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Abstract

Generalized Hecke group Hp,∞(λ) is generated by X(z) = −(z−λp)−1

and Y (z) = −(z + λ)−1 where λp = 2 cos π
p
, p ≥ 2 integer and λ ≥ 2.

Extended generalized Hecke group Hp,∞(λ) is obtained by adding the
re�ection R(z) = 1/z to the generators of generalized Hecke group
Hp,∞(λ). In this paper, we study the commutator subgroups of ex-

tended generalized Hecke groups Hp,∞(λ). Also, we determine the
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Keywords: Generalized Hecke groups, Extended generalized Hecke groups,
Commutator subgroups, Power subgroups.

2000 AMS Classi�cation: 20H10, 11F06.

Received : 13.01.2015 Accepted : 24.08.2015 Doi : 10.15672/HJMS.20164513108

∗Bal�kesir University, Necatibey Faculty of Education, Department of Secondary Mathematics
Education,10100 Bal�kesir, Turkey, Email: bdemir@balikesir.edu.tr
†Corresponding Author.
‡Bal�kesir University, Necatibey Faculty of Education, Department of Elementary Mathemat-

ics Education,10100 Bal�kesir, Turkey, Email: ozdenk@balikesir.edu.tr
�Bal�kesir University, Faculty of Arts and Sciences,Department of Mathematics,10145 Ça§�³

Campus, Bal�kesir, Turkey, Email: rsahin@balikesir.edu.tr



1024

1. Introduction

In [1], Hecke introduced the groups H(λ) generated by two linear fractional transfor-
mations

T (z) = −1

z
and U(z) = z + λ,

where λ is a �xed positive real number. Let S = TU , i.e.,

S(z) = − 1

z + λ
.

Hecke showed that H(λ) is discrete if and only if either λ = λq = 2 cos(π
q

), q ≥ 3 integer,

or λ ≥ 2. These groups have come to be known as the Hecke groups and we will denote
them by Hq, or by H(λ), respectively. The �rst few Hecke groups are H3 = PSL(2,Z)

(the modular group), H4 = H(
√

2), H5 = H( 1+
√
5

2
), and H6 = H(

√
3) for q = 3, 4, 5 and

6, respectively.
It is known that when λ = λq = 2 cos(π

q
), q ≥ 3 integer, Hecke group Hq is isomorphic

to the free product of two �nite cyclic groups of orders 2 and q,

Hq =< T, S | T 2 = Sq = I >∼= C2 ∗ Cq,

and when λ ≥ 2, Hecke group H(λ) is a free product of a cyclic group of order 2 and
in�nity, so all such H(λ) have the same algebraic structure, i.e.

H(λ) =< T, S | T 2 = I >∼= C2 ∗ Z.

Also Hecke group Hq or H(λ) is the Fuchsian group of the �rst kind when either
λ = λq = 2 cos(π

q
), q ≥ 3 integer or λ = 2, and H(λ) is the Fuchsian group of the second

kind when λ > 2.
On the other hand, Lehner studied in [2] more general class Hp,q of Hecke groups Hq,

by taking

X =
−1

z − λp
and V = z + λp + λq,

where 2 ≤ p ≤ q ≤ ∞, p + q > 4. Here if we take Y = XV = − 1
z+λq

, then we have the

presentation,

(1.1) Hp,q =< X,Y | Xp = Y q = I >∼= Cp ∗ Cq.

We call these groups as generalized Hecke groups Hp,q. We know from [2] that H2,q =
Hq, |Hq : Hq,q| = 2, and there is no group H2,2. Also, all Hecke groups Hq are included
in generalized Hecke groups Hp,q. Also, generalized Hecke groups Hp,q have been studied
extensively for many aspects in the literature (for examples, please see, [3], [4], [5], [6],
[7] and [8]).

Extended generalized Hecke groups Hp,q have been de�ned in [9] and [10], similar to

extended Hecke groups Hq (please see, [11] and [12]), by adding the re�ection R(z) = 1/z
to the generators of generalized Hecke group Hp,q. From [9], extended generalized Hecke

groups Hp,q have a presentation

Hp,q =< X,Y,R | Xp = Y q = R2 = I, RX = X−1R,RY = Y −1R >,

or

Hp,q =< X,Y,R | Xp = Y q = R2 = (XR)2 = (Y R)2 = I >∼= Dp ∗C2 Dq.

The group Hp,q is a subgroup of index 2 in Hp,q.
In (1.1), if q =∞, then we have more general class Hp,∞, of Hecke groups H(λ).
Now we can give the following de�nitions;
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1.1. De�nition. Let λp = 2 cos π
p
, p ≥ 2 integer and let λ ≥ 2. Generalized Hecke

groups Hp,∞(λ) are de�ned as the groups generated by

X =
−1

z − λp
and Y = − 1

z + λ
,

and have a presentation

Hp,∞(λ) =< X,Y | Xp = Y∞ = I >∼= Cp ∗ Z.

1.2. De�nition. Extended generalized Hecke groups Hp,∞(λ), are de�ned by adding
re�ection R(z) = 1/z to the generators of generalized Hecke groups Hp,∞(λ) and have a
presentation

Hp,∞(λ) =< X,Y,R | Xp = Y∞ = R2 = I, RX = Xp−1R,RY = Y −1R >,

or

Hp,∞(λ) = < X,Y,R | Xp = Y∞ = R2 = (XR)2 = (Y R)2 = I >,

∼= Dp ∗C2 D∞.

In this paper, we study the commutator subgroups of extended generalized Hecke
groups Hp,∞(λ). Then, we determine the power subgroups of generalized Hecke groups

Hp,∞(λ) and extended generalized Hecke groups Hp,∞(λ). We use the Reidemeister-
Schreier method to get the generators of all these subgroups.

Let G be a group and N be a normal subgroup of G with �nite index. According
to the Reidemeister-Schreier method we get the generators of N as follows: We �rst
choose a Schreier transversal Σ for the quotient group G/N such that all certain words of
generators including.Note that this transversal is not unique. Then we get the generators
of N as following order:

(An element of Σ)× (A generator of G)×
(coset representative of the preceeding product)−1.

For more details please see [13].
Commutator subgroups and power subgroups of Hecke and extended Hecke groups

have been studied in, [14], [15], [17], [20], [23], [24] and [25]. Here, our aim is to generalize

the results given in [14] and [15] for Hecke groups H(λ) and extended Hecke groups H(λ)

to extended generalized Hecke groups Hp,∞(λ).

2. Commutator Subgroups of Extended Generalized Hecke Groups

Hp,∞(λ)

Since the index of the commutator subgroup H ′p,∞(λ) in Hp,∞(λ) is in�nite, we study

only the commutator subgroup H
′
p,∞(λ) of extended generalized Hecke groups Hp,∞(λ).

Here, we investigate the cases of p, odd or even, seperately.

2.1. Theorem. Let p ≥ 3 be an odd integer and let λ ≥ 2. Then

1)
∣∣∣Hp,∞(λ) : H

′
p,∞(λ)

∣∣∣ = 4.

2) H
′
p,∞(λ) =< X,Y XY −1, Y 2 | Xp = (Y XY −1)p

= (Y 2)∞ = I >∼= Cp ∗ Cp ∗ Z.

Proof. 1) Firstly, we set up the quotient group Hp,∞(λ)/H
′
p,∞(λ) which can be construct

by adding the abelianizing relation to the relations of Hp,∞(λ). Then

Hp,∞(λ)/H
′
p,∞(λ) =< X,Y,R | Xp = Y∞ = R2 = I, RX = Xp−1R,

RY = Y −1R, XR = RX, Y R = RY , XY = Y X > .
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Since p is odd and from the relations RX = Xp−1R and RX = XR, we have X = I.
Also we get Y 2 = I from the relations RY = Y −1R and Y R = RY . Thus we have

Hp,∞(λ)/H
′
p,∞(λ) =< Y,R | Y 2 = R2 = (Y R)2 = I >' C2 × C2.

2) Now we determine the set of generators for H
′
p,∞(λ). We choose a Schreier transversal

for H ′p,∞(λ) as Σ = {I, Y,R, Y R}. According to Reidemeister-Schreier method we can
form all possible products;

I.X.(I)−1 = X, I.Y.(Y )−1 = I, I.R.(R)−1 = I,
Y.X.(Y )−1 = Y XY −1, Y.Y.(I)−1 = Y 2, Y.R.(Y R)−1 = I,
R.X.(R)−1 = Xp−1, R.Y.(Y R)−1 = Y −2, R.R.(I)−1 = I,
Y R.X.(Y R)−1 = Y Xp−1Y −1, Y R.Y.(R)−1 = I, Y R.R.(Y )−1 = I.

Since X−1 = Xp−1, (Y XY −1)−1 = Y Xp−1Y −1 and (Y 2)−1 = Y −2, the generators are

X,Y XY −1 and Y 2. Thus H ′p,∞(λ) has a presentation

H
′
p,∞(λ) = < X,Y XY −1, Y 2 | Xp = (Y XY −1)p

= (Y 2)∞ = I >∼= Cp ∗ Cp ∗ Z.

�

2.2. Theorem. Let p ≥ 2 be an even integer and let λ ≥ 2. Then

1)
∣∣∣Hp,∞(λ) : H

′
p,∞(λ)

∣∣∣ = 8.

2)

H
′
p,∞(λ) = < X2, Y X2Y −1, XY XY −1, Y 2, XY 2X−1 | (X2)p/2

= (Y X2Y −1)p/2 = (XYXY −1)∞ = (Y 2)∞ = (XY 2X−1)∞ = I >

∼= Cp/2 ∗ Cp/2 ∗ Z ∗ Z ∗ Z.

Proof. 1) Similar to the previous proof, we have the quotient group Hp,∞(λ)/H
′
p,∞(λ)

as

Hp,∞(λ)/H
′
p,∞(λ) =< X,Y,R | Xp = Y∞ = R2 = I, RX = Xp−1R,

RY = Y −1R, XR = RX, Y R = RY , XY = Y X > .

Since p is even and from the relations RX = Xp−1R, XR = RX, RY = Y −1R and
Y R = RY, we have X2 = I and Y 2 = I. Thus we get

Hp,∞(λ)/H
′
p,∞(λ) = < X,Y,R : X2 = Y 2 = R2 = (XY )2 = (XR)2 = (Y R)2 = I >,

∼= C2 × C2 × C2.
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2) Now we can determine the Schreier transversal as Σ = {I, X, Y, R, XR, Y R, XY,
XY R}. From the Reidemeister-Schreier method all possible products are;

I.X.(X)−1 = I, I.Y.(Y )−1 = I,
X.X.(I)−1 = X2, X.Y.(XY )−1 = I,

Y.X.(XY )−1 = Y XY −1Xp−1, Y.Y.(I)−1 = Y 2,
R.X.(XR)−1 = Xp−2, R.Y.(Y R)−1 = Y −2,
XR.X.(R)−1 = I, XR.Y.(XY R)−1 = XY −2X−1,

Y R.X.(XY R)−1 = Y X−1Y −1X−1, Y R.Y.(R)−1 = I,
XY.X.(Y )−1 = XYXY −1, XY.Y.(X)−1 = XY 2X−1,

XY R.X.(Y R)−1 = XYX−1Y −1, XY R.Y.(XR)−1 = I,

I.R.(R)−1 = I,
X.R.(XR)−1 = I,
Y.R.(Y R)−1 = I,
R.R.(I)−1 = I,
XR.R.(X)−1 = I,
Y R.R.(Y )−1 = I,

XY.R.(XY R)−1 = I,
XY R.R.(XY )−1 = I.

Since (X2)−1 = Xp−2, (Y XY −1Xp−1)−1 = XYX−1Y −1, (Y X−1Y −1X−1)−1 = XYXY −1,

(Y 2)−1 = Y −2, (XY 2X−1)−1 = XY −2X−1, we have the presentation of H
′
p,∞(λ) as

H
′
p,∞(λ) = < X2, Y X2Y −1, XY XY −1, Y 2, XY 2X−1 | (X2)p/2

= (Y X2Y −1)p/2 = (XYXY −1)∞ = (Y 2)∞ = (XY 2X−1)∞ = I >

∼= Cp/2 ∗ Cp/2 ∗ Z ∗ Z ∗ Z.
�

3. Power Subgroups of Hp,∞(λ) and Hp,∞(λ)

In this section, we consider the power subgroups of generalized Hecke groups Hp,∞(λ)

and extended generalized Hecke groupsHp,∞(λ). Here, we note that the power subgroups

of Hecke groups Hq, or H(λ) and extended Hecke groups Hq, or H(λ) have been studied
by many authors in [6], [7], [10], [11], [12], [14], [16], [18], [19], [21], [22].

Now we give some information about the power subgroups.
Let m be a positive integer. Let us de�ne Gm to be the subgroup generated by the

mth powers of all elements of G = Hp,∞(λ) or Hp,∞(λ). The subgroup Gm is called the
mth − power subgroup of G. As fully invariant subgroups, they are normal in G.

From the de�nition, it is easy to see that

Gmk < Gm

and

Gmk < (Gm)k.

We now discuss the group theoretical structure of these subgroups. We �nd a presen-
tation for the quotient G/Gm by adding the relation Am = I to the presentation of G.
The order of G/Gm gives us the index. Thus we use the Reidemeister-Schreier process
to �nd the presentation of the power subgroups Gm.

Let us start with Hp,∞(λ).

3.1. Theorem. 1) Let p > 2 be an odd integer and λ ≥ 2. Then,

H2
p,∞(λ) =< X,Y XY −1, Y 2 | Xp = (Y XY −1)p = (Y 2)∞ = I >∼= Cp ∗ Cp ∗ Z.

2) Let p ≥ 2 be an even integer and λ ≥ 2. Then,
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H2
p,∞(λ) =< X2, Y X2Y −1, XY XY −1, Y 2, XY 2X−1 | (X2)p/2

= (Y X2Y −1)p/2 = (XYXY −1)∞ = (Y 2)∞ = (XY 2X−1)∞ = I > .

Proof. 1) The quotient group Hp,∞(λ)/H2
p,∞(λ) is

Hp,∞(λ)/H2
p,∞(λ) =< X,Y | Xp = Y∞ = (XY )∞ = X2 = Y 2 = (XY )2 = · · · = I > .

Since p > 2 is an odd integer and from the relations X2 = Xp = I and Y 2 = Y∞ = I,
we have X = Y 2 = I . Thus we get

Hp,∞(λ)/H2
p,∞(λ) =< Y | Y 2 = I >∼= C2.

If we choose a Schreier transversal as {I, Y } and use the Reidemeister-Schreier
method, we obtain all possible products;

I.X.(I)−1 = X, I.Y.(Y )−1 = I,
Y.X.(Y )−1 = Y XY −1, Y.Y.(I)−1 = Y 2.

So we get the presentation of H2
p,∞(λ) as

H2
p,∞(λ) =< X,Y XY −1, Y 2 | Xp = (Y XY −1)p = (Y 2)∞ = I >∼= Cp ∗ Cp ∗ Z.

2) The quotient group Hp,∞(λ)/H2
p,∞(λ) is

Hp,∞(λ)/H2
p,∞(λ) = < X,Y | Xp = Y∞ = (XY )∞

= X2 = Y 2 = (XY )2 = · · · = I > .

Since p ≥ 2 is an even integer and from the relations X2 = Xp = I and Y 2 = Y∞ = I,
we obtain X2 = Y 2 = I . Thus we have

Hp,∞(λ)/H2
p,∞(λ) =< X,Y | X2 = Y 2 = (XY )2 = I >∼= D2.

Now we choose a Schreier transversal as {I, X, Y, XY } for H2
p,∞(λ). According to the

Reidemeister-Schreier method, we can form all possible products;

I.X.(X)−1 = I, I.Y.(Y )−1 = I,
X.X.(I)−1 = X2, X.Y.(XY )−1 = I,
Y.X.(XY )−1 = Y XY −1X−1, Y.Y.(I)−1 = Y 2,
XY.X.(Y )−1 = XYXY −1, XY.Y.(X)−1 = XY 2X−1.

Thus we obtain a presentation of H2
p,∞(λ) as

H2
p,∞(λ) = < X2, Y X2Y −1, XY XY −1, Y 2, XY 2X−1 | (X2)p/2

= (Y X2Y −1)p/2 = (XYXY −1)∞ = (Y 2)∞ = (XY 2X−1)∞ = I >

∼= Cp/2 ∗ Cp/2 ∗ Z ∗ Z ∗ Z.

�

3.2. Theorem. Let λ ≥ 2. If m and p are positive integers such that (m, p) = 1, then

Hm
p,∞(λ) = < X,Y XY −1, Y 2XY −2, · · · , Y m−1XY 1−m, Y m | Xp

= (Y XY −1)p = (Y 2XY −2)p = · · · = (Y m−1XY 1−m)p = (Y m)∞ = I >

∼= Cp ∗ Cp ∗ · · · ∗ Cp︸ ︷︷ ︸
m times

∗ Z.

Proof. The quotient group Hp,∞(λ)/Hm
p,∞(λ) is

Hp,∞(λ)/Hm
p,∞(λ) =< X,Y | Xp = Y∞ = (XY )∞ = Xm = Y m = (XY )m = · · · = I > .

Since (m, p) = 1 and from the relations Xp = Xm = I, we �nd X = I. Thus we have

Hp,∞(λ)/Hm
p,∞(λ) =< Y : Y m = I >∼= Cm.
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Then we choose the Schreier transversal as Σ = {I, Y, Y 2, ..., Y m−1}. According to the
Reidemeister-Schreier method, we get the following products;

I.X.(I)−1 = X, I.Y.(Y )−1 = I,
Y.X.(Y )−1 = Y XY −1, Y.Y.(Y 2)−1 = I,
Y 2.X.(Y 2)−1 = Y 2XY −2, Y 2.Y.(Y 3)−1 = I,
Y 3.X.(Y 3)−1 = Y 3XY −3, Y 3.Y.(Y 4)−1 = I,
...

...
Y m−1.X.(Y m−1)−1 = Y m−1XY 1−m, Y m−1.Y.(I)−1 = Y m.

So we have a presentation of H2
p,∞(λ) as

Hm
p,∞(λ) = < X,Y XY −1, Y 2XY −2, · · · , Y m−1XY 1−m, Y m | Xp

= (Y XY −1)p = (Y 2XY −2)p = · · · = (Y m−1XY 1−m)p = (Y m)∞ = I >

∼= Cp ∗ Cp ∗ · · · ∗ Cp︸ ︷︷ ︸
m times

∗ Z.

�

The case (m, p) = d > 1, except of m = 2 and p even, is more complex, since the
index of quotient group Hp,∞(λ)/Hm

p,∞(λ) is unknown. In this case, we have the relations

Xd = Y m = (XY )m = · · · = I and can not say anything about the power subgroups
Hm
p,∞(λ).

Now we consider the power subgroups H
m
p,∞(λ) of extended generalized Hecke groups

Hp,∞(λ). Here, we interest with the cases such that the index of the quotient group

Hp,∞(λ)/H
m
p,∞(λ) is �nite.

3.3. Theorem. 1) Let p > 2 be an odd integer and λ ≥ 2. Then,

H
2
p,∞(λ) =< X,Y XY −1, Y 2 | Xp = (Y XY −1)p = (Y 2)∞ = I >∼= Cp ∗ Cp ∗ Z.

2) Let p ≥ 2 be an even integer and λ ≥ 2. Then,

H
2
p,∞(λ) =< X2, Y X2Y −1, XY XY −1, Y 2, XY 2X−1 | (X2)p/2

= (Y X2Y −1)p/2 = (XYXY −1)∞ = (Y 2)∞ = (XY 2X−1)∞ = I > .

Proof. The quotient group Hp,∞(λ)/H
2
p,∞(λ) is

Hp,∞(λ)/H
2
p,∞(λ) =< X,Y,R | Xp = Y∞ = R2 = (XR)2 = (Y R)2

= X2 = Y 2 = (XY )2 = · · · = I > .

The rest of the proof is similar to the proof of the Theorems 1 and 2. �

By using the Theorems 1, 2, 3 and 5, we can give the following.

3.4. Corollary. H
2
p,∞(λ) = H2

p,∞(λ) = H
′
p,∞(λ).

3.5. Theorem. 1) Let λ ≥ 2 and let p ≥ 3 be an odd number. If m is an even positive

integer such that (m, p) = 1, then

H
m
p,∞(λ) = < X,Y XY −1, Y 2XY −2, · · · , Y m−1XY 1−m, Y m | Xp

= (Y XY −1)p = (Y 2XY −2)p = · · · = (Y m−1XY 1−m)p = (Y m)∞ = I >

∼= Cp ∗ Cp ∗ · · · ∗ Cp︸ ︷︷ ︸
m times

∗ Z.

2) Let λ ≥ 2. If m > 0 is odd integer such that (m, p) = 1, then H
m
p,∞(λ) = Hp,∞(λ).
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Proof. 1) The quotient group Hp,∞(λ)/H
m
p,∞(λ) is

Hp,∞(λ)/H
m
p,∞(λ) =< X,Y,R | Xp = Y∞ = R2 = (XR)2 = (Y R)2

= Xm = Y m = (XY )m = · · · = I > .

Since (m, p) = 1 and m is even, we have X = I.

Hp,∞(λ)/H
m
p,∞(λ) =< Y,R : Y m = R2 = (Y R)2 = ... = I >∼= Dm.

Considering the presentation of quotient group we can choose Schreier transversal as
Σ = {I, Y, Y 2, ..., Y m−1, R, RY, RY 2, ..., RY m−1}. Then the process as following;

I.X.(I)−1 = X, I.Y.(Y )−1 = I,
Y.X.(Y )−1 = Y XY −1, Y.Y.(Y 2)−1 = I,
Y 2.X.(Y 2)−1 = Y 2XY −2, Y 2.Y.(Y 3)−1 = I,
...

...
Y m−1.X.(Y m−1)−1 = Y m−1XY 1−m, Y m−1.Y.(I)−1 = Y m,
R.X.(R)−1 = Xp−1, R.Y.(RY )−1 = I,
RY.X.(RY )−1 = Y −1Xp−1Y, RY.Y.(RY 2)−1 = I,
RY 2.X.(RY 2)−1 = Y −2Xp−1Y −2, RY 2.Y.(RY 3)−1 = I,
...

...
RY m−1.X.(RY m−1)−1 = Y 1−mXp−1Y m−1, RY m−1.Y.(R)−1 = Y −m,

I.R.(R)−1 = I,
Y.R.(RY m−1)−1 = Y m,
Y 2.R.(RY m−2)−1 = Y m,
...
Y m−1.R.(RY )−1 = Y m,
R.R.(I)−1 = I,
RY.R.(Y m−1)−1 = Y −m,
RY 2.R.(Y m−2)−1 = Y −m,
...
RY m−1.R.(Y )−1 = Y −m,

After required calculations, we have a presentation of H
m
p,∞(λ) as

H
m
p,∞(λ) = < X,Y XY −1, Y 2XY −2, · · · , Y m−1XY 1−m, Y m | Xp = (Y XY −1)p

= (Y 2XY −2)p = · · · = (Y m−1XY 1−m)p = (Y m)∞ = I >

∼= Cp ∗ Cp ∗ · · · ∗ Cp︸ ︷︷ ︸
m times

∗ Z.

2) The quotient group Hp,∞(λ)/H
m
p,∞(λ) is

Hp,∞(λ)/H
m
p,∞(λ) = < X,Y,R | Xp = Y∞ = R2

= (XR)2 = (Y R)2 = Xm = Y m = (XY )m = · · · = I >

Since m > 0 is an odd integer and from the relations Xm = Xp = I, Y m = (Y R)2 = I
and R2 = Rm = I, we have X = Y = R = I. Obviously we have X = I. As a result, we
obtain

Hp,∞(λ)/H
m
p,∞(λ) ∼= {I},

and so H
m
p,∞(λ) = Hp,∞(λ). �
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3.6. Corollary. Let p ≥ 3 be an odd integer and let λ ≥ 2. If m is an even positive

integer such that (m, p) = 1, then H
m
p,∞(λ) = Hm

p,∞(λ).

The case (m, p) = d > 1,except of m = 2 and p even, is unknown and so we can not

say anything about the power subgroups H
m
p,∞(λ), similar to Hm

p,∞(λ).

3.7. Remark. In this paper, if we take p = 2, then our results coincide with the ones
given in [14] and [15].
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