$\int Hacettepe Journal of Mathematics and Statistics Volume 45 (1) (2016), 107-120$

\oplus -supplemented modules relative to an ideal

Rachid Tribak^{*}, Yahya Talebi[†], Ali Reza Moniri Hamzekolaee[‡] and Samira Asgari[§]

Abstract

Let I be an ideal of a ring R and let M be a left R-module. A submodule L of M is said to be δ -small in M provided $M \neq L + X$ for any proper submodule X of M with M/X singular. An R-module M is called I- \oplus -supplemented if for every submodule N of M, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq IK$ and $N \cap K$ is δ -small in K. In this paper, we investigate some properties of I- \oplus -supplemented modules. We also compare I- \oplus -supplemented modules with \oplus -supplemented modules. The structure of I- \oplus -supplemented modules and \oplus - δ -supplemented modules over a Dedekind domain is completely determined.

Keywords: δ -small submodules, \oplus -supplemented modules, \oplus - δ -supplemented modules, I- \oplus -supplemented modules

2000 AMS Classification: 16D10, 16D70, 16D99

Received: 16.02.2014 Accepted: 20.05.2014 Doi: 10.15672/HJMS.20164512490

1. Introduction

All rings considered in this paper will be associative with an identity element and R will always denote a ring. We shall use J(R) to denote the Jacobson radical of R. All modules will be unital left R-modules. Let M be an R-module. A submodule L of M is called *small* (δ -small) in M, denoted by $L \ll M$ ($L \ll_{\delta} M$), if $L + X \neq M$ for any proper submodule X of M ($L + X \neq M$ for any proper submodule X of M with M/X singular). Recall that M is called \oplus -supplemented (\oplus - δ -supplemented) if for every submodule $N \leq M$, there exists a direct summand K of M such that N + K = M and $N \cap K \ll K$ ($N \cap K \ll_{\delta} K$).

^{*}Centre Régional des Métiers de l'Education et de la Formation (CRMEF)-Tanger, Avenue My Abdelaziz, BP 3117 Souani, Tanger, Morocco. Email: tribak12@yahoo.com

[†]Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. Email: talebi@umz.ac.ir

[‡]Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. Email: a.monirih@umz.ac.ir

[§]Department of Mathematics, Islamic Azad University, Mobarakeh Branch, Mobarakeh, Iran. Email: samira.asgari.a@gmail.com

In Section 2, we study some special cases of submodules N of a module M for which $N \ll_{\delta} M$ is equivalent to $N \ll M$.

In Section 3, we introduce the notion of I- \oplus -supplemented R-modules, where I is an ideal of R. A module M will be called I- \oplus -supplemented if for every submodule N of M, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq IK$ and $N \cap K \ll_{\delta} K$. We shall compare this notion with the concept of \oplus -supplemented modules. Indecomposable I- \oplus -supplemented modules are characterized.

Section 4 is devoted to the study of some factor modules of an I- \oplus -supplemented module. Among other results, it is shown that if M is a direct sum of two hollow I- \oplus -supplemented modules, then any direct summand of M is I- \oplus -supplemented.

In Section 5, our main results (Theorems 5.4 and 5.13) describe the structure of I- \oplus -supplemented modules over Dedekind domains. It is also shown that over a Dedekind domain R, an R-module M is \oplus - δ -supplemented if and only if M is \oplus -supplemented.

2. Some properties of δ -small submodules

We begin with some results presenting some elementary properties of δ -small submodules which will be used in the sequel.

- 2.1. Lemma. ([19, Lemma 1.2]) Let N be a submodule of a module M. The following are equivalent:
 (i) N is δ-small in M;
 - (ii) If X + N = M, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \leq N$.

2.2. Lemma. (See [19, Lemma 1.3])

(i) Let N and K be submodules of a module M with $K \subseteq N$. If $N \ll_{\delta} M$, then $K \ll_{\delta} M$.

(ii) Let M and M' be two modules. If $L \ll_{\delta} M$ and $f : M \to M'$ is a homomorphism, then $f(L) \ll_{\delta} M'$. In particular, if $K \ll_{\delta} M \leq M'$, then $K \ll_{\delta} M'$.

(iii) If N and L are submodules of a module M, then $N + L \ll_{\delta} M$ if and only if $N \ll_{\delta} M$ and $L \ll_{\delta} M$.

(iv) Let M_1 and M_2 be two submodules of a module M such that $M = M_1 \oplus M_2$. Let $K_1 \leq M_1$ and $K_2 \leq M_2$. Then $K_1 \oplus K_2 \ll_{\delta} M_1 \oplus M_2$ if and only if $K_1 \ll_{\delta} M_1$ and $K_2 \ll_{\delta} M_2$.

Let N be a submodule of a module M. Recall that N is said to be DM in M (or N decomposes M) if there is a direct summand D of M such that $D \leq N$ and M = D + X, whenever N + X = M for a submodule X of M (see [1, Definition 3.1]). Clearly, the following implications hold:

 $(N \ll M) \Rightarrow (N \ll_{\delta} M) \Rightarrow (N \text{ is } DM \text{ in } M).$

Next, we exhibit some conditions under which $N \ll_{\delta} M$ is equivalent to $N \ll M$.

2.3. Proposition. Let N be a proper submodule of an indecomposable module M. Then N is DM in M if and only if $N \ll_{\delta} M$ if and only if $N \ll M$.

Proof. Assume that N is DM in M. Let X be a submodule of M such that M = N + X. Then there exists a direct summand D of M such that $D \leq N$ and M = D + X. Since M is indecomposable and $N \neq M$, we have D = 0 and X = M. Therefore, $N \ll M$. The rest of the proof is immediate. \Box

The next result was inspired by [16, Proposition 2.3(1)].

2.4. Proposition. Let N be a submodule of a module M. Then $N \ll M$ if and only if $N \subseteq Rad(M)$ and $N \ll_{\delta} M$.

Proof. It is enough to prove the sufficiency. Let X be a submodule of M such that M = N + X. Since $N \ll_{\delta} M$, there exists a projective semisimple submodule $P \leq N$ such that $M = P \oplus X$. The following result is a direct consequence of Proposition 2.4.

2.5. Corollary. Let M be a module with Rad(M) = M and let N be a submodule of M. Then $N \ll_{\delta} M$ if and only if $N \ll M$.

Let M be a module over a commutative integral domain R. Let T(M) denote the set of all elements $x \in M$ for which there exists a nonzero element $r \in R$ such that rx = 0. It is well known that T(M) is a submodule of M. This submodule is called the *torsion submodule* of M. If T(M) = M, then the module M is said to be a *torsion module*. The module M is said to be *torsion-free* if T(M) = 0.

2.6. Proposition. Assume that R is a commutative integral domain. Let M be an R-module and N a submodule of M such that $N \subseteq T(M)$. Then $N \ll_{\delta} M$ if and only if $N \ll M$.

Proof. Assume that $N \ll_{\delta} M$. Let X be a submodule of M such that N + X = M. Then there exists a projective submodule $P \leq N$ such that $P \oplus X = M$. Since P is projective, P is isomorphic to a direct summand of a free R-module. Hence, P is torsion-free. But P is a torsion module as $P \subseteq N$. Then P = 0 and X = M. It follows that $N \ll M$. The converse is obvious.

Let N and K be submodules of a module M. Recall that K is said to be a supplement of N in M if N + K = M and $N \cap K \ll K$. Let $M = \bigoplus_{i \in I} M_i$ be a decomposition of the module M. The next example shows that, in general, if $L = \bigoplus_{i \in I} L_i$ is a submodule of M such that $L_i \ll_{\delta} M_i$ for each $i \in I$, then L need not be δ -small in M.

2.7. Example. Let R be a discrete valuation ring with maximal ideal m. Let $M = \bigoplus_{i=1}^{\infty} R/m^i$. By [20, p. 48 The second corollary of Lemma 2.1], Rad(M) does not have a supplement in M. Therefore, $Rad(M) = \bigoplus_{i=1}^{\infty} m/m^i$ is not small in M. Applying Proposition 2.6, it follows that Rad(M) is not δ -small in M. On the other hand, it is clear that for each $i \geq 1$, $m/m^i \ll R/m^i$.

2.8. Proposition. Let $M = \bigoplus_{i \in I} M_i$ be a decomposition of a module M. Assume that for every submodule $N \leq M$, we have $N = \bigoplus_{i \in I} (N \cap M_i)$. For each i, let L_i be a submodule of M_i . The following statements are equivalent:

(i) $L_i \ll_{\delta} M_i$ for every $i \in I$;

(ii) $L = \bigoplus_{i \in I} L_i \ll_{\delta} M$.

Proof. (i) \Rightarrow (ii) Let X be a submodule of M such that M = X + L. By hypothesis, $X = \bigoplus_{i \in I} (X \cap M_i)$. So, $(X \cap M_i) + L_i = M_i$ for every $i \in I$. By assumption, for every $i \in I$, there exists a semisimple projective submodule P_i of L_i such that $(X \cap M_i) \oplus P_i = M_i$ (see Lemma 2.1). Let $P = \bigoplus_{i \in I} P_i$. Then $X \oplus P = M$. Note that P is a semisimple projective submodule of L. Therefore, $L \ll_{\delta} M$.

(ii) \Rightarrow (i) By Lemma 2.2(iv).

3. *I*-⊕-supplemented modules

Recall that a module M is called \oplus -supplemented (\oplus - δ -supplemented) if for every submodule $N \leq M$, there exists a direct summand K of M such that N + K = M and $N \cap K \ll K$ $(N \cap K \ll_{\delta} K)$.

Recall that a ring R is said to be *semilocal* provided R/J(R) is a semisimple ring.

3.1. Proposition. Let M be a module over a semilocal ring R. Then M is \oplus -supplemented if and only if for every submodule $N \leq M$, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq J(R)K$ and $N \cap K \ll_{\delta} K$.

Proof. By Proposition 2.4 and [2, Corollary 15.18].

Motivated by the last proposition, we introduce the following notion:

3.2. Definition. Let M be an R-module and let I be an ideal of R. We say that M is I- \oplus -supplemented, provided for every submodule N of M, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq IK$ and $N \cap K \ll_{\delta} K$.

In this section we investigate some properties of I- \oplus -supplemented modules.

3.3. Remark. (i) It is clear that for every ideal I of R, every I- \oplus -supplemented module is \oplus - δ -supplemented.

(ii) Let M be an R-module. If I is an ideal of R such that IM = 0, then M is I- \oplus -supplemented if and only if M is semisimple.

Let M be an R-module. As in [19], let $\delta(M)$ denote the sum of all δ -small submodules of M. In the next proposition we provide a condition under which a \oplus - δ -supplemented module is I- \oplus -supplemented. To prove this result, we need the following elementary lemma.

3.4. Lemma. Let M be an R-module and let I be an ideal of R. If K is a direct summand of M, then we have $IK = K \cap IM$.

Proof. Let K' be a submodule of M such that $M = K \oplus K'$. Then $IM = IK \oplus IK'$. Hence $K \cap IM = IK$.

3.5. Proposition. Let M be an R-module and let I be an ideal of R such that $\delta(M) \subseteq IM$. Then M is I- \oplus -supplemented if and only if M is \oplus - δ -supplemented.

Proof. The necessity is clear. Conversely, suppose that M is \oplus - δ -supplemented. Let N be a submodule of M. Then there exists a direct summand K of M such that M = N + K and $N \cap K \ll_{\delta} K$. Note that $IK = K \cap IM$ by Lemma 3.4. Since $\delta(M) \subseteq IM$, we have

$$N \cap K \subseteq \delta(K) \subseteq K \cap \delta(M) \subseteq K \cap IM = IK.$$

Therefore M is I- \oplus -supplemented. This completes the proof.

Recall that a nonzero module M is called *hollow* if every proper submodule is small in M. The module M is called *local* if it has a proper submodule which contains all other proper submodules. Note that the largest proper submodule of a local module M is Rad(M). It is well known that every hollow module is \oplus -supplemented.

3.6. Example. (i) It is clear that every semisimple module is I- \oplus -supplemented for any ideal I of R.

(ii) Let p be a prime integer. It is well known that the \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ is hollow and injective. It is easily seen that $\mathbb{Z}(p^{\infty})$ is I- \oplus -supplemented for every nonzero ideal I of \mathbb{Z} , but $\mathbb{Z}(p^{\infty})$ is not 0- \oplus -supplemented.

(iii) It is easy to see that every \oplus - δ -supplemented module (in particular, every \oplus -supplemented module) is R- \oplus -supplemented (see Proposition 3.5).

3.7. Proposition. Let M be an indecomposable R-module and let I be an ideal of R. The following conditions are equivalent:

(i) M is I- \oplus -supplemented;

(ii) M is hollow with IM = M or IM = Rad(M).

Proof. (i) \Rightarrow (ii) Let N be a proper submodule of M. By hypothesis, there exists a direct summand K of M such that N + K = M, $N \cap K \subseteq IK$ and $N \cap K \ll_{\delta} K$. Since M is indecomposable, we have K = M. Hence, $N \subseteq IM$ and $N \ll_{\delta} M$. By Proposition 2.3, we have $N \ll M$. Thus, M is a hollow module. Moreover, note that if $IM \neq M$, then IM contains all other proper submodules of M. Hence M is a local module and IM = Rad(M).

(ii) \Rightarrow (i) Let N be a proper submodule of M. Then N + M = M, $N \cap M = N \subseteq Rad(M) \subseteq IM$ and $N \cap M = N \ll_{\delta} M$. Therefore, M is I- \oplus -supplemented.

It follows from Proposition 3.7 that if I is an ideal of R, then every indecomposable I- \oplus -supplemented R-module is \oplus -supplemented. Next, we present some examples of \oplus -supplemented modules which are not I- \oplus -supplemented for an ideal I of R.

3.8. Example. (i) Let p and q be two different prime integers. Consider the local \mathbb{Z} -module $M = \mathbb{Z}/\mathbb{Z}p^3$. We have $Rad(M) = \mathbb{Z}p/\mathbb{Z}p^3$. Let $I_1 = \mathbb{Z}p$, $I_2 = \mathbb{Z}q$ and $I_3 = \mathbb{Z}p^2$. Then $I_1M = Rad(M)$, $I_2M = M$ and $I_3M = \mathbb{Z}p^2/\mathbb{Z}p^3$. By Proposition 3.7, M is I_i - \oplus -supplemented for each i = 1, 2, but not I_3 - \oplus -supplemented. On the other hand, it is clear that M is \oplus -supplemented.

(ii) Let R be a discrete valuation ring with maximal ideal m. It is well known that the R-module $_{R}R$ is \oplus -supplemented. Let I be an ideal of R. From Proposition 3.7 it follows that $_{R}R$ is I- \oplus -supplemented if and only if I = m or I = R. Therefore, the module $_{R}R$ is not m^{3} - \oplus -supplemented.

3.9. Proposition. Let I be an ideal of R and let M be an R-module.

(i) Assume that for every submodule $N \leq M$, there exists a submodule $K \leq M$ such that M = N + K and $N \cap K \subseteq IM$. Then M/IM is semisimple.

(ii) If M is an I- \oplus -supplemented R-module, then M/IM is semisimple.

Proof. (i) Let N be a submodule of M such that $IM \subseteq N$. By assumption, there exists a submodule K of M such that N + K = M and $N \cap K \subseteq IM$. Thus, (N/IM) + [(K + IM)/IM] = M/IM. Clearly, we have $N \cap (K + IM) = IM$. So, N/IM is a direct summand of M/IM. This completes the proof.

(ii) follows from (i).

3.10. Proposition. Let M be a module.

(i) If M is \oplus - δ -supplemented, then $M = M_1 \oplus M_2$ such that $Rad(M_1) \ll M_1$ and $Rad(M_2) = M_2$.

(ii) If M is I- \oplus -supplemented, then $M = M_1 \oplus M_2$ such that $Rad(M_1) \subseteq IM_1$, $Rad(M_1) \ll M_1$ and $Rad(M_2) = M_2$.

Proof. (i) Since M is \oplus - δ -supplemented, there exist submodules M_1 and M_2 of M such that $M = M_1 \oplus M_2$, $Rad(M) + M_1 = M$ and $Rad(M) \cap M_1 \ll_{\delta} M_1$. Note that $Rad(M) = Rad(M_1) \oplus Rad(M_2)$. Then $M_1 \oplus Rad(M_2) = M$ and $(Rad(M) \cap M_1) \oplus Rad(M_2) = Rad(M)$. Therefore $Rad(M_2) = M_2$ and $Rad(M) \cap M_1 = Rad(M_1)$. Moreover, we have $Rad(M_1) \ll M_1$ by Proposition 2.4. This completes the proof.

(ii) This follows by the same method as in (i) and adding the fact that $Rad(M) \cap M_1 \subseteq IM_1$. \Box

Combining Proposition 3.10(ii) and [2, Proposition 5.20(1)], we get the following result.

3.11. Corollary. If M is an I- \oplus -supplemented module with $Rad(M) \ll M$, then $Rad(M) \subseteq IM$.

From the last corollary, we conclude that if I is an ideal of a left perfect ring R and M is an $I-\oplus$ -supplemented R-module, then $Rad(M) \subseteq IM$ (see [2, Remark 28.5(3)]).

An *R*-module *M* is said to be δ -local if $\delta(M) \ll_{\delta} M$ and $\delta(M)$ is a maximal submodule of *M* (see [4, Definition 3.1]). Next, we give an example of an *R*- \oplus -supplemented module which is not \oplus -supplemented.

3.12. Example. Let $F = \mathbb{Z}/\mathbb{Z}2$ and let $A = F^{\mathbb{N}}$ be the ring of sequences over F, whose operations are pointwise multiplication and pointwise addition. Let $R \subseteq A$ be the subring generated by 1_A (the unit element of A) and all sequences that have only a finite number of nonzero entries. It is shown in [4, p. 318] that the ring R is not semilocal and the R-module $_RR$ is δ -local. Applying [15, Proposition 3.1], it is easily seen that $_RR$ is an R- \oplus -supplemented module. On the other hand, since the ring R is not semilocal, it is not semiperfect. Hence, the R-module $_RR$ is not \oplus -supplemented by [12, Corollary 4.42].

Next, we present conditions under which an I- \oplus -supplemented R-module is \oplus -supplemented.

3.13. Proposition. Let M be an R-module with Rad(M) = M. Then M is \oplus - δ -supplemented if and only if M is \oplus -supplemented.

Proof. As Rad(M) = M, we have Rad(K) = K for every direct summand K of M. The result follows from Corollary 2.5.

3.14. Proposition. Assume that R is a commutative integral domain and let M be a torsion R-module. Then M is \oplus - δ -supplemented if and only if M is \oplus -supplemented.

Proof. This follows from Proposition 2.6.

3.15. Proposition. Let I be an ideal of R and let M be an I- \oplus -supplemented R-module. If $IM \subseteq Rad(M)$, then M is \oplus -supplemented.

Proof. Let N be a submodule of M. By hypothesis, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq IK$ and $N \cap K \ll_{\delta} K$. Since $IM \subseteq Rad(M)$, we have $IK = K \cap IM \subseteq K \cap Rad(M) = Rad(K)$ by Lemma 3.4 and [5, 20.4(7)]. So $N \cap K \ll K$ by Proposition 2.4. It follows that M is \oplus -supplemented.

3.16. Corollary. Let I be an ideal of R and let M be an I- \oplus -supplemented R-module. Assume that one of the following conditions is satisfied:

- (i) $I \subseteq J(R)$, or
- (ii) R is a local ring and $I \neq R$, or
- (iii) Rad(M) = M, or
- (iv) R is a commutative integral domain and M is a torsion R-module.

Then M is \oplus -supplemented.

Proof. (i) follows from [2, Corollary 15.18] and Proposition 3.15.

- (ii) follows from (i).
- (iii) follows easily from Proposition 3.13.
- (iv) is obvious by Proposition 3.14.

Next, we focus on when a \oplus -supplemented *R*-module is *I*- \oplus -supplemented for an ideal *I* of *R*.

3.17. Proposition. Let I be an ideal of R and let M be a \oplus -supplemented R-module such that $Rad(M) \subseteq IM$. Then M is I- \oplus -supplemented.

Proof. Let N be a submodule of M. Then there exists a direct summand K of M such that M = N + K and $N \cap K \ll K$. Thus, $N \cap K \ll_{\delta} K$. Moreover, we have $IK = K \cap IM$ by Lemma 3.4. Since $Rad(M) \subseteq IM$, it follows that

$$Rad(K) \subseteq K \cap Rad(M) \subseteq K \cap IM = IK.$$

Hence, $N \cap K \subseteq IK$. Therefore M is I- \oplus -supplemented. This completes the proof.

The next corollary is a direct consequence of Proposition 3.17.

3.18. Corollary. Let M be a \oplus -supplemented module such that IM = M. Then M is I- \oplus -supplemented.

3.19. Corollary. Let m be a maximal ideal of a commutative ring R and let M be an R-module. Assume that I is an ideal of R such that IM = mM. If M is a \oplus -supplemented R-module, then M is $I \oplus$ -supplemented.

Proof. Note that $Rad(M) \subseteq mM$ by [7, Lemma 3]. The result follows from Proposition 3.17. \Box

Let R be a commutative integral domain. An R-module M is called *divisible* in case rM = M for each nonzero element $r \in R$.

3.20. Corollary. Let M be a divisible module over a commutative integral domain R. If M is \oplus -supplemented, then M is $I \oplus$ -supplemented for every nonzero ideal I of R.

Proof. This follows from Corollary 3.18.

Recall that a ring R is called a *left good* ring if Rad(M) = J(R)M for every R-module M (see [18, 23.7]).

3.21. Corollary. Let M be an R-module. Suppose further that either

(i) R is a left good ring, or

(ii) M is a projective module.

Then M is \oplus -supplemented if and only if M is J(R)- \oplus -supplemented.

Proof. Note that Rad(M) = J(R)M by [2, Proposition 17.10]. The result follows from Propositions 3.15 and 3.17.

Combining Lemma 2.2 and the application of the same reasoning of [10, Proposition 3] to I- \oplus -supplemented modules, we obtain the following theorem.

3.22. Theorem. Let I be an ideal of R. Then any finite direct sum of I- \oplus -supplemented R-modules is I- \oplus -supplemented.

The next example shows that, in general, a direct sum of I- \oplus -supplemented modules is not I- \oplus -supplemented.

3.23. Example. Let p be a prime integer. Consider the \mathbb{Z} -module $M = \bigoplus_{i=1}^{\infty} \mathbb{Z}/\mathbb{Z}p^i$. Clearly, M is a torsion module. By [12, Propositions A.7 and A.8], M is not \oplus -supplemented. Therefore M is not $(\mathbb{Z}p)$ - \oplus -supplemented by Corollary 3.16. On the other hand, note that for every $i \geq 1$, $\mathbb{Z}/\mathbb{Z}p^i$ is a $(\mathbb{Z}p)$ - \oplus -supplemented \mathbb{Z} -module by Proposition 3.7.

The next result deals with a special case of a family of \oplus - δ -supplemented (I- \oplus -supplemented) modules $(M_{\lambda})_{\lambda \in \Lambda}$ for which $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is \oplus - δ -supplemented (I- \oplus -supplemented).

3.24. Proposition. Let I be an ideal of R and let $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ be a direct sum of submodules M_{λ} ($\lambda \in \Lambda$) such that for every submodule N of M, we have $N = \bigoplus_{\lambda \in \Lambda} (N \cap M_{\lambda})$. Assume that M_{λ} is \oplus - δ -supplemented (I- \oplus -supplemented) for every $\lambda \in \Lambda$. Then M is \oplus - δ -supplemented (I- \oplus -supplemented).

Proof. Let N be a submodule of M. Then $N = \bigoplus_{\lambda \in \Lambda} (N \cap M_{\lambda})$. For every $\lambda \in \Lambda$, there exists a direct summand K_{λ} of M_{λ} such that $(N \cap M_{\lambda}) + K_{\lambda} = M_{\lambda}$, $(N \cap K_{\lambda} \subseteq IK_{\lambda})$ and $N \cap K_{\lambda} \ll_{\delta} K_{\lambda}$. Set $K = \bigoplus_{\lambda \in \Lambda} K_{\lambda}$. Clearly, K is a direct summand of M and N + K = M. Also, we have $(N \cap K = \bigoplus_{\lambda \in \Lambda} (N \cap K_{\lambda}) \subseteq IK)$ and $N \cap K \ll_{\delta} K$ by Proposition 2.8. This proves the proposition.

4. Homomorphic images of I- \oplus -supplemented modules

We begin this section by an example showing that the I- \oplus -supplemented property does not always transfer from a module to each of its factor modules.

4.1. Example. Let F be a field. Consider the local ring $R = F[x^2, x^3]/(x^4)$ and let m be the maximal ideal of R. Let n be an integer with $n \ge 2$ and let $M = R^{(n)}$. By Proposition 3.7 and Theorem 3.22, M is m- \oplus -supplemented. Note that R is an artinian local ring which is not a principal ideal ring (see [3, Example on p. 91]). So, there exists a submodule K of M such that the factor module M/K is not \oplus -supplemented by [11, Example 2.2]. Therefore M/K is not m- \oplus -supplemented by Corollary 3.16.

Next, we show that under some conditions, a factor module of an I- \oplus -supplemented module is I- \oplus -supplemented.

Recall that a submodule N of a module M is called *fully invariant* if $f(N) \subseteq N$ for every endomorphism f of M. A module M is called *distributive* if $(A + B) \cap C = (A \cap C) + (B \cap C)$ for all submodules A, B, C of M (or equivalently, $(A \cap B) + C = (A + C) \cap (B + C)$ for all submodules A, B, C of M).

Analysis similar to the proofs of [6, Theorems 4.7 and 4.8] yields the following result. We give the first part of its proof for completeness.

4.2. Proposition. Let I be an ideal of R and let M be an I- \oplus -supplemented module.

(i) Let $X \leq M$ be a submodule such that for every direct summand K of M, (X + K)/X is a direct summand of M/X. Then M/X is I- \oplus -supplemented.

(ii) Let $X \leq M$ be a submodule such that for every decomposition $M = M_1 \oplus M_2$, we have $X = (X \cap M_1) \oplus (X \cap M_2)$. Then M/X is I- \oplus -supplemented.

- (iii) If X is a fully invariant submodule of M, then M/X is I- \oplus -supplemented.
- (iv) If M is a distributive module, then M/X is I- \oplus -supplemented for every submodule X of M.

Proof. (i) Let N be a submodule of M such that $X \subseteq N$. Since M is I- \oplus -supplemented, there exists a direct summand K of M such that N + K = M, $N \cap K \subseteq IK$ and $N \cap K \ll_{\delta} K$. Therefore (N/X) + ((X+K)/X) = M/X and $(N/X) \cap ((K+X)/X) = (X + (N \cap K))/X \subseteq ((X+IK)/X) \subseteq I((X+K)/X)$. Consider the natural epimorphism $\pi : K \to (X+K)/X$. Since $N \cap K \ll_{\delta} K$, we have $\pi(N \cap K) = (X + (N \cap K))/X \ll_{\delta} (X+K)/X$ by Lemma 2.2(ii). Note that by assumption, (X+K)/X is a direct summand of M/X. It follows that M/X is I- \oplus -supplemented.

(ii), (iii) and (iv) These are consequences of (i).

The next proposition was inspired by [11, Proposition 2.5].

4.3. Proposition. Let M be an R-module and let I be an ideal of R. Let K be a fully invariant direct summand of M. Then the following assertions are equivalent:

- (i) M is I- \oplus -supplemented;
- (ii) K and M/K are I- \oplus -supplemented.

Proof. (i) \Rightarrow (ii) Let L be a submodule of K. By hypothesis, there exist submodules A and B of M such that $M = A \oplus B$, M = A + L, $A \cap L \subseteq IA$ and $A \cap L \ll_{\delta} A$. Clearly, we have $K = (A \cap K) + L$. Since K is fully invariant in M, we have $K = (A \cap K) \oplus (B \cap K)$. Hence, $A \cap K$ is a direct summand of M. Thus $I(A \cap K) = (A \cap K) \cap IM$ by Lemma 3.4. It follows that $(A \cap K) \cap L = A \cap L \subseteq (A \cap K) \cap IM = I(A \cap K)$. Since $A \cap L \ll_{\delta} A$ and $A \cap K$ is a direct summand of A, we have $A \cap L \ll_{\delta} A \cap K$ by Lemma 2.2(iv). Therefore, K is I- \oplus -supplemented. Moreover, M/K is I- \oplus -supplemented by Proposition 4.2(iii).

(ii) \Rightarrow (i) This follows from Theorem 3.22.

Let I be an ideal of R. An R-module M is called *completely* $I \oplus supplemented (\oplus supplemented)$ if every direct summand of M is $I \oplus supplemented (\oplus supplemented)$. Clearly, semisimple modules are completely $I \oplus supplemented$. Also, every $I \oplus supplemented$ hollow module is completely $I \oplus supplemented$. The next result provides another example of completely $I \oplus supplemented$ modules.

Recall that a module M is said to have finite hollow dimension $n \in \mathbb{N}$ if there exists a small epimorphism from M to a direct sum of n hollow modules. We denote this by h.dim(M) = n. It is well known that a module M is hollow if and only if h.dim(M) = 1 (see [5, p. 47 and p. 49]).

4.4. Proposition. Let $M = H_1 \oplus H_2$ be a direct sum of hollow submodules H_1 and H_2 . Then the following statements are equivalent:

- (i) H_1 and H_2 are I- \oplus -supplemented modules;
- (ii) The module M is completely I- \oplus -supplemented.

Proof. (i) \Rightarrow (ii) Let L be a nonzero direct summand of M. If L = M, then L is I- \oplus -supplemented by Theorem 3.22. Assume that $L \neq M$. Let K be a submodule of M such that $M = L \oplus K$. By [5, 5.4(1)], h.dim(M) = 2 = h.dim(L) + h.dim(K). It follows that h.dim(L) = 1 and hence L is a hollow module. Let us prove that L is I- \oplus -supplemented. To see this, it suffices to show that IL = Lor IL = Rad(L) by Proposition 3.7. Since M is I- \oplus -supplemented, $M/IM \cong (L/IL) \oplus (K/IK)$ is semisimple by Proposition 3.9. As L is a hollow module, L/IL = 0 or L/IL is simple. Hence L = IL or L is a local module with maximal submodule IL. So IL = L or IL = Rad(L), as required.

(ii) \Rightarrow (i) This is immediate.

5. Modules over Dedekind domains

Our purpose in this section is to determine the structure of all I- \oplus -supplemented modules and all \oplus - δ -supplemented modules over Dedekind domains.

5.1. Proposition. Let R be a Dedekind domain which is not a field. Then the following assertions are equivalent for an injective R-module M:

- (i) M is \oplus -supplemented;
- (ii) M is I- \oplus -supplemented for every nonzero ideal I of R;
- (iii) M is I- \oplus -supplemented for some nonzero ideal I of R;
- (iv) M is \oplus - δ -supplemented.

Proof. (i) \Rightarrow (ii) This follows from Corollary 3.20 since the module M is divisible.

(ii) \Rightarrow (iii) and (iii) \Rightarrow (iv) These are obvious.

 $(iv) \Rightarrow (i)$ Since R is a Dedekind domain which is not a field and M is an injective R-module, we have Rad(M) = M. The result follows from Proposition 3.13.

Let R be a Dedekind domain which is not a field. If M is an R-module, we will denote the sum of all divisible (injective) submodules of M by d(M). It is well known that d(M) is an injective R-module. Also, note that if f is an endomorphism of M, then f(d(M)) is isomorphic to a factor module of d(M). So, f(d(M)) is injective as R is a Dedekind domain. Therefore, $f(d(M)) \subseteq d(M)$. It follows that d(M) is a fully invariant submodule of M.

5.2. Proposition. Let R be a Dedekind domain which is not a field. Let I be an ideal of R and let M be an R-module. Then the following are equivalent:

(i) M is \oplus - δ -supplemented (I- \oplus -supplemented);

(ii) M can be written as $M = M_1 \oplus M_2$ such that M_1 is injective, $Rad(M_2) \ll M_2$ and both of M_1 and M_2 are \oplus - δ -supplemented (I- \oplus -supplemented) modules.

Proof. (i) \Rightarrow (ii) Let $M_1 = d(M)$ and let M_2 be a submodule of M such that $M = M_1 \oplus M_2$. Note that M_2 has no submodules X with Rad(X) = X. Since M is \oplus - δ -supplemented (I- \oplus -supplemented), M_1 and M_2 are \oplus - δ -supplemented (I- \oplus -supplemented) by [14, Theorem 2.5] and Proposition 4.3. Moreover, we have $Rad(M_2) \ll M_2$ by Proposition 3.10.

(ii) \Rightarrow (i) This follows by [14, Theorem 2.2] and Theorem 3.22.

Next, we restrict our investigations about \oplus - δ -supplemented modules and I- \oplus -supplemented modules to the case of modules over discrete valuation rings.

5.3. Proposition. Let M be a module over a discrete valuation ring R and let I be an ideal of R. Then M is \oplus - δ -supplemented if and only if M is \oplus -supplemented. In particular, every I- \oplus -supplemented R-module is \oplus -supplemented.

Proof. Assume that M is \oplus - δ -supplemented. By Proposition 5.2, $M = M_1 \oplus M_2$ is a direct sum of a \oplus - δ -supplemented injective submodule M_1 and a submodule M_2 with $Rad(M_2) \ll M_2$. By Proposition 5.1, M_1 is \oplus -supplemented. In addition, M_2 is \oplus -supplemented by [20, Lemma 2.1] and [12, Proposition A.7]. Therefore, M is \oplus -supplemented by [8, Theorem 1.4]. The converse is immediate.

The remaining assertion is obvious.

Let P be a nonzero prime ideal of a Dedekind domain R and let n be a nonzero natural number. We will use the notation $B_P(1, \ldots, n)$ to denote the direct sum of arbitrarily many copies of R/P, $R/P^2, \ldots, R/P^n$.

The next result provides a structure theorem for modules over a discrete valuation ring.

5.4. Theorem. Assume that R is a discrete valuation ring with maximal ideal m, quotient field K and Q = K/R. Let I be an ideal of R and let M be an R-module.

- (1) If I = m or I = R, then the following are equivalent:
 - (i) M is I- \oplus -supplemented;
 - (ii) M is \oplus - δ -supplemented;
 - (iii) M is \oplus -supplemented;
 - (iv) $M \cong R^a \oplus K^b \oplus Q^c \oplus B_m(1, ..., n)$ for some natural numbers a, b, c and n.

(2) If $I \notin \{m, R\}$, then the following are equivalent:

- (i) M is I- \oplus -supplemented;
- (ii) $M \cong K^b \oplus Q^c \oplus (R/m)^{(\Lambda)}$ for some natural numbers b and c and an index set Λ .

Proof. (1) (i) \Leftrightarrow (iii) By Corollaries 3.18 and 3.19 and Proposition 5.3.

- (ii) \Leftrightarrow (iii) By Proposition 5.3.
- (iii) \Leftrightarrow (iv) This follows from [12, Proposition A.7].

(2) (i) \Rightarrow (ii) Assume that M is I- \oplus -supplemented. By Proposition 5.3, M is \oplus -supplemented. Applying [12, Proposition A.7], $M \cong R^a \oplus K^b \oplus Q^c \oplus B_m(1, \ldots, n)$ for some natural numbers a, b, c and n. Since M/IM is semisimple (see Proposition 3.9) and $I \notin \{m, R\}$, we have a = 0 and for each $1 \leq i \leq n$, $R/(I + m^i)$ is semisimple. So, for each $1 \leq i \leq n$, we have $I + m^i = m$ or $I + m^i = R$. Therefore n = 1 because $I \subseteq m^2$. It follows that $B_m(1, \ldots, n) = B_m(1)$ is semisimple, completing the proof.

(ii) \Rightarrow (i) Note that $K^b \oplus Q^c$ is an injective \oplus -supplemented module by [12, Proposition A.7]. The result follows from Propositions 5.1 and 5.2.

5.5. Remark. Let R be a discrete valuation ring with maximal ideal m, quotient field K and Q = K/R. Let I be an ideal of R.

(i) Assume that $I \notin \{m, R\}$. Theorem 5.4(2) and [12, Proposition A.7] provide many examples of \oplus -supplemented *R*-modules which are not *I*- \oplus -supplemented.

(ii) Note that [11, Corollary 4.5] shows that every \oplus -supplemented *R*-module is completely \oplus -supplemented.

Case 1. Assume that $I \in \{m, R\}$. Then every I- \oplus -supplemented R-module is completely I- \oplus -supplemented by Theorem 5.4.

Case 2. Suppose that $I \notin \{m, R\}$. Let M be an I- \oplus -supplemented R-module. Then $M = K^b \oplus Q^c \oplus (R/m)^{(\Lambda)}$ for some natural numbers b and c and an index set Λ . Let N and L be submodules of M such that $M = N \oplus L$ and let d(M) be the sum of all injective submodules of M. It is clear that $d(M) = d(N) \oplus d(L) = K^b \oplus Q^c$. Then, $d(N) \cong K^{b'} \oplus Q^{c'}$ for some natural numbers b' and c' by [2, Corollary 12.7 and Lemma 25.4]. Therefore, d(N) is I- \oplus -supplemented by Theorem 5.4. In addition, we have $(R/m)^{(\Lambda)} \cong M/d(M) \cong (N/d(N)) \oplus (L/d(L))$. Hence, N/d(N) is semisimple. Thus, N/d(N) is I- \oplus -supplemented. Since d(N) is a direct summand of N, N is I- \oplus -supplemented by Theorem 3.22. Consequently, M is completely I- \oplus -supplemented.

Let L be a submodule of a module M. A submodule $K \leq M$ is called a δ -supplement of N in M if M = L + K and $L \cap K \ll_{\delta} K$. The module M is called δ -supplemented if every submodule has a δ -supplement in M.

Our next goal is to describe \oplus - δ -supplemented modules and I- \oplus -supplemented modules over a nonlocal Dedekind domain R. The next proposition shows that every torsion-free δ -supplemented R-module is injective. First we prove the following lemma.

5.6. Lemma. Let L be a proper submodule of a module M such that M/L is a cyclic module.

(i) If K is a δ -supplement of L in M, then $K = P \oplus Rx$, where P is a semisimple projective submodule of $L \cap K$ and $x \in K$. In this case, Rx is a δ -supplement of L in M.

(ii) If L has a δ -supplement that is a direct summand of M, then L has a cyclic δ -supplement that is a direct summand of M.

Proof. (i) By assumption, we have L+K = M and $L \cap K \ll_{\delta} K$. Thus, $M/L \cong K/(L \cap K)$ is cyclic. Let $x \in K$ such that $K = (L \cap K) + Rx$. Since $L \cap K \ll_{\delta} K$, there exists a semisimple projective submodule P of $L \cap K$ such that $K = P \oplus Rx$ by Lemma 2.1. Note that $L \cap K = L \cap (P \oplus Rx) =$ $P \oplus (L \cap Rx) \ll_{\delta} P \oplus Rx$. By Lemma 2.2(iv), we have $P \ll_{\delta} P$ and $L \cap Rx \ll_{\delta} Rx$. Therefore P is a semisimple projective module by [15, Lemma 2.9]. Also, note that L + Rx = M. It follows that Rx is a δ -supplement of L in M.

(ii) follows from (i).

5.7. Proposition. Assume that R is a Dedekind domain which is not local. Let K denote the quotient field of R. If M is a δ -supplemented R-module, then $M/T(M) \cong K^{(\Lambda)}$ for some index set Λ .

Proof. Assume that M has a maximal submodule L such that $T(M) \subseteq L$. Since M is δ -supplemented, there exists a cyclic submodule W of M such that M = L + W and $L \cap W \ll_{\delta} W$ (see Lemma 5.6). Let A be an ideal of R such that $W \cong R/A$. Since W is not contained in L, W is not a torsion module. So A = 0 and $W \cong_R R$. Thus, W is an indecomposable R-module. Hence $L \cap W \ll W$ by Proposition 2.3. Since $W/(L \cap W) \cong M/L$, we conclude that W is a local submodule of M. This contradicts the fact that R is not a local ring. It follows that Rad(M/T(M)) = M/T(M). Hence, the module M/T(M) is injective. So there exists an index set Λ such that $M/T(M) \cong K^{(\Lambda)}$ by [9, Lemma 2.1].

5.8. Proposition. Assume that R is a Dedekind domain which is not local. If M is a \oplus - δ -supplemented R-module with $Rad(M) \ll M$, then M is a torsion module.

Proof. Since *M* is ⊕-δ-supplemented, there exist submodules *A* and *B* of *M* such that $M = A \oplus B = T(M) + B$ and $T(M) \cap B \ll_{\delta} B$. Since $T(M) = T(A) \oplus T(B)$, we have $M = T(A) \oplus B$ and $T(M) = T(A) \oplus (T(M) \cap B)$. Hence T(A) = A and $T(B) = T(M) \cap B$. So, $T(B) \ll_{\delta} B$. By Proposition 2.6, we have $T(B) \ll B$. Note that $M/T(M) \cong B/T(B)$ is divisible by Proposition 5.7. It follows that for every nonzero element $r \in R$, we have rB + T(B) = B. So, rB = B for every $0 \neq r \in R$. This implies that *B* is a divisible module, that is, Rad(B) = B (see [9, Lemma 2.1]). But $Rad(B) \ll B$ since $Rad(M) \ll M$. Then B = 0 and M = A is a torsion module, as required. □

5.9. Proposition. Assume that R is a nonlocal Dedekind domain. If M is a \oplus - δ -supplemented R-module, then M is a torsion module.

Proof. By Proposition 5.2, $M = M_1 \oplus M_2$ is a direct sum of \oplus - δ -supplemented submodules M_1 and M_2 such that $Rad(M_1) = M_1$ and $Rad(M_2) \ll M_2$. By Proposition 5.1, M_1 is \oplus -supplemented. So, M_1 is a torsion module by [12, Proposition A.8]. Moreover, M_2 is a torsion module by Proposition 5.8. Therefore M is a torsion module, as required.

5.10. Corollary. Assume that R is a nonlocal Dedekind domain. An R-module M is \oplus - δ -supplemented if and only if M is \oplus -supplemented.

Proof. This follows easily from Propositions 3.14 and 5.9.

5.11. Remark. Combining Proposition 5.3, Corollary 5.10 and [12, Propositions A.7 and A.8], we obtain the structure of \oplus - δ -supplemented modules over Dedekind domains.

5.12. Lemma. Assume that R is a Dedekind domain which is not local. Let P be a maximal ideal of R and let i be a nonzero natural number. Then:

- (i) I + P = P if and only if $I \subseteq P$.
- (ii) If $i \ge 2$, then $I + P^i = P$ if and only if $I \subseteq P$ and $I \not\subseteq P^2$.
- (iii) $I + P^i = R$ if and only if $I \not\subseteq P$.

Proof. (i) and (iii) are immediate.

(ii) (\Rightarrow) This is obvious.

(\Leftarrow) By hypothesis, we have I = PI', where I' is an ideal of R which is not contained in P (see [13, Theorem 6.14]). Since $I' + P^{(i-1)} = R$, we see that $PI' + P^i = P$. Hence, $I + P^i = P$.

Let M be a module over a Dedekind domain R and let P be a nonzero prime ideal of R. We will denote by M_P the set $\{x \in M \mid P^n x = 0 \text{ for some integer } n \geq 0\}$ which is called the P-primary component of M. Note that if M is a torsion R-module, then M is a direct sum of its P-primary components. Let K be the quotient field of R. We will denote by $R(P^{\infty})$ the P-primary component of the torsion R-module K/R. It is well known that $R(P^{\infty})$ is a hollow module (see [9, Lemma 2.4]).

The next result describes the structure of I- \oplus -supplemented modules over nonlocal Dedekind domains. Recall that a module M is 0- \oplus -supplemented if and only if M is semisimple (see Remark 3.3(ii)).

5.13. Theorem. Assume that R is a nonlocal Dedekind domain. Let I be a nonzero ideal of R. Then the following assertions are equivalent for an R-module M:

- (i) M is I- \oplus -supplemented;
- (ii) M is torsion and every P-primary component of M is I- \oplus -supplemented;

(iii) M is torsion and for every nonzero prime ideal P of R, there exist natural numbers a and n such that $M_P \cong (R(P^{\infty}))^a \oplus B_P(1, \ldots, n)$ with n = 1 if $I \subseteq P^2$.

Proof. (i) \Leftrightarrow (ii) It is well known that for every nonzero prime ideal P of R, M_P is a fully invariant submodule of M. The result follows from Propositions 3.24, 4.3 and 5.9.

(ii) \Rightarrow (iii) Let P be a nonzero prime ideal of R. Since M_P is I- \oplus -supplemented, M_P is \oplus -supplemented by Corollary 5.10. Thus, there exist natural numbers a and n such that $M_P \cong (R(P^{\infty}))^a \oplus B_P(1,\ldots,n)$ by [12, Propositions A.7 and A.8]. Let $1 \leq i \leq n$. Since M/IM is semisimple (see Proposition 3.9), $(R/P^i)/((I+P^i)/P^i) \cong R/(I+P^i)$ is semisimple. As R/P^i is a local R-module, we have $I + P^i = R$ or $I + P^i = P$. Note that if $I \subseteq P^2$ and $i \geq 2$, then $I + P^i \subseteq P^2$. In this case we have $I + P^i \neq R$ and $I + P^i \neq P$. This shows that $I \subseteq P^2$ forces n = 1.

(iii) \Rightarrow (ii) Let P be a nonzero prime ideal of R. Note that M_P and $(R(P^{\infty}))^a$ are \oplus -supplemented by [12, Propositions A.7 and A.8]. We divide the rest of the proof into three cases:

Case 1. Assume that $I \subseteq P^2$. By hypothesis, n = 1. Therefore $B_P(1, \ldots, n) = B_P(1)$ is semisimple. Hence $M_P \cong (R(P^\infty))^a \oplus B_P(1)$ is I- \oplus -supplemented (see Proposition 5.1 and Theorem 3.22).

Case 2. Suppose that $I \not\subseteq P^2$ and $I \not\subseteq P$. Then, $IM_P = M_P$ by Lemma 5.12(iii). Therefore, M_P is I- \oplus -supplemented by Corollary 3.18.

Case 3. Assume that $I \not\subseteq P^2$ and $I \subseteq P$. In this case we have $IM_P = PM_P$ by Lemma 5.12. Applying Corollary 3.19, we conclude that M_P is I- \oplus -supplemented. This completes the proof. \Box

5.14. Remark. Let I be an ideal of a nonlocal Dedekind domain R. Using Theorem 5.13, [17, Theorem 1] and an analysis similar to that in Remark 5.5, we conclude that every I- \oplus -supplemented R-module is completely I- \oplus -supplemented.

References

- Alkan, M., Nicholson, W. K. and Özcan, A. Ç. A generalization of projective covers, J. Algebra 319, 4947-4960, 2008.
- [2] Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules (Springer-Verlag, New-York, 1992).
- [3] Atiyah, M. F. and Macdonald, I. G. Introduction to Commutative Algebra (Addison-Wesley, London, 1969).
- [4] Büyükaşik, E. and Lomp, C. When δ-semiperfect rings are semiperfect, Turkish J. Math. 34, 317-324, 2010.
- [5] Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R. Lifting Modules. Supplements and Projectivity in Module Theory (Frontiers in Mathematics, Birkhäuser, Basel, 2006).
- [6] Ecevit, Ş., Koşan, M. T. and Tribak, R. Rad-⊕-supplemented modules and cofinitely Rad-⊕supplemented modules, Algebra Colloq. 19 (4), 637-648, 2012.
- [7] Generalov, A. I. ω-cohigh purity in the category of modules, Math. Notes 33, 402-408, 1983; translation from Mat. Zametki 33, 785-796, 1983.
- [8] Harmanci, A., Keskin, D. and Smith, P. F. On ⊕-supplemented modules, Acta Math. Hungar. 83 (1-2), 161-169, 1999.
- [9] Hausen, J. Supplemented modules over Dedekind domains, Pacific J. Math. 100 (2), 387-402, 1982.
- [10] Idelhadj, A. and Tribak, R. A dual notion of CS-modules generalization, in: Algebra and Number Theory (Fez) (M. Boulagouaz and J.-P. Tignol, eds.), Lecture Note of Pure and Appl. Math. 208 (Marcel Dekker, New York, 2000), 149-155.
- Idelhadj, A. and Tribak, R. On some properties of ⊕-supplemented modules, Internat. J. Math. Math. Sci. 69, 4373-4387, 2003.
- [12] Mohamed, S. H. and Müller, B. J. Continuous and Discrete Modules, London Math. Soc. Lecture Note Ser. 147 (Cambridge Univ. Press., Cambridge, 1990).
- [13] Sharpe, D. W. and Vámos, P. Injective Modules Cambridge Tracts in Mathematics and Mathematical Physics 62 (Cambridge University Press, London, 1972).
- [14] Talebi, Y. and Talaee, B. Generalizations of D_{11} and D_{11}^+ modules, Asian-European J. Math. 2 (2), 285-293, 2009.

- [15] Tribak, R. On δ-local modules and amply δ-supplemented modules, J. Algebra Appl. 12 (2), 1250144 (14 pages), 2013.
- [16] Wang, Y. A generalization of supplemented modules, arXiv:1108.3381v1 [math.RA].
- [17] Warfield Jr., R. B. A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22, 460-465, 1969.
- [18] Wisbauer, R. Foundations of Module and Ring Theory (Gordon and Breach, Philadelphia, 1991).
- [19] Zhou, Y. Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. 7 (3), 305-318, 2000.
- [20] Zöschinger, H. Komplementierte moduln über Dedekindringen, J. Algebra 29, 42-56, 1974.