in $H_{p,\infty}(\lambda)$ is infinite, we study only the commutator subgroup $\overline{H}'_{p,\infty}(\lambda)$ of extended generalized Hecke groups $\overline{H}_{p,\infty}(\lambda)$. Here, we investigate the cases of p , odd or even, seperately.

2.1. Theorem. Let $p \geq 3$ be an odd integer and let $\lambda \geq 2$. Then 1) $|\overline{H}_{p,\infty}(\lambda):\overline{H}'_{p,\infty}(\lambda)|=4.$ $\left| \begin{matrix} -p, & \infty \\ -p, & \infty \end{matrix} \right|$ 2) $\overline{H}'_{p,\infty}(\lambda) = \langle X, YXY^{-1}, Y^2 | X^p = (YXY^{-1})^p \rangle$ $=(Y^2)^\infty = I \geq \mathbb{C}_p * C_p * \mathbb{Z}.$

Proof. 1) Firstly, we set up the quotient group $\overline{H}_{p,\infty}(\lambda)/\overline{H}'_{p,\infty}(\lambda)$ which can be construct by adding the abelianizing relation to the relations of $\overline{H}_{p,\infty}(\lambda)$. Then

$$
\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}'(\lambda) = < X, Y, R \mid X^p = Y^{\infty} = R^2 = I, RX = X^{p-1}R,
$$

\n
$$
RY = Y^{-1}R, \quad XR = RX, YR = RY, XY = YX > .
$$

Since p is odd and from the relations $RX = X^{p-1}R$ and $RX = XR$, we have $X = I$. Also we get $Y^2 = I$ from the relations $RY = Y^{-1}R$ and $YR = RY$. Thus we have

$$
\overline{H}_{p,\infty}(\lambda)/\overline{H}'_{p,\infty}(\lambda) = \langle Y, R | Y^2 = R^2 = (YR)^2 = I \rangle \simeq C_2 \times C_2.
$$

2) Now we determine the set of generators for $\overline{H}'_{p,\infty}(\lambda).$ We choose a Schreier transversal for $\overline{H}_{p,\infty}(\lambda)$ as $\Sigma = \{I,Y,R,YR\}$. According to Reidemeister-Schreier method we can form all possible products;

$$
I.X.(I)^{-1} = X, \tI.Y.(Y)^{-1} = I, \tI.R.(R)^{-1} = I, Y.X.(Y)^{-1} = YXY^{-1}, \tY.Y.(I)^{-1} = Y^2, \tY.R.(YR)^{-1} = I, Y.R.X.(YR)^{-1} = YX^{p-1}, \tR.Y.(YR)^{-1} = Y^{-2}, \tR.R.(I)^{-1} = I, Y.R.X.(YR)^{-1} = YX^{p-1}Y^{-1}, \tY.R.Y.(R)^{-1} = I, \tY.R.R.(Y)^{-1} = I.
$$

Since $X^{-1} = X^{p-1}$, $(YXY^{-1})^{-1} = YX^{p-1}Y^{-1}$ and $(Y^2)^{-1} = Y^{-2}$, the generators are $X, Y X Y^{-1}$ and Y^2 . Thus $\overline{H'}_{p,\infty}(\lambda)$ has a presentation

$$
\overline{H}'_{p,\infty}(\lambda) = \langle X, YXY^{-1}, Y^2 \mid X^p = (YXY^{-1})^p
$$

=
$$
(Y^2)^{\infty} = I \rangle \cong C_p * C_p * \mathbb{Z}.
$$

2.2. Theorem. Let $p \ge 2$ be an even integer and let $\lambda \ge 2$. Then 1) $\left| \overline{H}_{p,\infty}(\lambda) : \overline{H}'_{p,\infty}(\lambda) \right| = 8.$ 2)

$$
\overline{H}'_{p,\infty}(\lambda) = \langle X^2, YX^2Y^{-1}, XYXY^{-1}, Y^2, XY^2X^{-1} | (X^2)^{p/2}
$$

=
$$
(YX^2Y^{-1})^{p/2} = (XYXY^{-1})^{\infty} = (Y^2)^{\infty} = (XY^2X^{-1})^{\infty} = I \rangle
$$

$$
\cong C_{p/2} * C_{p/2} * \mathbb{Z} * \mathbb{Z} * \mathbb{Z}.
$$

Proof. 1) Similar to the previous proof, we have the quotient group $\overline{H}_{p,\infty}(\lambda)/\overline{H}'_{p,\infty}(\lambda)$ as

$$
\overline{H}_{p,\infty}(\lambda)/\overline{H}'_{p,\infty}(\lambda) = \langle X, Y, R \mid X^p = Y^{\infty} = R^2 = I, RX = X^{p-1}R,
$$

\n
$$
RY = Y^{-1}R, \quad XR = RX, YR = RY, XY = YX>.
$$

Since p is even and from the relations $RX = X^{p-1}R$, $XR = RX$, $RY = Y^{-1}R$ and $YR = RY$, we have $X^2 = I$ and $Y^2 = I$. Thus we get

$$
\overline{H}_{p,\infty}(\lambda)/\overline{H}'_{p,\infty}(\lambda) = \langle X, Y, R : X^2 = Y^2 = R^2 = (XY)^2 = (XR)^2 = (YR)^2 = I \rangle,
$$

\n
$$
\cong C_2 \times C_2 \times C_2.
$$

2) Now we can determine the Schreier transversal as $\Sigma = \{I, X, Y, R, XR, YR, XY, \}$ XYR . From the Reidemeister-Schreier method all possible products are;

$$
I.X.(X)^{-1} = I, \t X.X.(I)^{-1} = X^2, \t X.Y.(XY)^{-1} = I,
$$

\n
$$
Y.X.(XY)^{-1} = YXY^{-1}X^{p-1}, \t Y.Y.(I)^{-1} = Y^2,
$$

\n
$$
R.X.(XR)^{-1} = X^{p-2}, \t R.Y.(YR)^{-1} = Y^{-2},
$$

\n
$$
YR.X.(XYR)^{-1} = YX^{-1}Y^{-1}X^{-1}, \t YR.Y.(RYR)^{-1} = XY^{-2}X^{-1},
$$

\n
$$
YR.X.(XYR)^{-1} = YX^{-1}Y^{-1}, \t YR.Y.(R)^{-1} = I,
$$

\n
$$
XYR.X.(YR)^{-1} = XYX^{-1}Y^{-1}, \t XYr.Y.(XR)^{-1} = I,
$$

\n
$$
I.R.(R)^{-1} = I,
$$

\n
$$
I.R.(R)^{-1} = I,
$$

\n
$$
I.R.(XR)^{-1} = I,
$$

\n
$$
R.R.(X)^{-1} = I,
$$

\n
$$
R.R.(X)^{-1} = I,
$$

\n
$$
R.R.(X)^{-1} = I,
$$

\n
$$
YR.R.(XYR)^{-1} = I,
$$

\n
$$
YR.R.(XY)^{-1} = I.
$$

\nSince $(X^2)^{-1} = X^{p-2}, (YXY^{-1}X^{p-1})^{-1} = XYX^{-1}Y^{-1}, (YX^{-1}Y^{-1}X^{-1})^{-1} = XYXY^{-1},$
\n $(Y^2)^{-1} = Y^{-2}, (XY^2X^{-1})^{-1} = XY^{-2}X^{-1},$ we have the presentation of $\overline{H}'_{p,\infty}(\lambda)$ as
\n
$$
\overline{H}'_{p,\infty}(\lambda) = \langle X^2, YX^2Y^{-1}, XYXY^{-1}, Y^2, XY^2X^{-1} | (X^2)^{p/2}
$$

\n<

3. Power Subgroups of $H_{p,\infty}(\lambda)$ and $\overline{H}_{p,\infty}(\lambda)$

In this section, we consider the power subgroups of generalized Hecke groups $H_{p,\infty}(\lambda)$ and extended generalized Hecke groups $\overline{H}_{p,\infty}(\lambda)$. Here, we note that the power subgroups of Hecke groups H_q , or $H(\lambda)$ and extended Hecke groups \overline{H}_q , or $\overline{H}(\lambda)$ have been studied by many authors in [6], [7], [10], [11], [12], [14], [16], [18], [19], [21], [22].

Now we give some information about the power subgroups.

Let m be a positive integer. Let us define G^m to be the subgroup generated by the m^{th} powers of all elements of $G = H_{p,\infty}(\lambda)$ or $\overline{H}_{p,\infty}(\lambda)$. The subgroup G^m is called the mth – power subgroup of G. As fully invariant subgroups, they are normal in G.

From the definition, it is easy to see that

 $G^{mk} < G^m$

and

 $G^{mk} < (G^{m})^{k}.$

We now discuss the group theoretical structure of these subgroups. We find a presentation for the quotient G/G^m by adding the relation $A^m = I$ to the presentation of G. The order of G/G^m gives us the index. Thus we use the Reidemeister-Schreier process to find the presentation of the power subgroups G^m .

Let us start with $H_{p,\infty}(\lambda)$.

3.1. Theorem. 1) Let
$$
p > 2
$$
 be an odd integer and $\lambda \geq 2$. Then, $H_{p,\infty}^2(\lambda) = \langle X, YXY^{-1}, Y^2 | X^p = (YXY^{-1})^p = (Y^2)^{\infty} = I \rangle \cong C_p * C_p * \mathbb{Z}$. 2) Let $p \geq 2$ be an even integer and $\lambda \geq 2$. Then,

$$
\begin{array}{l} H^2_{p,\infty}(\lambda)=.
$$

Proof. 1) The quotient group $H_{p,\infty}(\lambda)/H_{p,\infty}^2(\lambda)$ is

 $H_{p,\infty}(\lambda)/H_{p,\infty}^2(\lambda) = \langle X, Y | X^p = Y^{\infty} = (XY)^{\infty} = X^2 = Y^2 = (XY)^2 = \cdots = I >$. Since $p > 2$ is an odd integer and from the relations $X^2 = X^p = I$ and $Y^2 = Y^{\infty} = I$, we have $X = Y^2 = I$. Thus we get

$$
H_{p,\infty}(\lambda)/H_{p,\infty}^2(\lambda) = \langle Y | Y^2 = I \rangle \cong C_2.
$$

If we choose a Schreier transversal as $\{I, Y\}$ and use the Reidemeister-Schreier method, we obtain all possible products;

$$
I.X.(I)^{-1} = X, \tI.Y.(Y)^{-1} = I,
$$

$$
Y.X.(Y)^{-1} = YXY^{-1}, \tY.Y.(I)^{-1} = Y^2
$$

So we get the presentation of $H_{p,\infty}^2(\lambda)$ as

$$
H_{p,\infty}^2(\lambda) = \langle X, YXY^{-1}, Y^2 \mid X^p = (YXY^{-1})^p = (Y^2)^{\infty} = I \rangle \cong C_p * C_p * \mathbb{Z}.
$$

.

2) The quotient group $H_{p,\infty}(\lambda)/H_{p,\infty}^2(\lambda)$ is

$$
H_{p,\infty}(\lambda)/H_{p,\infty}^2(\lambda) = \langle X, Y \mid X^p = Y^{\infty} = (XY)^{\infty} = X^2 = Y^2 = (XY)^2 = \dots = I>.
$$

Since $p \ge 2$ is an even integer and from the relations $X^2 = X^p = I$ and $Y^2 = Y^{\infty} = I$, we obtain $X^2 = Y^2 = I$. Thus we have

$$
H_{p,\infty}(\lambda)/H_{p,\infty}^2(\lambda) = \langle X, Y \mid X^2 = Y^2 = (XY)^2 = I \rangle \cong D_2.
$$

Now we choose a Schreier transversal as $\{I,~X,~Y,~XY\}$ for $H_{p,\infty}^2(\lambda)$. According to the Reidemeister-Schreier method, we can form all possible products;

$$
I.X.(X)^{-1} = I,
$$

\n
$$
X.X.(I)^{-1} = X^{2},
$$

\n
$$
Y.X.(XY)^{-1} = YXY^{-1}X^{-1},
$$

\n
$$
Y.Y.(XY)^{-1} = YXY^{-1}X^{-1},
$$

\n
$$
Y.Y.(I)^{-1} = Y^{2},
$$

\n
$$
XY.X.(Y)^{-1} = XYXY^{-1},
$$

\n
$$
XY.Y.(X)^{-1} = XY^{2}X^{-1}
$$

Thus we obtain a presentation of $H_{p,\infty}^2(\lambda)$ as

$$
H_{p,\infty}^2(\lambda) = \langle X^2, YX^2Y^{-1}, XYXY^{-1}, Y^2, XY^2X^{-1} | (X^2)^{p/2}
$$

=
$$
(YX^2Y^{-1})^{p/2} = (XYXY^{-1})^{\infty} = (Y^2)^{\infty} = (XY^2X^{-1})^{\infty} = I >
$$

$$
\cong C_{p/2} * C_{p/2} * \mathbb{Z} * \mathbb{Z}.
$$

.

 \Box

3.2. Theorem. Let $\lambda \geq 2$. If m and p are positive integers such that $(m, p) = 1$, then

$$
H_{p,\infty}^{m}(\lambda) = \langle X, YXY^{-1}, Y^{2}XY^{-2}, \cdots, Y^{m-1}XY^{1-m}, Y^{m} | X^{p}
$$

= $(YXY^{-1})^{p} = (Y^{2}XY^{-2})^{p} = \cdots = (Y^{m-1}XY^{1-m})^{p} = (Y^{m})^{\infty} = I \rangle$
 $\cong \underbrace{C_{p} * C_{p} * \cdots * C_{p}}_{m \text{ times}} * \mathbb{Z}.$

Proof. The quotient group $H_{p,\infty}(\lambda)/H_{p,\infty}^m(\lambda)$ is $H_{p,\infty}(\lambda)/H_{p,\infty}^m(\lambda) = \langle X, Y | X^p = Y^{\infty} = (XY)^{\infty} = X^m = Y^m = (XY)^m = \cdots = I >$. Since $(m, p) = 1$ and from the relations $X^p = X^m = I$, we find $X = I$. Thus we have $H_{p,\infty}(\lambda)/H_{p,\infty}^m(\lambda) = < Y : Y^m = I \geq \cong C_m.$

Then we choose the Schreier transversal as $\Sigma = \{I, Y, Y^2, ..., Y^{m-1}\}$. According to the Reidemeister-Schreier method, we get the following products;

> $I.X.(I)^{-1} = X,$ $I.Y.(Y)^{-1} = I,$ $Y.X.(Y)^{-1} = YXY^{-1},$ $Y.Y.(Y^2)^{-1} = I,$ $Y^2. X. (Y^2)^{-1} = Y^2 X Y^{-2},$ $Y^2. Y. (Y^3)^{-1} = I,$ $Y^3. X. (Y^3)^{-1} = Y^3 X Y^{-3},$ $Y^3. Y. (Y^4)^{-1} = I,$ $Y^{m-1}.X.(Y^{m-1})^{-1} = Y^{m-1}XY^{1-m}, \quad Y^{m-1}.Y.(I)^{-1} = Y^m.$

So we have a presentation of $H_{p,\infty}^2(\lambda)$ as

$$
H_{p,\infty}^{m}(\lambda) = \langle X, YXY^{-1}, Y^{2}XY^{-2}, \cdots, Y^{m-1}XY^{1-m}, Y^{m} | X^{p}
$$

= $(YXY^{-1})^{p} = (Y^{2}XY^{-2})^{p} = \cdots = (Y^{m-1}XY^{1-m})^{p} = (Y^{m})^{\infty} = I \rangle$
 $\cong \underbrace{C_{p} * C_{p} * \cdots * C_{p}}_{m \text{ times}} * \mathbb{Z}.$

The case $(m, p) = d > 1$, except of $m = 2$ and p even, is more complex, since the index of quotient group $H_{p,\infty}(\lambda)/H_{p,\infty}^m(\lambda)$ is unknown. In this case, we have the relations $X^d = Y^m = (XY)^m = \cdots = I$ and can not say anything about the power subgroups $H^m_{p,\infty}(\lambda)$.

Now we consider the power subgroups $\overline{H}^m_{p,\infty}(\lambda)$ of extended generalized Hecke groups $\overline{H}_{p,\infty}(\lambda)$. Here, we interest with the cases such that the index of the quotient group $\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}^m(\lambda)$ is finite.

3.3. Theorem. 1) Let $p > 2$ be an odd integer and $\lambda \geq 2$. Then, $\overline{H}_{p,\infty}^2(\lambda) = \langle X, YXY^{-1}, Y^2 \mid X^p = (YXY^{-1})^p = (Y^2)^{\infty} = I \rangle \cong C_p * C_p * \mathbb{Z}.$ 2) Let $p \geq 2$ be an even integer and $\lambda \geq 2$. Then, $\overline{H}_{p,\infty}^2(\lambda) = < X^2, YX^2Y^{-1}, XYXY^{-1}, Y^2, XY^2X^{-1} | (X^2)^{p/2}$ $=(YX^2Y^{-1})^{p/2}=(XYXY^{-1})^{\infty}=(Y^2)^{\infty}=(XY^2X^{-1})^{\infty}=I$.

Proof. The quotient group $\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}^2(\lambda)$ is

$$
\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}^2(\lambda) = \langle X, Y, R \mid X^p = Y^{\infty} = R^2 = (XR)^2 = (YR)^2
$$

= $X^2 = Y^2 = (XY)^2 = \cdots = I >.$

The rest of the proof is similar to the proof of the Theorems 1 and 2.

By using the Theorems 1, 2, 3 and 5, we can give the following.

3.4. Corollary.
$$
\overline{H}_{p,\infty}^2(\lambda) = H_{p,\infty}^2(\lambda) = \overline{H}_{p,\infty}'(\lambda)
$$
.

3.5. Theorem. 1) Let $\lambda \geq 2$ and let $p \geq 3$ be an odd number. If m is an even positive integer such that $(m, p) = 1$, then

$$
\overline{H}_{p,\infty}^{m}(\lambda) = \langle X, YXY^{-1}, Y^{2}XY^{-2}, \cdots, Y^{m-1}XY^{1-m}, Y^{m} | X^{p}
$$
\n
$$
= (YXY^{-1})^{p} = (Y^{2}XY^{-2})^{p} = \cdots = (Y^{m-1}XY^{1-m})^{p} = (Y^{m})^{\infty} = I \rangle
$$
\n
$$
\cong \underbrace{C_{p} * C_{p} * \cdots * C_{p}}_{m \text{ times}} * \mathbb{Z}.
$$

2) Let $\lambda \geq 2$. If $m > 0$ is odd integer such that $(m, p) = 1$, then $\overline{H}_{p,\infty}^m(\lambda) = \overline{H}_{p,\infty}(\lambda)$.

Proof. 1) The quotient group $\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}^m(\lambda)$ is

$$
\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}^m(\lambda) = \langle X, Y, R \mid X^p = Y^{\infty} = R^2 = (XR)^2 = (YR)^2
$$

= $X^m = Y^m = (XY)^m = \dots = I >$.

Since $(m, p) = 1$ and m is even, we have $X = I$.

$$
\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}^m(\lambda) = \langle Y, R : Y^m = R^2 = (YR)^2 = \dots = I \rangle \cong D_m.
$$

Considering the presentation of quotient group we can choose Schreier transversal as $\Sigma = \{I, Y, Y^2, ..., Y^{m-1}, R, RY, RY^2, ..., RY^{m-1}\}.$ Then the process as following;

$$
I.X.(I)^{-1} = X,
$$

\n
$$
Y.X.(Y)^{-1} = YXY^{-1},
$$

\n
$$
Y^{2}.X.(Y^{2})^{-1} = Y^{2}XY^{-2},
$$

\n
$$
Y^{m-1}.X.(Y^{m-1})^{-1} = Y^{m-1}XY^{1-m},
$$

\n
$$
RY^{m-1}.X.(RY)^{-1} = Y^{Y}X^{p-1},
$$

\n
$$
RY^{2}.X.(RY)^{-1} = Y^{-1}X^{p-1}Y,
$$

\n
$$
RY^{2}.X.(RY^{2})^{-1} = Y^{-2}X^{p-1}Y^{-2},
$$

\n
$$
RY^{m-1}.X.(RY^{m-1})^{-1} = Y^{1-m}X^{p-1}Y^{m-1},
$$

\n
$$
RY^{m-1}.X.(RY^{m-1})^{-1} = Y^{1-m}X^{p-1}Y^{m-1},
$$

\n
$$
Y^{2}.R.(RY^{m-1})^{-1} = Y^{m},
$$

\n
$$
I.R.(R)^{-1} = I,
$$

\n
$$
Y.R.(RY^{m-1})^{-1} = Y^{m},
$$

\n
$$
Y^{2}.R.(RY^{m-2})^{-1} = Y^{m},
$$

\n
$$
Y^{m-1}.R.(RY)^{-1} = Y^{m},
$$

\n
$$
Y^{m-1}.R.(RY)^{-1} = Y^{-m},
$$

\n
$$
RY^{2}.R.(Y^{m-2})^{-1} = Y^{-m},
$$

\n
$$
RY^{2}.R.(Y^{m-2})^{-1} = Y^{-m},
$$

\n
$$
RY^{2}.R.(Y^{m-2})^{-1} = Y^{-m},
$$

\n
$$
RY^{m-1}.R.(Y)^{-1} = Y^{-m},
$$

\n
$$
RY^{m-1}.R.(Y)^{-1} = Y^{-m},
$$

After required calculations, we have a presentation of $\overline{H}^m_{p,\infty}(\lambda)$ as

$$
\overline{H}_{p,\infty}^{m}(\lambda) = \langle X, YXY^{-1}, Y^{2}XY^{-2}, \cdots, Y^{m-1}XY^{1-m}, Y^{m} | X^{p} = (YXY^{-1})^{p}
$$

= $(Y^{2}XY^{-2})^{p} = \cdots = (Y^{m-1}XY^{1-m})^{p} = (Y^{m})^{\infty} = I \rangle$
 $\cong \underbrace{C_{p} * C_{p} * \cdots * C_{p}}_{m \text{ times}} * \mathbb{Z}.$

2) The quotient group $\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}^m(\lambda)$ is

$$
\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}^m(\lambda) = \langle X, Y, R \mid X^p = Y^{\infty} = R^2
$$

=
$$
(XR)^2 = (YR)^2 = X^m = Y^m = (XY)^m = \dots = I >
$$

Since $m > 0$ is an odd integer and from the relations $X^m = X^p = I$, $Y^m = (YR)^2 = I$ and $R^2 = R^m = I$, we have $X = Y = R = I$. Obviously we have $X = I$. As a result, we obtain

$$
\overline{H}_{p,\infty}(\lambda)/\overline{H}_{p,\infty}^m(\lambda) \cong \{I\},\
$$

and so $\overline{H}_{p,\infty}^m(\lambda) = \overline{H}_{p,\infty}(\lambda)$.

3.6. Corollary. Let $p \geq 3$ be an odd integer and let $\lambda \geq 2$. If m is an even positive integer such that $(m, p) = 1$, then $\overline{H}_{p,\infty}^m(\lambda) = H_{p,\infty}^m(\lambda)$.

The case $(m, p) = d > 1$, except of $m = 2$ and p even, is unknown and so we can not say anything about the power subgroups $\overline{H}_{p,\infty}^m(\lambda)$, similar to $H_{p,\infty}^m(\lambda)$.

3.7. Remark. In this paper, if we take $p = 2$, then our results coincide with the ones given in $[14]$ and $[15]$.

References

- [1] Hecke, E. Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112, 664-699, 1936.
- [2] Lehner, J. Uniqueness of a class of Fuchsian groups, Illinois J. Math. $19, 308-315, 1975$.
- [3] Calta K. and Schmidt, T. A. Infinitely many lattice surfaces with special pseudo-Anosov maps, J. Mod. Dyn. 7, No. 2, 239-254, 2013.
- [4] Calta K. and Schmidt, T. A. Continued fractions for a class of triangle groups, J. Aust. Math. Soc. 93, No. 1-2, 21-42, 2012.
- [5] Dehornoy, P. Geodesic flow, left-handedness, and templates, http://arxiv.org/pdf/1112.6296.
- [6] Doran, C. F., Gannon, T., Movasati, H. and Shokri, K. M. Automorphic forms for triangle $groups, Commun. Number Theory Phys. 7, no. 4, 689-737, 2013.$
- [7] Pinsky, T. Templates for geodesic flows, Ergodic Theory Dynam. Systems 34 no. 1, 211-235, 2014,.
- [8] Tsanov, V. V. Triangle groups, automorphic forms, and torus knots, Enseign. Math. 59 (2) , no. 1-2, 73-113, 2013.
- [9] Demir, B., Koruoglu, O. and Sahin, R. Conjugacy classes in extended generalized Hecke groups, Rev. Un. Mat. Argentina 57, No 1, 49-56, 2016.
- [10] Kaymak, S., Demir, B., Koruoglu, O. and Sahin, R. Commutator subgroups of generalized Hecke and extended generalized Hecke groups, submitted for publication.
- [11] Sahin, R. and Bizim, O. Some subgroups of the extended Hecke groups $\overline{H}(\lambda_q)$, Acta Math. Sci., Ser. B, Engl. Ed., 23, No.4, 497-502, 2003.
- [12] Sahin, R., Bizim, O. and Cangül, I. N. Commutator subgroups of the extended Hecke groups, Czech. Math. J., 54, No.1, 253-259, 2004.
- [13] Magnus, W., Karras, A. and Solitar, D. Combinatorial group theory, Dover Publications, INC. New York, 1975.
- [14] Koruo§lu, Ö., Sahin, R. and Ikikardes, S. The normal subgroup structure of the extended Hecke groups, Bull. Braz. Math. Soc. (N.S.) 38, no. 1, 51-65, 2007.
- [15] Koruo§lu, Ö., Sahin, R., Ikikardes, S. and Cangül, I. N. Normal subgroups of Hecke groups $H(\lambda)$, Algebr. Represent. Theory 13, no. 2, 219-230, 2010.
- [16] Cangül, I. N. and Singerman, D. Normal subgroups of Hecke groups and regular maps, Math. Proc. Camb. Phil. Soc. 123, 59-74, 1998.
- [17] Cangül, I. N. and Bizim, O. Commutator subgroups of Hecke groups, Bull. Inst. Math. Acad. Sinica 30, no. 4, 253-259, 2002.
- [18] Cangül, I. N., Sahin, R., Ikikardes S. and Koruo§lu, Ö. Power subgroups of some Hecke groups. II., Houston J. Math. 33, no. 1, 33-42, 2007.
- [19] Ikikardes, S., Koruo§lu, Ö. and Sahin, R. Power subgroups of some Hecke groups, Rocky Mountain J. Math. 36, no. 2, 497-508, 2006.
- [20] Lang, C. L. and Lang, M. L. The commutator subgroup of the Hecke group G_5 is not congruence, http://arxiv.org/abs/1401.1567.
- [21] Sahin, R., Ikikardes, S. and Koruoğlu, Ö. On the power subgroups of the extended modular group $\overline{\Gamma}$, Tr. J. of Math. 29, 143-151, 2004.
- [22] Sahin, R., Ikikardes, S. and Koruo§lu, Ö. Some normal subgroups of the extended Hecke groups $\overline{H}(\lambda_p)$, Rocky Mountain J. Math. 36, no. 3, 1033-1048, 2006.
- [23] Sahin, R. Koruoğlu, Ö. and Ikikardes, S. On the extended Hecke groups $\overline{H}(\lambda_5)$, Algebra Colloq. 13, no. 1, 17-23, 2006.
- [24] Sargedik, Z., Ikikardes, S. and Sahin, R. Power subgroups of extended Hecke groups, Miskolc Mathematical Notes 16, No. 1, 483-490, 2015.
- Mathematical Notes 10, No. 1, 463-430, 2015.
[25] Yilmaz, N. and Cangül, I. N. *Power subgroups of Hecke groups H*(\sqrt{n}), Int. J. Math. Math. Sci. 25, no. 11, 703-708, 2001.