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d-supplemented modules relative to an ideal
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Abstract
Let I be an ideal of a ring R and let M be a left R-module. A submodule L of
M is said to be d-small in M provided M # L + X for any proper submodule
X of M with M/X singular. An R-module M is called I-®-supplemented if
for every submodule N of M, there exists a direct summand K of M such that
M=N+K, NNK CIK and NN K is §-small in K. In this paper, we
investigate some properties of I-@G-supplemented modules. We also compare
I-®-supplemented modules with @-supplemented modules. The structure of
I-®-supplemented modules and @-J-supplemented modules over a Dedekind

domain is completely determined.
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1. Introduction

All rings considered in this paper will be associative with an identity element and R will always
denote a ring. We shall use J(R) to denote the Jacobson radical of R. All modules will be unital
left R-modules. Let M be an R-module. A submodule L of M is called small (6-small) in M,
denoted by L <« M (L <s M), if L + X # M for any proper submodule X of M (L + X # M
for any proper submodule X of M with M/X singular). Recall that M is called &-supplemented
(D-0-supplemented) if for every submodule N < M, there exists a direct summand K of M such
that N+ K=Mand NNK < K (NNK <5 K).
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In Section 2, we study some special cases of submodules N of a module M for which N <5 M
is equivalent to N < M.

In Section 3, we introduce the notion of I-@®-supplemented R-modules, where [ is an ideal of R.
A module M will be called I-®-supplemented if for every submodule N of M, there exists a direct
summand K of M such that M = N4+ K, NN K CIK and NN K <5 K. We shall compare this
notion with the concept of @-supplemented modules. Indecomposable I-®-supplemented modules
are characterized.

Section 4 is devoted to the study of some factor modules of an I-@-supplemented module. Among
other results, it is shown that if M is a direct sum of two hollow I-®-supplemented modules, then
any direct summand of M is I-®-supplemented.

In Section 5, our main results (Theorems 5.4 and 5.13) describe the structure of I-®-supplemented
modules over Dedekind domains. It is also shown that over a Dedekind domain R, an R-module M

is @-d-supplemented if and only if M is @-supplemented.

2. Some properties of J-small submodules

We begin with some results presenting some elementary properties of §-small submodules which

will be used in the sequel.

2.1. Lemma. ([19, Lemma 1.2|) Let N be a submodule of a module M. The following are equivalent:
(i) N is 6-small in M;
(i) If X+ N =M, then M =X @Y for a projective semisimple submodule Y with Y < N.

2.2. Lemma. (See [19, Lemma 1.3])

(i) Let N and K be submodules of a module M with K C N. If N <s M, then K <5 M.

(ii) Let M and M’ be two modules. If L <s M and f : M — M’ is a homomorphism, then
f(L) <s M'. In particular, if K <s M < M', then K <5 M.

(iii) If N and L are submodules of a module M, then N + L <5 M if and only if N <5 M and
L <s M.

(iv) Let My and Mz be two submodules of a module M such that M = My @ Ma. Let K1 < M;

and Ko < Ma. Then K1 & Ko <s M1 & Ms if and only if K1 <s M1 and Ko <5 M.

Let N be a submodule of a module M. Recall that N is said to be DM in M (or N decomposes
M) if there is a direct summand D of M such that D < N and M = D+ X, whenever N+ X = M
for a submodule X of M (see [1, Definition 3.1]). Clearly, the following implications hold:

(N M)= (NgsM)= (Nis DM in M).
Next, we exhibit some conditions under which N <5 M is equivalent to N < M.

2.3. Proposition. Let N be a proper submodule of an indecomposable module M. Then N is DM
in M if and only if N <s M if and only if N < M.

Proof. Assume that N is DM in M. Let X be a submodule of M such that M = N+ X. Then there
exists a direct summand D of M such that D < N and M = D+ X. Since M is indecomposable and
N # M, we have D = 0 and X = M. Therefore, N < M. The rest of the proof is immediate. [

The next result was inspired by [16, Proposition 2.3(1)].

2.4. Proposition. Let N be a submodule of a module M. Then N < M if and only if N C Rad(M)
and N <s M.

Proof. 1t is enough to prove the sufficiency. Let X be a submodule of M such that M = N + X.
Since N <5 M, there exists a projective semisimple submodule P < N such that M = P @ X.
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Assume that P # 0. Then P has a simple direct summand S. Since S C Rad(M), S < M. Hence
S =0, a contradiction. Thus, P = 0. It follows that N <« M. O

The following result is a direct consequence of Proposition 2.4.

2.5. Corollary. Let M be a module with Rad(M) = M and let N be a submodule of M. Then
N <s M if and only if N < M.

Let M be a module over a commutative integral domain R. Let T'(M) denote the set of all
elements x € M for which there exists a nonzero element r € R such that ro = 0. It is well
known that T (M) is a submodule of M. This submodule is called the torsion submodule of M.
If T(M) = M, then the module M is said to be a torsion module. The module M is said to be
torsion-free if T(M) = 0.

2.6. Proposition. Assume that R is a commutative integral domain. Let M be an R-module and
N a submodule of M such that N C T(M). Then N <s M if and only if N < M.

Proof. Assume that N <s M. Let X be a submodule of M such that N + X = M. Then there
exists a projective submodule P < N such that P@® X = M. Since P is projective, P is isomorphic
to a direct summand of a free R-module. Hence, P is torsion-free. But P is a torsion module as
P CN. Then P=0and X = M. It follows that N < M. The converse is obvious. O

Let N and K be submodules of a module M. Recall that K is said to be a supplement of N in
Mif N+ K=Mand NN K < K. Let M = @®;c1M,; be a decomposition of the module M. The
next example shows that, in general, if L = ®;crL; is a submodule of M such that L; <s M; for
each ¢ € I, then L need not be é-small in M.

2.7. Example. Let R be a discrete valuation ring with maximal ideal m. Let M = @j’ilR/mi.
By [20, p. 48 The second corollary of Lemma 2.1|, Rad(M) does not have a supplement in M.
Therefore, Rad(M) = @;’ilm/mi is not small in M. Applying Proposition 2.6, it follows that
Rad(M) is not §-small in M. On the other hand, it is clear that for each i > 1, m/m‘ < R/m/".

2.8. Proposition. Let M = ®;erM; be a decomposition of a module M. Assume that for every
submodule N < M, we have N = ®;c1(N N M;). For each i, let L; be a submodule of M;. The
following statements are equivalent:

(i) L; <5 M; for every i€ I;

(ii) L =0®ierLl; <s M.

Proof. (i) = (ii) Let X be a submodule of M such that M = X + L. By hypothesis, X =
Picr(X NM;). So, (XNM;)+ L; = M, for every i € I. By assumption, for every i € I, there exists
a semisimple projective submodule P; of L; such that (X N M;) ® P; = M; (see Lemma 2.1). Let
P = ®;erP;. Then X @ P = M. Note that P is a semisimple projective submodule of L. Therefore,
L<s M.

(ii) = (i) By Lemma 2.2(iv). O

3. I-®-supplemented modules

Recall that a module M is called @-supplemented (D-0-supplemented) if for every submodule
N < M, there exists a direct summand K of M such that N+ K = M and NN K <« K
(NNK <5 K).

Recall that a ring R is said to be semilocal provided R/J(R) is a semisimple ring.
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3.1. Proposition. Let M be a module over a semilocal ring R. Then M is @-supplemented if and
only if for every submodule N < M, there exists a direct summand K of M such that M = N + K,
NNKCJRK and NNK <5 K.

Proof. By Proposition 2.4 and [2, Corollary 15.18]. O

Motivated by the last proposition, we introduce the following notion:

3.2. Definition. Let M be an R-module and let I be an ideal of R. We say that M is I-&®-
supplemented, provided for every submodule N of M, there exists a direct summand K of M such
that M =N+ K, NNK CIK and NNK < K.

In this section we investigate some properties of I-®-supplemented modules.

3.3. Remark. (i) It is clear that for every ideal I of R, every I-®-supplemented module is @®-9d-
supplemented.
(ii) Let M be an R-module. If I is an ideal of R such that IM = 0, then M is I-®-supplemented

if and only if M is semisimple.

Let M be an R-module. As in [19], let 6(M) denote the sum of all d-small submodules of
M. In the next proposition we provide a condition under which a @-d-supplemented module is

I-@®-supplemented. To prove this result, we need the following elementary lemma.

3.4. Lemma. Let M be an R-module and let I be an ideal of R. If K is a direct summand of M,
then we have IK = K NIM.

Proof. Let K’ be a submodule of M such that M = K & K'. Then IM = IK & IK'. Hence
KNIM =1I1K. O

3.5. Proposition. Let M be an R-module and let I be an ideal of R such that 6(M) C IM. Then
M is I-®-supplemented if and only if M is ®-§-supplemented.

Proof. The necessity is clear. Conversely, suppose that M is @-é-supplemented. Let N be a
submodule of M. Then there exists a direct summand K of M such that M = N + K and
NNK <5 K. Note that K = K N IM by Lemma 3.4. Since §(M) C IM, we have

NNKC§K)CKN§(M)C KNIM = IK.
Therefore M is I-@®-supplemented. This completes the proof. O

Recall that a nonzero module M is called hollow if every proper submodule is small in M. The
module M is called local if it has a proper submodule which contains all other proper submodules.
Note that the largest proper submodule of a local module M is Rad(M). It is well known that

every hollow module is @-supplemented.

3.6. Example. (i) It is clear that every semisimple module is I-@-supplemented for any ideal I of
R.

(ii) Let p be a prime integer. It is well known that the Z-module Z(p™) is hollow and injective.
It is easily seen that Z(p*) is I-®-supplemented for every nonzero ideal I of Z, but Z(p>°) is not
0-@-supplemented.

(iii) It is easy to see that every @-d-supplemented module (in particular, every @-supplemented

module) is R-@®-supplemented (see Proposition 3.5).

3.7. Proposition. Let M be an indecomposable R-module and let I be an ideal of R. The following
conditions are equivalent:

(i) M is I-®-supplemented;

(ii) M is hollow with IM = M or IM = Rad(M).
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Proof. (i) = (ii) Let N be a proper submodule of M. By hypothesis, there exists a direct summand
K of M such that N+ K =M, NN K CIK and NN K <s K. Since M is indecomposable, we
have K = M. Hence, N C IM and N <s M. By Proposition 2.3, we have N < M. Thus, M is a
hollow module. Moreover, note that if IM # M, then I M contains all other proper submodules of
M. Hence M is a local module and IM = Rad(M).

(ii) = (i) Let N be a proper submodule of M. Then N+ M = M, NNM = N C Rad(M) C IM
and NN M = N <s M. Therefore, M is I-®-supplemented. O

It follows from Proposition 3.7 that if I is an ideal of R, then every indecomposable I-®-
supplemented R-module is @&-supplemented. Next, we present some examples of @-supplemented

modules which are not I-@®-supplemented for an ideal I of R.

3.8. Example. (i) Let p and ¢ be two different prime integers. Consider the local Z-module M =
Z/Zp?. We have Rad(M) = Zp/Zp®. Let I, = Zp, I» = Zq and I3 = Zp>. Then [y M = Rad(M),
IbM = M and IsM = Zp2/Zp3. By Proposition 3.7, M is I;-®-supplemented for each i = 1,2, but
not Is-@-supplemented. On the other hand, it is clear that M is @-supplemented.

(i) Let R be a discrete valuation ring with maximal ideal m. It is well known that the R-module
rR is ®-supplemented. Let I be an ideal of R. From Proposition 3.7 it follows that rR is I-®-
supplemented if and only if I = m or I = R. Therefore, the module zR is not m>-@-supplemented.

3.9. Proposition. Let I be an ideal of R and let M be an R-module.

(i) Assume that for every submodule N < M, there exists a submodule K < M such that
M=N+K and NNK CIM. Then M/IM is semisimple.

(1) If M is an I-®-supplemented R-module, then M/IM is semisimple.

Proof. (i) Let N be a submodule of M such that IM C N. By assumption, there exists a submodule
K of M such that N+ K =M and NN K C IM. Thus, (N/IM) + [(K +IM)/IM] = M/IM.
Clearly, we have NN (K +IM)=IM. So, N/IM is a direct summand of M/IM. This completes
the proof.

(ii) follows from (i). O

3.10. Proposition. Let M be a module.
(i) If M is @-0-supplemented, then M = M1@®M> such that Rad(My) < My and Rad(Ms2) = M.
(ii) If M is I-®-supplemented, then M = My & Ms such that Rad(M:) C IM1, Rad(My) < M
and Rad(Ms) = Ms.

Proof. (i) Since M is @-d-supplemented, there exist submodules M; and M2 of M such that M =
M@ Ma, Rad(M)+M; = M and Rad(M)NM; <s M. Note that Rad(M) = Rad(M )@ Rad(Ms).
Then M; & Rad(M2) = M and (Rad(M) N My) @ Rad(Mz) = Rad(M). Therefore Rad(Mz) = M,
and Rad(M) N M1 = Rad(M;). Moreover, we have Rad(M:) < Mi by Proposition 2.4. This
completes the proof.

(ii) This follows by the same method as in (i) and adding the fact that Rad(M)NM, C IM,. O

Combining Proposition 3.10(ii) and [2, Proposition 5.20(1)], we get the following result.
3.11. Corollary. If M is an I-®-supplemented module with Rad(M) < M, then Rad(M) C IM.

From the last corollary, we conclude that if I is an ideal of a left perfect ring R and M is an
I-®-supplemented R-module, then Rad(M) C IM (see |2, Remark 28.5(3)]).

An R-module M is said to be d-local if §(M) <5 M and §(M) is a maximal submodule of M
(see [4, Definition 3.1]). Next, we give an example of an R-@®-supplemented module which is not

@-supplemented.
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3.12. Example. Let FF =Z/Z2 and let A = FY be the ring of sequences over F', whose operations
are pointwise multiplication and pointwise addition. Let R C A be the subring generated by 14
(the unit element of A) and all sequences that have only a finite number of nonzero entries. It is
shown in [4, p. 318] that the ring R is not semilocal and the R-module rR is d-local. Applying [15,
Proposition 3.1], it is easily seen that rR is an R-®-supplemented module. On the other hand, since
the ring R is not semilocal, it is not semiperfect. Hence, the R-module rR is not @-supplemented
by [12, Corollary 4.42].

Next, we present conditions under which an I-@-supplemented R-module is @-supplemented.

3.13. Proposition. Let M be an R-module with Rad(M) = M. Then M is ®-0-supplemented if
and only if M is @©-supplemented.

Proof. As Rad(M) = M, we have Rad(K) = K for every direct summand K of M. The result
follows from Corollary 2.5. O

3.14. Proposition. Assume that R is a commutative integral domain and let M be a torsion

R-module. Then M is @-5-supplemented if and only if M is @-supplemented.
Proof. This follows from Proposition 2.6. O

3.15. Proposition. Let I be an ideal of R and let M be an I-®-supplemented R-module. If
IM C Rad(M), then M is ®-supplemented.

Proof. Let N be a submodule of M. By hypothesis, there exists a direct summand K of M
such that M = N+ K, NN K C IK and NN K <s K. Since IM C Rad(M), we have
IK = KNIM C KN Rad(M) = Rad(K) by Lemma 3.4 and [5, 20.4(7)]. So NN K <« K by
Proposition 2.4. It follows that M is @-supplemented. O

3.16. Corollary. Let I be an ideal of R and let M be an I-®-supplemented R-module. Assume
that one of the following conditions is satisfied:

(i) I C J(R), or

(ii) R is a local ring and I # R, or

(iii) Rad(M) = M, or

(iv) R is a commutative integral domain and M is a torsion R-module.

Then M is ®-supplemented.

Proof. (i) follows from [2, Corollary 15.18] and Proposition 3.15.
(ii) follows from (i).
(iii) follows easily from Proposition 3.13.
(iv) is obvious by Proposition 3.14. O

Next, we focus on when a @-supplemented R-module is I-@-supplemented for an ideal I of R.

3.17. Proposition. Let I be an ideal of R and let M be a @-supplemented R-module such that
Rad(M) CIM. Then M is I-®-supplemented.

Proof. Let N be a submodule of M. Then there exists a direct summand K of M such that
M =N+ K and NN K < K. Thus, NN K <5 K. Moreover, we have IK = K N IM by Lemma
3.4. Since Rad(M) C IM, it follows that

Rad(K) C KNRad(M) C KNIM =IK.
Hence, NN K C IK. Therefore M is I-®-supplemented. This completes the proof. O

The next corollary is a direct consequence of Proposition 3.17.
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3.18. Corollary. Let M be a ®-supplemented module such that IM = M. Then M is I-®-

supplemented.

3.19. Corollary. Let m be a mazimal ideal of a commutative ring R and let M be an R-module.
Assume that I is an ideal of R such that IM = mM. If M is a ®-supplemented R-module, then M
is I-B-supplemented.

Proof. Note that Rad(M) C mM by [7, Lemma 3]. The result follows from Proposition 3.17. O

Let R be a commutative integral domain. An R-module M is called divisible in case rM = M

for each nonzero element r € R.

3.20. Corollary. Let M be a divisible module over a commutative integral domain R. If M 1is
@®-supplemented, then M is I-®-supplemented for every nonzero ideal I of R.

Proof. This follows from Corollary 3.18. O

Recall that a ring R is called a left good ring if Rad(M) = J(R)M for every R-module M (see
[18, 23.7)).

3.21. Corollary. Let M be an R-module. Suppose further that either
(i) R is a left good ring, or
(ii) M is a projective module.

Then M is ®-supplemented if and only if M is J(R)-®-supplemented.

Proof. Note that Rad(M) = J(R)M by [2, Proposition 17.10]. The result follows from Propositions
3.15 and 3.17. O

Combining Lemma 2.2 and the application of the same reasoning of [10, Proposition 3] to I-®-

supplemented modules, we obtain the following theorem.

3.22. Theorem. Let I be an ideal of R. Then any finite direct sum of I-®B-supplemented R-modules
is I-D-supplemented.

The next example shows that, in general, a direct sum of I-®-supplemented modules is not

I-®-supplemented.

3.23. Example. Let p be a prime integer. Consider the Z-module M = ®$2,Z/Zp’. Clearly, M
is a torsion module. By [12, Propositions A.7 and A.8|, M is not @-supplemented. Therefore M is
not (Zp)-®-supplemented by Corollary 3.16. On the other hand, note that for every i > 1, Z/Zp"
is a (Zp)-®-supplemented Z-module by Proposition 3.7.

The next result deals with a special case of a family of @-d-supplemented (I-@®-supplemented)
modules (Mx)aea for which M = @xea My is @-J-supplemented (I-®-supplemented).

3.24. Proposition. Let I be an ideal of R and let M = ®reaMx be a direct sum of submodules
My (X € A) such that for every submodule N of M, we have N = ®xea(N N My). Assume that
My is @-6-supplemented (I-®-supplemented) for every X € A. Then M is ®-5-supplemented (I-B-
supplemented).

Proof. Let N be a submodule of M. Then N = @xea (N N My). For every A € A, there exists a
direct summand K of M) such that (NN M)+ Kx = My, (NNKx CIKy) and NN Ky <5 K.
Set K = ®xea K. Clearly, K is a direct summand of M and N + K = M. Also, we have (NNK =
@rca(NNKy) CIK) and NN K <s K by Proposition 2.8. This proves the proposition. O
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4. Homomorphic images of /-®-supplemented modules

We begin this section by an example showing that the I-@®-supplemented property does not
always transfer from a module to each of its factor modules.

4.1. Example. Let F be a field. Consider the local ring R = F[z?,2%]/(z*) and let m be the
maximal ideal of R. Let n be an integer with n > 2 and let M = R™. By Proposition 3.7
and Theorem 3.22, M is m-@-supplemented. Note that R is an artinian local ring which is not
a principal ideal ring (see [3, Example on p. 91]). So, there exists a submodule K of M such
that the factor module M/K is not @-supplemented by [11, Example 2.2|. Therefore M /K is not
m-@-supplemented by Corollary 3.16.

Next, we show that under some conditions, a factor module of an I-@-supplemented module is
I-®-supplemented.

Recall that a submodule N of a module M is called fully invariant if f(N) C N for every
endomorphism f of M. A module M is called distributive if (A+ B)NC = (ANC)+ (BNC) for
all submodules A, B, C of M (or equivalently, (ANB)+C = (A+ C)N(B+C) for all submodules
A, B, C of M).

Analysis similar to the proofs of [6, Theorems 4.7 and 4.8] yields the following result. We give

the first part of its proof for completeness.

4.2. Proposition. Let I be an ideal of R and let M be an I-®-supplemented module.

(i) Let X < M be a submodule such that for every direct summand K of M, (X + K)/X is a
direct summand of M/X. Then M/X is I[-®-supplemented.

(ii) Let X < M be a submodule such that for every decomposition M = M; & M2, we have
X =(XNM)® (XNM). Then M/X is I-®-supplemented.

(iii) If X is a fully invariant submodule of M, then M/X is I-®-supplemented.

(iv) If M is a distributive module, then M /X is I-®-supplemented for every submodule X of M.

Proof. (i) Let N be a submodule of M such that X C N. Since M is I-@-supplemented, there
exists a direct summand K of M such that N+ K =M, NNK C IK and NN K <s K. Therefore
(N/X)+(X+K)/X)=M/X and (N/X)N((K+X)/X)=(X+(NNK))/X C (X+IK)/X) C
I((X 4+ K)/X). Consider the natural epimorphism 7 : K — (X + K)/X. Since NN K <s K, we
have r((NNK)=(X+ (NN K))/X <s (X + K)/X by Lemma 2.2(ii). Note that by assumption,
(X + K)/X is a direct summand of M/X. It follows that M /X is I-®-supplemented.

(ii), (iii) and (iv) These are consequences of (i). O
The next proposition was inspired by [11, Proposition 2.5].

4.3. Proposition. Let M be an R-module and let I be an ideal of R. Let K be a fully invariant
direct summand of M. Then the following assertions are equivalent:

(1) M is I-®-supplemented;

(ii) K and M/K are I-®-supplemented.

Proof. (i) = (ii) Let L be a submodule of K. By hypothesis, there exist submodules A and B
of M such that M = A@ B, M = A+ L, ANL C TA and ANL <5 A. Clearly, we have
K = (AN K)+ L. Since K is fully invariant in M, we have K = (AN K) @ (B N K). Hence,
AN K is a direct summand of M. Thus I(ANK) = (AN K)NIM by Lemma 3.4. It follows that
(ANK)NL=ANLC(ANK)NIM =I(ANK). Since ANL <5 A and AN K is a direct
summand of A, we have AN L <5 AN K by Lemma 2.2(iv). Therefore, K is I-®-supplemented.
Moreover, M /K is I-®-supplemented by Proposition 4.2(iii).

(ii) = (i) This follows from Theorem 3.22. O



115

Let I be an ideal of R. An R-module M is called completely I-®-supplemented (B-supplemented)
if every direct summand of M is I-®-supplemented (®-supplemented). Clearly, semisimple modules
are completely I-®-supplemented. Also, every I-@-supplemented hollow module is completely I-&®-
supplemented. The next result provides another example of completely I-&-supplemented modules.

Recall that a module M is said to have finite hollow dimension n € N if there exists a small
epimorphism from M to a direct sum of n hollow modules. We denote this by h.dim(M) = n. It is
well known that a module M is hollow if and only if h.dim(M) =1 (see [5, p. 47 and p. 49]).

4.4. Proposition. Let M = H1 @ Hs be a direct sum of hollow submodules Hi and Hs. Then the
following statements are equivalent:

(i) H1 and Hz are I-®-supplemented modules;

(ii) The module M 1is completely I-®-supplemented.

Proof. (i) = (ii) Let L be a nonzero direct summand of M. If L = M, then L is I-@-supplemented
by Theorem 3.22. Assume that L # M. Let K be a submodule of M such that M = L & K. By
[5, 5.4(1)], h.dim(M) = 2 = h.dim(L) + h.dim(K). It follows that h.dim(L) =1 and hence L is a
hollow module. Let us prove that L is I-®-supplemented. To see this, it suffices to show that IL = L
or IL = Rad(L) by Proposition 3.7. Since M is I-@-supplemented, M/IM = (L/IL) & (K/IK)
is semisimple by Proposition 3.9. As L is a hollow module, L/IL = 0 or L/IL is simple. Hence
L = 1IL or L is a local module with maximal submodule IL. So IL = L or IL = Rad(L), as
required.

(ii) = (i) This is immediate. O

5. Modules over Dedekind domains

Our purpose in this section is to determine the structure of all /-@-supplemented modules and

all &--supplemented modules over Dedekind domains.

5.1. Proposition. Let R be a Dedekind domain which is not a field. Then the following assertions
are equivalent for an injective R-module M :

(i) M is ®-supplemented;
(i1) M is I-®-supplemented for every nonzero ideal I of R;
(iii) M is I-®-supplemented for some nonzero ideal I of R;
(

iv) M is ®-0-supplemented.

Proof. (i) = (ii) This follows from Corollary 3.20 since the module M is divisible.

(if) = (iii) and (iii) = (iv) These are obvious.

(iv) = (i) Since R is a Dedekind domain which is not a field and M is an injective R-module,
we have Rad(M) = M. The result follows from Proposition 3.13. O

Let R be a Dedekind domain which is not a field. If M is an R-module, we will denote the sum
of all divisible (injective) submodules of M by d(M). It is well known that d(M) is an injective
R-module. Also, note that if f is an endomorphism of M, then f(d(M)) is isomorphic to a factor
module of d(M). So, f(d(M)) is injective as R is a Dedekind domain. Therefore, f(d(M)) C d(M).
It follows that d(M) is a fully invariant submodule of M.

5.2. Proposition. Let R be a Dedekind domain which is not a field. Let I be an ideal of R and
let M be an R-module. Then the following are equivalent:

(i) M is @-6-supplemented (I-®-supplemented);

(ii) M can be written as M = My @ My such that My is injective, Rad(M2) < M2 and both of
M and My are @-0-supplemented (I-®-supplemented) modules.
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Proof. (i) = (ii) Let M; = d(M) and let M2 be a submodule of M such that M = M; & M.
Note that M> has no submodules X with Rad(X) = X. Since M is @-é-supplemented (I-&-
supplemented), M; and M, are @®-d-supplemented (I-®-supplemented) by [14, Theorem 2.5] and
Proposition 4.3. Moreover, we have Rad(M2) < M by Proposition 3.10.

(ii) = (i) This follows by [14, Theorem 2.2] and Theorem 3.22. O

Next, we restrict our investigations about @-J-supplemented modules and I-@-supplemented

modules to the case of modules over discrete valuation rings.

5.3. Proposition. Let M be a module over a discrete valuation ring R and let I be an ideal of
R. Then M is ®-§-supplemented if and only if M is @-supplemented. In particular, every I-®-

supplemented R-module is ®-supplemented.

Proof. Assume that M is @-d-supplemented. By Proposition 5.2, M = M; @& M, is a direct sum
of a @-d-supplemented injective submodule M; and a submodule Ms with Rad(M:) < M. By
Proposition 5.1, M; is ®-supplemented. In addition, M; is @-supplemented by [20, Lemma 2.1]
and [12, Proposition A.7]. Therefore, M is @&-supplemented by [8, Theorem 1.4]. The converse is
immediate.

The remaining assertion is obvious. O

Let P be a nonzero prime ideal of a Dedekind domain R and let n be a nonzero natural number.
We will use the notation Bp(1,...,n) to denote the direct sum of arbitrarily many copies of R/P,
R/P?, ..., R/P".

The next result provides a structure theorem for modules over a discrete valuation ring.

5.4. Theorem. Assume that R is a discrete valuation ring with mazimal ideal m, quotient field K
and Q = K/R. Let I be an ideal of R and let M be an R-module.
(1) If I =m or I = R, then the following are equivalent:
(1) M is I-®-supplemented;
(il) M is ®-0-supplemented;
(iii) M is ®-supplemented;
(iv) M= R*® K’ ® Q° ® Bn(1,...,n) for some natural numbers a, b, ¢ and n.
(2) If I & {m, R}, then the following are equivalent:
(1) M is I-®-supplemented;
(i) M = K*® Q° @ (R/m)™ for some natural numbers b and ¢ and an index set A.

Proof. (1) (i) < (iii) By Corollaries 3.18 and 3.19 and Proposition 5.3.

(if) < (iii) By Proposition 5.3.

(iii) < (iv) This follows from [12, Proposition A.7].

(2) (i) = (ii) Assume that M is I-@-supplemented. By Proposition 5.3, M is @-supplemented.
Applying [12, Proposition A.7], M = R* ® K® ® Q° ® Bn(1,...,n) for some natural numbers a,
b, ¢ and n. Since M/IM is semisimple (see Proposition 3.9) and I & {m, R}, we have a = 0 and
for each 1 < i < n, R/(I +m") is semisimple. So, for each 1 < i < n, we have I + m’ = m or
I4+m" = R. Therefore n = 1 because I C m?. Tt follows that B,,(1,...,n) = By, (1) is semisimple,
completing the proof.

(i) = (i) Note that K° @ Q° is an injective ®-supplemented module by [12, Proposition A.7].
The result follows from Propositions 5.1 and 5.2. O

5.5. Remark. Let R be a discrete valuation ring with maximal ideal m, quotient field K and
Q = K/R. Let I be an ideal of R.
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(i) Assume that I ¢ {m, R}. Theorem 5.4(2) and [12, Proposition A.7| provide many examples
of @-supplemented R-modules which are not I-®-supplemented.

(ii) Note that [11, Corollary 4.5] shows that every @-supplemented R-module is completely &-
supplemented.

Case 1. Assume that I € {m, R}. Then every I-®-supplemented R-module is completely I-®-
supplemented by Theorem 5.4.

Case 2. Suppose that I ¢ {m,R}. Let M be an I-®-supplemented R-module. Then M =
K’ ® Q° ® (R/m)™ for some natural numbers b and ¢ and an index set A. Let N and L be
submodules of M such that M = N & L and let d(M) be the sum of all injective submodules of
M. Tt is clear that d(M) = d(N) ® d(L) = K® ® Q°. Then, d(N) = K" & Q° for some natural
numbers b’ and ¢’ by [2, Corollary 12.7 and Lemma 25.4|. Therefore, d(N) is I-@-supplemented by
Theorem 5.4. In addition, we have (R/m)™) =~ M/d(M) = (N/d(N)) @ (L/d(L)). Hence, N/d(N)
is semisimple. Thus, N/d(N) is I-®-supplemented. Since d(N) is a direct summand of N, N is
I-®-supplemented by Theorem 3.22. Consequently, M is completely I-@-supplemented.

Let L be a submodule of a module M. A submodule K < M is called a §-supplement of N in
Mif M =L+ K and LN K <5 K. The module M is called §-supplemented if every submodule
has a d-supplement in M.

Our next goal is to describe @-d-supplemented modules and I-@-supplemented modules over a
nonlocal Dedekind domain R. The next proposition shows that every torsion-free §-supplemented

R-module is injective. First we prove the following lemma.

5.6. Lemma. Let L be a proper submodule of a module M such that M/L is a cyclic module.

(1) If K is a §-supplement of L in M, then K = P & Rx, where P is a semisimple projective
submodule of LN K and x € K. In this case, Rz is a d-supplement of L in M.

(ii) If L has a §-supplement that is a direct summand of M, then L has a cyclic d-supplement

that is a direct summand of M.

Proof. (i) By assumption, we have L+ K = M and LNK <5 K. Thus, M/L = K/(LNK) is cyclic.
Let € K such that K = (LN K) + Rz. Since L N K < K, there exists a semisimple projective
submodule P of L N K such that K = P @ Rz by Lemma 2.1. Note that LN K = LN (P ® Rz) =
P® (LN Rzx) <5 P® Rx. By Lemma 2.2(iv), we have P <s P and LN Rz <s Rz. Therefore P is
a semisimple projective module by [15, Lemma 2.9]. Also, note that L + Rx = M. It follows that
Rz is a §-supplement of L in M.

(it) follows from (i). O

5.7. Proposition. Assume that R is a Dedekind domain which is not local. Let K denote the
quotient field of R. If M is a §-supplemented R-module, then M/T(M) = K™ for some index set
A.

Proof. Assume that M has a maximal submodule L such that T (M) C L. Since M is d-supplemented,
there exists a cyclic submodule W of M such that M = L+ W and LNW <s W (see Lemma 5.6).
Let A be an ideal of R such that W = R/A. Since W is not contained in L, W is not a torsion
module. So A =0 and W = gR. Thus, W is an indecomposable R-module. Hence LNW <« W by
Proposition 2.3. Since W/(LNW) = M/L, we conclude that W is a local submodule of M. This
contradicts the fact that R is not a local ring. It follows that Rad(M/T(M)) = M/T(M). Hence,
the module M/T(M) is injective. So there exists an index set A such that M/T(M) = K™ by [9,
Lemma 2.1]. O

5.8. Proposition. Assume that R is a Dedekind domain which is not local. If M is a ®-§-
supplemented R-module with Rad(M) < M, then M is a torsion module.
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Proof. Since M is @-0-supplemented, there exist submodules A and B of M such that M = A®B =
T(M)+ B and T(M)N B <5 B. Since T(M) = T(A) ® T(B), we have M = T(A) @ B and
T(M) = T(A) ® (T'(M) N B). Hence T(A) = A and T(B) = T(M)N B. So, T(B) <5 B. By
Proposition 2.6, we have T(B) <« B. Note that M/T(M) = B/T(B) is divisible by Proposition
5.7. Tt follows that for every nonzero element r € R, we have rB + T(B) = B. So, rB = B for
every 0 # r € R. This implies that B is a divisible module, that is, Rad(B) = B (see [9, Lemma
2.1]). But Rad(B) < B since Rad(M) < M. Then B = 0 and M = A is a torsion module, as
required. O

5.9. Proposition. Assume that R is a nonlocal Dedekind domain. If M is a @-5-supplemented

R-module, then M is a torsion module.

Proof. By Proposition 5.2, M = M; @& My is a direct sum of @-d-supplemented submodules M; and
My such that Rad(M:) = M, and Rad(M2) < M>. By Proposition 5.1, M; is ®-supplemented. So,
M is a torsion module by [12, Proposition A.8]. Moreover, M> is a torsion module by Proposition

5.8. Therefore M is a torsion module, as required. O

5.10. Corollary. Assume that R is a nonlocal Dedekind domain. An R-module M is &-6-supplemented
if and only if M is ®-supplemented.

Proof. This follows easily from Propositions 3.14 and 5.9. O

5.11. Remark. Combining Proposition 5.3, Corollary 5.10 and [12, Propositions A.7 and A.8|, we

obtain the structure of @-d-supplemented modules over Dedekind domains.

5.12. Lemma. Assume that R is a Dedekind domain which is not local. Let P be a mazimal ideal
of R and let i be a nonzero natural number. Then:

() I+P=Pifand onlyif I C P.

(i) If i > 2, then I + P' = P if and only if I C P and I Z P>

(iii) T+ P* = R if and only if I  P.

Proof. (i) and (iii) are immediate.

(ii) (=) This is obvious.

(<) By hypothesis, we have I = PI’, where I’ is an ideal of R which is not contained in P (see
[13, Theorem 6.14]). Since I + pU-D — R, we see that PI' + P* = P. Hence, I + P = P. O

Let M be a module over a Dedekind domain R and let P be a nonzero prime ideal of R. We will
denote by Mp the set {x € M | P"z = 0 for some integer n > 0} which is called the P-primary
component of M. Note that if M is a torsion R-module, then M is a direct sum of its P-primary
components. Let K be the quotient field of R. We will denote by R(P°°) the P-primary component
of the torsion R-module K/R. It is well known that R(P°°) is a hollow module (see [9, Lemma
2.4]).

The next result describes the structure of I-®-supplemented modules over nonlocal Dedekind
domains. Recall that a module M is 0-@-supplemented if and only if M is semisimple (see Remark
3.3(ii)).

5.13. Theorem. Assume that R is a nonlocal Dedekind domain. Let I be a monzero ideal of R.
Then the following assertions are equivalent for an R-module M :

(1) M is I-®-supplemented;

(ii) M is torsion and every P-primary component of M is I-®-supplemented;

(iii) M is torsion and for every nonzero prime ideal P of R, there exist natural numbers a and
n such that Mp = (R(P*))* ® Bp(1,...,n) withn =1 if I C P
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Proof. (i) < (ii) It is well known that for every nonzero prime ideal P of R, Mp is a fully invariant
submodule of M. The result follows from Propositions 3.24, 4.3 and 5.9.

(if) = (iii) Let P be a nonzero prime ideal of R. Since Mp is I-®-supplemented, Mp is @-
supplemented by Corollary 5.10. Thus, there exist natural numbers a and n such that Mp =
(R(P*°))* @ Bp(1,...,n) by [12, Propositions A.7 and A.8]. Let 1 < 4 < n. Since M/IM is
semisimple (see Proposition 3.9), (R/P%)/((I + P")/P") = R/(I + P") is semisimple. As R/P" is a
local R-module, we have I+ P? = R or I+ P* = P. Note that if I C P? and i > 2, then I+ P* C P2.
In this case we have I 4+ P # R and I 4+ P’ # P. This shows that I C P? forces n = 1.

(iii) = (ii) Let P be a nonzero prime ideal of R. Note that Mp and (R(P°°))® are @-supplemented
by [12, Propositions A.7 and A.8]. We divide the rest of the proof into three cases:

Case 1. Assume that I C P?. By hypothesis, n = 1. Therefore Bp(1,...,n) = Bp(1) is
semisimple. Hence Mp = (R(P*))*®Bp(1) is I-®-supplemented (see Proposition 5.1 and Theorem
3.22).

Case 2. Suppose that I € P? and I € P. Then, IMp = Mp by Lemma 5.12(iii). Therefore,
Mp is I-@-supplemented by Corollary 3.18.

Case 3. Assume that [ € P? and I C P. In this case we have IMp = PMp by Lemma 5.12.
Applying Corollary 3.19, we conclude that Mp is I-@-supplemented. This completes the proof. [J

5.14. Remark. Let I be an ideal of a nonlocal Dedekind domain R. Using Theorem 5.13, [17,
Theorem 1] and an analysis similar to that in Remark 5.5, we conclude that every I-®-supplemented

R-module is completely I-®-supplemented.
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