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⊕-supplemented modules relative to an ideal
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Abstract
Let I be an ideal of a ring R and let M be a left R-module. A submodule L of
M is said to be δ-small in M provided M 6= L + X for any proper submodule
X of M with M/X singular. An R-module M is called I-⊕-supplemented if
for every submodule N of M , there exists a direct summand K of M such that
M = N + K, N ∩ K ⊆ IK and N ∩ K is δ-small in K. In this paper, we
investigate some properties of I-⊕-supplemented modules. We also compare
I-⊕-supplemented modules with ⊕-supplemented modules. The structure of
I-⊕-supplemented modules and ⊕-δ-supplemented modules over a Dedekind
domain is completely determined.
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1. Introduction

All rings considered in this paper will be associative with an identity element and R will always
denote a ring. We shall use J(R) to denote the Jacobson radical of R. All modules will be unital
left R-modules. Let M be an R-module. A submodule L of M is called small (δ-small) in M ,
denoted by L � M (L �δ M), if L + X 6= M for any proper submodule X of M (L + X 6= M

for any proper submodule X of M with M/X singular). Recall that M is called ⊕-supplemented
(⊕-δ-supplemented) if for every submodule N ≤ M , there exists a direct summand K of M such
that N +K = M and N ∩K � K (N ∩K �δ K).
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In Section 2, we study some special cases of submodules N of a module M for which N �δ M

is equivalent to N �M .
In Section 3, we introduce the notion of I-⊕-supplemented R-modules, where I is an ideal of R.

A module M will be called I-⊕-supplemented if for every submodule N of M , there exists a direct
summand K of M such that M = N +K, N ∩K ⊆ IK and N ∩K �δ K. We shall compare this
notion with the concept of ⊕-supplemented modules. Indecomposable I-⊕-supplemented modules
are characterized.

Section 4 is devoted to the study of some factor modules of an I-⊕-supplemented module. Among
other results, it is shown that if M is a direct sum of two hollow I-⊕-supplemented modules, then
any direct summand of M is I-⊕-supplemented.

In Section 5, our main results (Theorems 5.4 and 5.13) describe the structure of I-⊕-supplemented
modules over Dedekind domains. It is also shown that over a Dedekind domain R, an R-module M
is ⊕-δ-supplemented if and only if M is ⊕-supplemented.

2. Some properties of δ-small submodules

We begin with some results presenting some elementary properties of δ-small submodules which
will be used in the sequel.

2.1. Lemma. ([19, Lemma 1.2]) Let N be a submodule of a moduleM . The following are equivalent:
(i) N is δ-small in M ;
(ii) If X +N = M , then M = X ⊕ Y for a projective semisimple submodule Y with Y ≤ N .

2.2. Lemma. (See [19, Lemma 1.3])
(i) Let N and K be submodules of a module M with K ⊆ N . If N �δ M , then K �δ M .
(ii) Let M and M ′ be two modules. If L �δ M and f : M → M ′ is a homomorphism, then

f(L)�δ M
′. In particular, if K �δ M ≤M ′, then K �δ M

′.
(iii) If N and L are submodules of a module M , then N + L�δ M if and only if N �δ M and

L�δ M .
(iv) Let M1 and M2 be two submodules of a module M such that M = M1 ⊕M2. Let K1 ≤M1

and K2 ≤M2. Then K1 ⊕K2 �δ M1 ⊕M2 if and only if K1 �δ M1 and K2 �δ M2.

Let N be a submodule of a module M . Recall that N is said to be DM in M (or N decomposes
M) if there is a direct summand D of M such that D ≤ N and M = D+X, whenever N +X = M

for a submodule X of M (see [1, Definition 3.1]). Clearly, the following implications hold:

(N �M) ⇒ (N �δ M) ⇒ (N is DM in M).

Next, we exhibit some conditions under which N �δ M is equivalent to N �M .

2.3. Proposition. Let N be a proper submodule of an indecomposable module M . Then N is DM
in M if and only if N �δ M if and only if N �M .

Proof. Assume that N is DM inM . Let X be a submodule ofM such thatM = N+X. Then there
exists a direct summand D ofM such that D ≤ N andM = D+X. SinceM is indecomposable and
N 6= M , we have D = 0 and X = M . Therefore, N �M . The rest of the proof is immediate. �

The next result was inspired by [16, Proposition 2.3(1)].

2.4. Proposition. Let N be a submodule of a moduleM . Then N �M if and only if N ⊆ Rad(M)

and N �δ M .

Proof. It is enough to prove the sufficiency. Let X be a submodule of M such that M = N + X.
Since N �δ M , there exists a projective semisimple submodule P ≤ N such that M = P ⊕ X.
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Assume that P 6= 0. Then P has a simple direct summand S. Since S ⊆ Rad(M), S �M . Hence
S = 0, a contradiction. Thus, P = 0. It follows that N �M . �

The following result is a direct consequence of Proposition 2.4.

2.5. Corollary. Let M be a module with Rad(M) = M and let N be a submodule of M . Then
N �δ M if and only if N �M .

Let M be a module over a commutative integral domain R. Let T (M) denote the set of all
elements x ∈ M for which there exists a nonzero element r ∈ R such that rx = 0. It is well
known that T (M) is a submodule of M . This submodule is called the torsion submodule of M .
If T (M) = M , then the module M is said to be a torsion module. The module M is said to be
torsion-free if T (M) = 0.

2.6. Proposition. Assume that R is a commutative integral domain. Let M be an R-module and
N a submodule of M such that N ⊆ T (M). Then N �δ M if and only if N �M .

Proof. Assume that N �δ M . Let X be a submodule of M such that N + X = M . Then there
exists a projective submodule P ≤ N such that P ⊕X = M . Since P is projective, P is isomorphic
to a direct summand of a free R-module. Hence, P is torsion-free. But P is a torsion module as
P ⊆ N . Then P = 0 and X = M . It follows that N �M . The converse is obvious. �

Let N and K be submodules of a module M . Recall that K is said to be a supplement of N in
M if N +K = M and N ∩K � K. Let M = ⊕i∈IMi be a decomposition of the module M . The
next example shows that, in general, if L = ⊕i∈ILi is a submodule of M such that Li �δ Mi for
each i ∈ I, then L need not be δ-small in M .

2.7. Example. Let R be a discrete valuation ring with maximal ideal m. Let M = ⊕∞i=1R/m
i.

By [20, p. 48 The second corollary of Lemma 2.1], Rad(M) does not have a supplement in M .
Therefore, Rad(M) = ⊕∞i=1m/m

i is not small in M . Applying Proposition 2.6, it follows that
Rad(M) is not δ-small in M . On the other hand, it is clear that for each i ≥ 1, m/mi � R/mi.

2.8. Proposition. Let M = ⊕i∈IMi be a decomposition of a module M . Assume that for every
submodule N ≤ M , we have N = ⊕i∈I(N ∩Mi). For each i, let Li be a submodule of Mi. The
following statements are equivalent:

(i) Li �δ Mi for every i ∈ I;
(ii) L = ⊕i∈ILi �δ M .

Proof. (i) ⇒ (ii) Let X be a submodule of M such that M = X + L. By hypothesis, X =

⊕i∈I(X ∩Mi). So, (X ∩Mi) +Li = Mi for every i ∈ I. By assumption, for every i ∈ I, there exists
a semisimple projective submodule Pi of Li such that (X ∩Mi) ⊕ Pi = Mi (see Lemma 2.1). Let
P = ⊕i∈IPi. Then X⊕P = M . Note that P is a semisimple projective submodule of L. Therefore,
L�δ M .

(ii) ⇒ (i) By Lemma 2.2(iv). �

3. I-⊕-supplemented modules

Recall that a module M is called ⊕-supplemented (⊕-δ-supplemented) if for every submodule
N ≤ M , there exists a direct summand K of M such that N + K = M and N ∩ K � K

(N ∩K �δ K).
Recall that a ring R is said to be semilocal provided R/J(R) is a semisimple ring.
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3.1. Proposition. Let M be a module over a semilocal ring R. Then M is ⊕-supplemented if and
only if for every submodule N ≤M , there exists a direct summand K of M such that M = N +K,
N ∩K ⊆ J(R)K and N ∩K �δ K.

Proof. By Proposition 2.4 and [2, Corollary 15.18]. �

Motivated by the last proposition, we introduce the following notion:

3.2. Definition. Let M be an R-module and let I be an ideal of R. We say that M is I-⊕-
supplemented, provided for every submodule N of M , there exists a direct summand K of M such
that M = N +K, N ∩K ⊆ IK and N ∩K �δ K.

In this section we investigate some properties of I-⊕-supplemented modules.

3.3. Remark. (i) It is clear that for every ideal I of R, every I-⊕-supplemented module is ⊕-δ-
supplemented.

(ii) Let M be an R-module. If I is an ideal of R such that IM = 0, then M is I-⊕-supplemented
if and only if M is semisimple.

Let M be an R-module. As in [19], let δ(M) denote the sum of all δ-small submodules of
M . In the next proposition we provide a condition under which a ⊕-δ-supplemented module is
I-⊕-supplemented. To prove this result, we need the following elementary lemma.

3.4. Lemma. Let M be an R-module and let I be an ideal of R. If K is a direct summand of M ,
then we have IK = K ∩ IM .

Proof. Let K′ be a submodule of M such that M = K ⊕ K′. Then IM = IK ⊕ IK′. Hence
K ∩ IM = IK. �

3.5. Proposition. Let M be an R-module and let I be an ideal of R such that δ(M) ⊆ IM . Then
M is I-⊕-supplemented if and only if M is ⊕-δ-supplemented.

Proof. The necessity is clear. Conversely, suppose that M is ⊕-δ-supplemented. Let N be a
submodule of M . Then there exists a direct summand K of M such that M = N + K and
N ∩K �δ K. Note that IK = K ∩ IM by Lemma 3.4. Since δ(M) ⊆ IM , we have

N ∩K ⊆ δ(K) ⊆ K ∩ δ(M) ⊆ K ∩ IM = IK.

Therefore M is I-⊕-supplemented. This completes the proof. �

Recall that a nonzero module M is called hollow if every proper submodule is small in M . The
module M is called local if it has a proper submodule which contains all other proper submodules.
Note that the largest proper submodule of a local module M is Rad(M). It is well known that
every hollow module is ⊕-supplemented.

3.6. Example. (i) It is clear that every semisimple module is I-⊕-supplemented for any ideal I of
R.

(ii) Let p be a prime integer. It is well known that the Z-module Z(p∞) is hollow and injective.
It is easily seen that Z(p∞) is I-⊕-supplemented for every nonzero ideal I of Z, but Z(p∞) is not
0-⊕-supplemented.

(iii) It is easy to see that every ⊕-δ-supplemented module (in particular, every ⊕-supplemented
module) is R-⊕-supplemented (see Proposition 3.5).

3.7. Proposition. Let M be an indecomposable R-module and let I be an ideal of R. The following
conditions are equivalent:

(i) M is I-⊕-supplemented;
(ii) M is hollow with IM = M or IM = Rad(M).
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Proof. (i)⇒ (ii) Let N be a proper submodule ofM . By hypothesis, there exists a direct summand
K of M such that N + K = M , N ∩K ⊆ IK and N ∩K �δ K. Since M is indecomposable, we
have K = M . Hence, N ⊆ IM and N �δ M . By Proposition 2.3, we have N �M . Thus, M is a
hollow module. Moreover, note that if IM 6= M , then IM contains all other proper submodules of
M . Hence M is a local module and IM = Rad(M).

(ii)⇒ (i) Let N be a proper submodule ofM . Then N+M = M , N ∩M = N ⊆ Rad(M) ⊆ IM
and N ∩M = N �δ M . Therefore, M is I-⊕-supplemented. �

It follows from Proposition 3.7 that if I is an ideal of R, then every indecomposable I-⊕-
supplemented R-module is ⊕-supplemented. Next, we present some examples of ⊕-supplemented
modules which are not I-⊕-supplemented for an ideal I of R.

3.8. Example. (i) Let p and q be two different prime integers. Consider the local Z-module M =

Z/Zp3. We have Rad(M) = Zp/Zp3. Let I1 = Zp, I2 = Zq and I3 = Zp2. Then I1M = Rad(M),
I2M = M and I3M = Zp2/Zp3. By Proposition 3.7, M is Ii-⊕-supplemented for each i = 1, 2, but
not I3-⊕-supplemented. On the other hand, it is clear that M is ⊕-supplemented.

(ii) Let R be a discrete valuation ring with maximal ideal m. It is well known that the R-module

RR is ⊕-supplemented. Let I be an ideal of R. From Proposition 3.7 it follows that RR is I-⊕-
supplemented if and only if I = m or I = R. Therefore, the module RR is not m3-⊕-supplemented.

3.9. Proposition. Let I be an ideal of R and let M be an R-module.
(i) Assume that for every submodule N ≤ M , there exists a submodule K ≤ M such that

M = N +K and N ∩K ⊆ IM . Then M/IM is semisimple.
(ii) If M is an I-⊕-supplemented R-module, then M/IM is semisimple.

Proof. (i) Let N be a submodule ofM such that IM ⊆ N . By assumption, there exists a submodule
K of M such that N + K = M and N ∩K ⊆ IM . Thus, (N/IM) + [(K + IM)/IM ] = M/IM .
Clearly, we have N ∩ (K + IM) = IM . So, N/IM is a direct summand of M/IM . This completes
the proof.

(ii) follows from (i). �

3.10. Proposition. Let M be a module.
(i) IfM is ⊕-δ-supplemented, thenM = M1⊕M2 such that Rad(M1)�M1 and Rad(M2) = M2.
(ii) If M is I-⊕-supplemented, then M = M1 ⊕M2 such that Rad(M1) ⊆ IM1, Rad(M1)�M1

and Rad(M2) = M2.

Proof. (i) Since M is ⊕-δ-supplemented, there exist submodules M1 and M2 of M such that M =

M1⊕M2, Rad(M)+M1 = M and Rad(M)∩M1 �δ M1. Note that Rad(M) = Rad(M1)⊕Rad(M2).
Then M1 ⊕Rad(M2) = M and (Rad(M) ∩M1)⊕Rad(M2) = Rad(M). Therefore Rad(M2) = M2

and Rad(M) ∩ M1 = Rad(M1). Moreover, we have Rad(M1) � M1 by Proposition 2.4. This
completes the proof.

(ii) This follows by the same method as in (i) and adding the fact that Rad(M)∩M1 ⊆ IM1. �

Combining Proposition 3.10(ii) and [2, Proposition 5.20(1)], we get the following result.

3.11. Corollary. If M is an I-⊕-supplemented module with Rad(M)�M , then Rad(M) ⊆ IM .

From the last corollary, we conclude that if I is an ideal of a left perfect ring R and M is an
I-⊕-supplemented R-module, then Rad(M) ⊆ IM (see [2, Remark 28.5(3)]).

An R-module M is said to be δ-local if δ(M) �δ M and δ(M) is a maximal submodule of M
(see [4, Definition 3.1]). Next, we give an example of an R-⊕-supplemented module which is not
⊕-supplemented.
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3.12. Example. Let F = Z/Z2 and let A = FN be the ring of sequences over F , whose operations
are pointwise multiplication and pointwise addition. Let R ⊆ A be the subring generated by 1A

(the unit element of A) and all sequences that have only a finite number of nonzero entries. It is
shown in [4, p. 318] that the ring R is not semilocal and the R-module RR is δ-local. Applying [15,
Proposition 3.1], it is easily seen that RR is an R-⊕-supplemented module. On the other hand, since
the ring R is not semilocal, it is not semiperfect. Hence, the R-module RR is not ⊕-supplemented
by [12, Corollary 4.42].

Next, we present conditions under which an I-⊕-supplemented R-module is ⊕-supplemented.

3.13. Proposition. Let M be an R-module with Rad(M) = M . Then M is ⊕-δ-supplemented if
and only if M is ⊕-supplemented.

Proof. As Rad(M) = M , we have Rad(K) = K for every direct summand K of M . The result
follows from Corollary 2.5. �

3.14. Proposition. Assume that R is a commutative integral domain and let M be a torsion
R-module. Then M is ⊕-δ-supplemented if and only if M is ⊕-supplemented.

Proof. This follows from Proposition 2.6. �

3.15. Proposition. Let I be an ideal of R and let M be an I-⊕-supplemented R-module. If
IM ⊆ Rad(M), then M is ⊕-supplemented.

Proof. Let N be a submodule of M . By hypothesis, there exists a direct summand K of M
such that M = N + K, N ∩ K ⊆ IK and N ∩ K �δ K. Since IM ⊆ Rad(M), we have
IK = K ∩ IM ⊆ K ∩ Rad(M) = Rad(K) by Lemma 3.4 and [5, 20.4(7)]. So N ∩ K � K by
Proposition 2.4. It follows that M is ⊕-supplemented. �

3.16. Corollary. Let I be an ideal of R and let M be an I-⊕-supplemented R-module. Assume
that one of the following conditions is satisfied:

(i) I ⊆ J(R), or
(ii) R is a local ring and I 6= R, or
(iii) Rad(M) = M , or
(iv) R is a commutative integral domain and M is a torsion R-module.

Then M is ⊕-supplemented.

Proof. (i) follows from [2, Corollary 15.18] and Proposition 3.15.
(ii) follows from (i).
(iii) follows easily from Proposition 3.13.
(iv) is obvious by Proposition 3.14. �

Next, we focus on when a ⊕-supplemented R-module is I-⊕-supplemented for an ideal I of R.

3.17. Proposition. Let I be an ideal of R and let M be a ⊕-supplemented R-module such that
Rad(M) ⊆ IM . Then M is I-⊕-supplemented.

Proof. Let N be a submodule of M . Then there exists a direct summand K of M such that
M = N +K and N ∩K � K. Thus, N ∩K �δ K. Moreover, we have IK = K ∩ IM by Lemma
3.4. Since Rad(M) ⊆ IM , it follows that

Rad(K) ⊆ K ∩Rad(M) ⊆ K ∩ IM = IK.

Hence, N ∩K ⊆ IK. Therefore M is I-⊕-supplemented. This completes the proof. �

The next corollary is a direct consequence of Proposition 3.17.
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3.18. Corollary. Let M be a ⊕-supplemented module such that IM = M . Then M is I-⊕-
supplemented.

3.19. Corollary. Let m be a maximal ideal of a commutative ring R and let M be an R-module.
Assume that I is an ideal of R such that IM = mM . If M is a ⊕-supplemented R-module, then M
is I-⊕-supplemented.

Proof. Note that Rad(M) ⊆ mM by [7, Lemma 3]. The result follows from Proposition 3.17. �

Let R be a commutative integral domain. An R-module M is called divisible in case rM = M

for each nonzero element r ∈ R.

3.20. Corollary. Let M be a divisible module over a commutative integral domain R. If M is
⊕-supplemented, then M is I-⊕-supplemented for every nonzero ideal I of R.

Proof. This follows from Corollary 3.18. �

Recall that a ring R is called a left good ring if Rad(M) = J(R)M for every R-module M (see
[18, 23.7]).

3.21. Corollary. Let M be an R-module. Suppose further that either
(i) R is a left good ring, or
(ii) M is a projective module.

Then M is ⊕-supplemented if and only if M is J(R)-⊕-supplemented.

Proof. Note that Rad(M) = J(R)M by [2, Proposition 17.10]. The result follows from Propositions
3.15 and 3.17. �

Combining Lemma 2.2 and the application of the same reasoning of [10, Proposition 3] to I-⊕-
supplemented modules, we obtain the following theorem.

3.22. Theorem. Let I be an ideal of R. Then any finite direct sum of I-⊕-supplemented R-modules
is I-⊕-supplemented.

The next example shows that, in general, a direct sum of I-⊕-supplemented modules is not
I-⊕-supplemented.

3.23. Example. Let p be a prime integer. Consider the Z-module M = ⊕∞i=1Z/Zpi. Clearly, M
is a torsion module. By [12, Propositions A.7 and A.8], M is not ⊕-supplemented. Therefore M is
not (Zp)-⊕-supplemented by Corollary 3.16. On the other hand, note that for every i ≥ 1, Z/Zpi

is a (Zp)-⊕-supplemented Z-module by Proposition 3.7.

The next result deals with a special case of a family of ⊕-δ-supplemented (I-⊕-supplemented)
modules (Mλ)λ∈Λ for which M = ⊕λ∈ΛMλ is ⊕-δ-supplemented (I-⊕-supplemented).

3.24. Proposition. Let I be an ideal of R and let M = ⊕λ∈ΛMλ be a direct sum of submodules
Mλ (λ ∈ Λ) such that for every submodule N of M , we have N = ⊕λ∈Λ(N ∩Mλ). Assume that
Mλ is ⊕-δ-supplemented (I-⊕-supplemented) for every λ ∈ Λ. Then M is ⊕-δ-supplemented (I-⊕-
supplemented).

Proof. Let N be a submodule of M . Then N = ⊕λ∈Λ(N ∩Mλ). For every λ ∈ Λ, there exists a
direct summand Kλ of Mλ such that (N ∩Mλ) +Kλ = Mλ, (N ∩Kλ ⊆ IKλ) and N ∩Kλ �δ Kλ.
Set K = ⊕λ∈ΛKλ. Clearly, K is a direct summand of M and N +K = M . Also, we have (N ∩K =

⊕λ∈Λ(N ∩Kλ) ⊆ IK) and N ∩K �δ K by Proposition 2.8. This proves the proposition. �
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4. Homomorphic images of I-⊕-supplemented modules

We begin this section by an example showing that the I-⊕-supplemented property does not
always transfer from a module to each of its factor modules.

4.1. Example. Let F be a field. Consider the local ring R = F [x2, x3]/(x4) and let m be the
maximal ideal of R. Let n be an integer with n ≥ 2 and let M = R(n). By Proposition 3.7
and Theorem 3.22, M is m-⊕-supplemented. Note that R is an artinian local ring which is not
a principal ideal ring (see [3, Example on p. 91]). So, there exists a submodule K of M such
that the factor module M/K is not ⊕-supplemented by [11, Example 2.2]. Therefore M/K is not
m-⊕-supplemented by Corollary 3.16.

Next, we show that under some conditions, a factor module of an I-⊕-supplemented module is
I-⊕-supplemented.

Recall that a submodule N of a module M is called fully invariant if f(N) ⊆ N for every
endomorphism f of M . A module M is called distributive if (A+B) ∩ C = (A ∩ C) + (B ∩ C) for
all submodules A, B, C of M (or equivalently, (A∩B) +C = (A+C)∩ (B+C) for all submodules
A, B, C of M).

Analysis similar to the proofs of [6, Theorems 4.7 and 4.8] yields the following result. We give
the first part of its proof for completeness.

4.2. Proposition. Let I be an ideal of R and let M be an I-⊕-supplemented module.
(i) Let X ≤ M be a submodule such that for every direct summand K of M , (X + K)/X is a

direct summand of M/X. Then M/X is I-⊕-supplemented.
(ii) Let X ≤ M be a submodule such that for every decomposition M = M1 ⊕ M2, we have

X = (X ∩M1)⊕ (X ∩M2). Then M/X is I-⊕-supplemented.
(iii) If X is a fully invariant submodule of M , then M/X is I-⊕-supplemented.
(iv) If M is a distributive module, then M/X is I-⊕-supplemented for every submodule X of M .

Proof. (i) Let N be a submodule of M such that X ⊆ N . Since M is I-⊕-supplemented, there
exists a direct summand K of M such that N +K = M , N ∩K ⊆ IK and N ∩K �δ K. Therefore
(N/X)+((X+K)/X) = M/X and (N/X)∩ ((K+X)/X) = (X+(N ∩K))/X ⊆ ((X+IK)/X) ⊆
I((X + K)/X). Consider the natural epimorphism π : K → (X + K)/X. Since N ∩K �δ K, we
have π(N ∩K) = (X + (N ∩K))/X �δ (X +K)/X by Lemma 2.2(ii). Note that by assumption,
(X +K)/X is a direct summand of M/X. It follows that M/X is I-⊕-supplemented.

(ii), (iii) and (iv) These are consequences of (i). �

The next proposition was inspired by [11, Proposition 2.5].

4.3. Proposition. Let M be an R-module and let I be an ideal of R. Let K be a fully invariant
direct summand of M . Then the following assertions are equivalent:

(i) M is I-⊕-supplemented;
(ii) K and M/K are I-⊕-supplemented.

Proof. (i) ⇒ (ii) Let L be a submodule of K. By hypothesis, there exist submodules A and B

of M such that M = A ⊕ B, M = A + L, A ∩ L ⊆ IA and A ∩ L �δ A. Clearly, we have
K = (A ∩ K) + L. Since K is fully invariant in M , we have K = (A ∩ K) ⊕ (B ∩ K). Hence,
A ∩K is a direct summand of M . Thus I(A ∩K) = (A ∩K) ∩ IM by Lemma 3.4. It follows that
(A ∩ K) ∩ L = A ∩ L ⊆ (A ∩ K) ∩ IM = I(A ∩ K). Since A ∩ L �δ A and A ∩ K is a direct
summand of A, we have A ∩ L �δ A ∩K by Lemma 2.2(iv). Therefore, K is I-⊕-supplemented.
Moreover, M/K is I-⊕-supplemented by Proposition 4.2(iii).

(ii) ⇒ (i) This follows from Theorem 3.22. �
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Let I be an ideal of R. An R-moduleM is called completely I-⊕-supplemented (⊕-supplemented)
if every direct summand of M is I-⊕-supplemented (⊕-supplemented). Clearly, semisimple modules
are completely I-⊕-supplemented. Also, every I-⊕-supplemented hollow module is completely I-⊕-
supplemented. The next result provides another example of completely I-⊕-supplemented modules.

Recall that a module M is said to have finite hollow dimension n ∈ N if there exists a small
epimorphism from M to a direct sum of n hollow modules. We denote this by h.dim(M) = n. It is
well known that a module M is hollow if and only if h.dim(M) = 1 (see [5, p. 47 and p. 49]).

4.4. Proposition. Let M = H1 ⊕H2 be a direct sum of hollow submodules H1 and H2. Then the
following statements are equivalent:

(i) H1 and H2 are I-⊕-supplemented modules;
(ii) The module M is completely I-⊕-supplemented.

Proof. (i) ⇒ (ii) Let L be a nonzero direct summand of M . If L = M , then L is I-⊕-supplemented
by Theorem 3.22. Assume that L 6= M . Let K be a submodule of M such that M = L ⊕K. By
[5, 5.4(1)], h.dim(M) = 2 = h.dim(L) + h.dim(K). It follows that h.dim(L) = 1 and hence L is a
hollow module. Let us prove that L is I-⊕-supplemented. To see this, it suffices to show that IL = L

or IL = Rad(L) by Proposition 3.7. Since M is I-⊕-supplemented, M/IM ∼= (L/IL) ⊕ (K/IK)

is semisimple by Proposition 3.9. As L is a hollow module, L/IL = 0 or L/IL is simple. Hence
L = IL or L is a local module with maximal submodule IL. So IL = L or IL = Rad(L), as
required.

(ii) ⇒ (i) This is immediate. �

5. Modules over Dedekind domains

Our purpose in this section is to determine the structure of all I-⊕-supplemented modules and
all ⊕-δ-supplemented modules over Dedekind domains.

5.1. Proposition. Let R be a Dedekind domain which is not a field. Then the following assertions
are equivalent for an injective R-module M :

(i) M is ⊕-supplemented;
(ii) M is I-⊕-supplemented for every nonzero ideal I of R;
(iii) M is I-⊕-supplemented for some nonzero ideal I of R;
(iv) M is ⊕-δ-supplemented.

Proof. (i) ⇒ (ii) This follows from Corollary 3.20 since the module M is divisible.
(ii) ⇒ (iii) and (iii) ⇒ (iv) These are obvious.
(iv) ⇒ (i) Since R is a Dedekind domain which is not a field and M is an injective R-module,

we have Rad(M) = M . The result follows from Proposition 3.13. �

Let R be a Dedekind domain which is not a field. If M is an R-module, we will denote the sum
of all divisible (injective) submodules of M by d(M). It is well known that d(M) is an injective
R-module. Also, note that if f is an endomorphism of M , then f(d(M)) is isomorphic to a factor
module of d(M). So, f(d(M)) is injective as R is a Dedekind domain. Therefore, f(d(M)) ⊆ d(M).
It follows that d(M) is a fully invariant submodule of M .

5.2. Proposition. Let R be a Dedekind domain which is not a field. Let I be an ideal of R and
let M be an R-module. Then the following are equivalent:

(i) M is ⊕-δ-supplemented (I-⊕-supplemented);
(ii) M can be written as M = M1 ⊕M2 such that M1 is injective, Rad(M2) � M2 and both of

M1 and M2 are ⊕-δ-supplemented (I-⊕-supplemented) modules.
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Proof. (i) ⇒ (ii) Let M1 = d(M) and let M2 be a submodule of M such that M = M1 ⊕M2.
Note that M2 has no submodules X with Rad(X) = X. Since M is ⊕-δ-supplemented (I-⊕-
supplemented), M1 and M2 are ⊕-δ-supplemented (I-⊕-supplemented) by [14, Theorem 2.5] and
Proposition 4.3. Moreover, we have Rad(M2)�M2 by Proposition 3.10.

(ii) ⇒ (i) This follows by [14, Theorem 2.2] and Theorem 3.22. �

Next, we restrict our investigations about ⊕-δ-supplemented modules and I-⊕-supplemented
modules to the case of modules over discrete valuation rings.

5.3. Proposition. Let M be a module over a discrete valuation ring R and let I be an ideal of
R. Then M is ⊕-δ-supplemented if and only if M is ⊕-supplemented. In particular, every I-⊕-
supplemented R-module is ⊕-supplemented.

Proof. Assume that M is ⊕-δ-supplemented. By Proposition 5.2, M = M1 ⊕M2 is a direct sum
of a ⊕-δ-supplemented injective submodule M1 and a submodule M2 with Rad(M2) � M2. By
Proposition 5.1, M1 is ⊕-supplemented. In addition, M2 is ⊕-supplemented by [20, Lemma 2.1]
and [12, Proposition A.7]. Therefore, M is ⊕-supplemented by [8, Theorem 1.4]. The converse is
immediate.

The remaining assertion is obvious. �

Let P be a nonzero prime ideal of a Dedekind domain R and let n be a nonzero natural number.
We will use the notation BP (1, . . . , n) to denote the direct sum of arbitrarily many copies of R/P ,
R/P 2, . . . , R/Pn.

The next result provides a structure theorem for modules over a discrete valuation ring.

5.4. Theorem. Assume that R is a discrete valuation ring with maximal ideal m, quotient field K
and Q = K/R. Let I be an ideal of R and let M be an R-module.
(1) If I = m or I = R, then the following are equivalent:

(i) M is I-⊕-supplemented;
(ii) M is ⊕-δ-supplemented;
(iii) M is ⊕-supplemented;
(iv) M ∼= Ra ⊕Kb ⊕Qc ⊕Bm(1, . . . , n) for some natural numbers a, b, c and n.

(2) If I 6∈ {m,R}, then the following are equivalent:
(i) M is I-⊕-supplemented;
(ii) M ∼= Kb ⊕Qc ⊕ (R/m)(Λ) for some natural numbers b and c and an index set Λ.

Proof. (1) (i) ⇔ (iii) By Corollaries 3.18 and 3.19 and Proposition 5.3.
(ii) ⇔ (iii) By Proposition 5.3.
(iii) ⇔ (iv) This follows from [12, Proposition A.7].
(2) (i) ⇒ (ii) Assume that M is I-⊕-supplemented. By Proposition 5.3, M is ⊕-supplemented.

Applying [12, Proposition A.7], M ∼= Ra ⊕ Kb ⊕ Qc ⊕ Bm(1, . . . , n) for some natural numbers a,
b, c and n. Since M/IM is semisimple (see Proposition 3.9) and I 6∈ {m,R}, we have a = 0 and
for each 1 ≤ i ≤ n, R/(I + mi) is semisimple. So, for each 1 ≤ i ≤ n, we have I + mi = m or
I +mi = R. Therefore n = 1 because I ⊆ m2. It follows that Bm(1, . . . , n) = Bm(1) is semisimple,
completing the proof.

(ii) ⇒ (i) Note that Kb ⊕ Qc is an injective ⊕-supplemented module by [12, Proposition A.7].
The result follows from Propositions 5.1 and 5.2. �

5.5. Remark. Let R be a discrete valuation ring with maximal ideal m, quotient field K and
Q = K/R. Let I be an ideal of R.
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(i) Assume that I 6∈ {m,R}. Theorem 5.4(2) and [12, Proposition A.7] provide many examples
of ⊕-supplemented R-modules which are not I-⊕-supplemented.

(ii) Note that [11, Corollary 4.5] shows that every ⊕-supplemented R-module is completely ⊕-
supplemented.

Case 1. Assume that I ∈ {m,R}. Then every I-⊕-supplemented R-module is completely I-⊕-
supplemented by Theorem 5.4.

Case 2. Suppose that I 6∈ {m,R}. Let M be an I-⊕-supplemented R-module. Then M =

Kb ⊕ Qc ⊕ (R/m)(Λ) for some natural numbers b and c and an index set Λ. Let N and L be
submodules of M such that M = N ⊕ L and let d(M) be the sum of all injective submodules of
M . It is clear that d(M) = d(N) ⊕ d(L) = Kb ⊕ Qc. Then, d(N) ∼= Kb′ ⊕ Qc

′
for some natural

numbers b′ and c′ by [2, Corollary 12.7 and Lemma 25.4]. Therefore, d(N) is I-⊕-supplemented by
Theorem 5.4. In addition, we have (R/m)(Λ) ∼= M/d(M) ∼= (N/d(N))⊕ (L/d(L)). Hence, N/d(N)

is semisimple. Thus, N/d(N) is I-⊕-supplemented. Since d(N) is a direct summand of N , N is
I-⊕-supplemented by Theorem 3.22. Consequently, M is completely I-⊕-supplemented.

Let L be a submodule of a module M . A submodule K ≤ M is called a δ-supplement of N in
M if M = L + K and L ∩K �δ K. The module M is called δ-supplemented if every submodule
has a δ-supplement in M .

Our next goal is to describe ⊕-δ-supplemented modules and I-⊕-supplemented modules over a
nonlocal Dedekind domain R. The next proposition shows that every torsion-free δ-supplemented
R-module is injective. First we prove the following lemma.

5.6. Lemma. Let L be a proper submodule of a module M such that M/L is a cyclic module.
(i) If K is a δ-supplement of L in M , then K = P ⊕ Rx, where P is a semisimple projective

submodule of L ∩K and x ∈ K. In this case, Rx is a δ-supplement of L in M .
(ii) If L has a δ-supplement that is a direct summand of M , then L has a cyclic δ-supplement

that is a direct summand of M .

Proof. (i) By assumption, we have L+K = M and L∩K �δ K. Thus,M/L ∼= K/(L∩K) is cyclic.
Let x ∈ K such that K = (L ∩K) + Rx. Since L ∩K �δ K, there exists a semisimple projective
submodule P of L ∩K such that K = P ⊕Rx by Lemma 2.1. Note that L ∩K = L ∩ (P ⊕Rx) =

P ⊕ (L∩Rx)�δ P ⊕Rx. By Lemma 2.2(iv), we have P �δ P and L∩Rx�δ Rx. Therefore P is
a semisimple projective module by [15, Lemma 2.9]. Also, note that L + Rx = M . It follows that
Rx is a δ-supplement of L in M .

(ii) follows from (i). �

5.7. Proposition. Assume that R is a Dedekind domain which is not local. Let K denote the
quotient field of R. If M is a δ-supplemented R-module, then M/T (M) ∼= K(Λ) for some index set
Λ.

Proof. Assume thatM has a maximal submodule L such that T (M) ⊆ L. SinceM is δ-supplemented,
there exists a cyclic submodule W of M such that M = L+W and L∩W �δ W (see Lemma 5.6).
Let A be an ideal of R such that W ∼= R/A. Since W is not contained in L, W is not a torsion
module. So A = 0 and W ∼= RR. Thus, W is an indecomposable R-module. Hence L∩W �W by
Proposition 2.3. Since W/(L ∩W ) ∼= M/L, we conclude that W is a local submodule of M . This
contradicts the fact that R is not a local ring. It follows that Rad(M/T (M)) = M/T (M). Hence,
the module M/T (M) is injective. So there exists an index set Λ such that M/T (M) ∼= K(Λ) by [9,
Lemma 2.1]. �

5.8. Proposition. Assume that R is a Dedekind domain which is not local. If M is a ⊕-δ-
supplemented R-module with Rad(M)�M , then M is a torsion module.
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Proof. SinceM is ⊕-δ-supplemented, there exist submodules A and B ofM such thatM = A⊕B =

T (M) + B and T (M) ∩ B �δ B. Since T (M) = T (A) ⊕ T (B), we have M = T (A) ⊕ B and
T (M) = T (A) ⊕ (T (M) ∩ B). Hence T (A) = A and T (B) = T (M) ∩ B. So, T (B) �δ B. By
Proposition 2.6, we have T (B) � B. Note that M/T (M) ∼= B/T (B) is divisible by Proposition
5.7. It follows that for every nonzero element r ∈ R, we have rB + T (B) = B. So, rB = B for
every 0 6= r ∈ R. This implies that B is a divisible module, that is, Rad(B) = B (see [9, Lemma
2.1]). But Rad(B) � B since Rad(M) � M . Then B = 0 and M = A is a torsion module, as
required. �

5.9. Proposition. Assume that R is a nonlocal Dedekind domain. If M is a ⊕-δ-supplemented
R-module, then M is a torsion module.

Proof. By Proposition 5.2, M = M1⊕M2 is a direct sum of ⊕-δ-supplemented submodules M1 and
M2 such that Rad(M1) = M1 and Rad(M2)�M2. By Proposition 5.1, M1 is ⊕-supplemented. So,
M1 is a torsion module by [12, Proposition A.8]. Moreover, M2 is a torsion module by Proposition
5.8. Therefore M is a torsion module, as required. �

5.10. Corollary. Assume that R is a nonlocal Dedekind domain. An R-moduleM is ⊕-δ-supplemented
if and only if M is ⊕-supplemented.

Proof. This follows easily from Propositions 3.14 and 5.9. �

5.11. Remark. Combining Proposition 5.3, Corollary 5.10 and [12, Propositions A.7 and A.8], we
obtain the structure of ⊕-δ-supplemented modules over Dedekind domains.

5.12. Lemma. Assume that R is a Dedekind domain which is not local. Let P be a maximal ideal
of R and let i be a nonzero natural number. Then:

(i) I + P = P if and only if I ⊆ P .
(ii) If i ≥ 2, then I + P i = P if and only if I ⊆ P and I 6⊆ P 2.
(iii) I + P i = R if and only if I 6⊆ P .

Proof. (i) and (iii) are immediate.
(ii) (⇒) This is obvious.
(⇐) By hypothesis, we have I = PI ′, where I ′ is an ideal of R which is not contained in P (see

[13, Theorem 6.14]). Since I ′ + P (i−1) = R, we see that PI ′ + P i = P . Hence, I + P i = P . �

Let M be a module over a Dedekind domain R and let P be a nonzero prime ideal of R. We will
denote by MP the set {x ∈ M | Pnx = 0 for some integer n ≥ 0} which is called the P -primary
component of M . Note that if M is a torsion R-module, then M is a direct sum of its P -primary
components. Let K be the quotient field of R. We will denote by R(P∞) the P -primary component
of the torsion R-module K/R. It is well known that R(P∞) is a hollow module (see [9, Lemma
2.4]).

The next result describes the structure of I-⊕-supplemented modules over nonlocal Dedekind
domains. Recall that a module M is 0-⊕-supplemented if and only if M is semisimple (see Remark
3.3(ii)).

5.13. Theorem. Assume that R is a nonlocal Dedekind domain. Let I be a nonzero ideal of R.
Then the following assertions are equivalent for an R-module M :

(i) M is I-⊕-supplemented;
(ii) M is torsion and every P -primary component of M is I-⊕-supplemented;
(iii) M is torsion and for every nonzero prime ideal P of R, there exist natural numbers a and

n such that MP
∼= (R(P∞))a ⊕BP (1, . . . , n) with n = 1 if I ⊆ P 2.
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Proof. (i) ⇔ (ii) It is well known that for every nonzero prime ideal P of R, MP is a fully invariant
submodule of M . The result follows from Propositions 3.24, 4.3 and 5.9.

(ii) ⇒ (iii) Let P be a nonzero prime ideal of R. Since MP is I-⊕-supplemented, MP is ⊕-
supplemented by Corollary 5.10. Thus, there exist natural numbers a and n such that MP

∼=
(R(P∞))a ⊕ BP (1, . . . , n) by [12, Propositions A.7 and A.8]. Let 1 ≤ i ≤ n. Since M/IM is
semisimple (see Proposition 3.9), (R/P i)/((I + P i)/P i) ∼= R/(I + P i) is semisimple. As R/P i is a
local R-module, we have I+P i = R or I+P i = P . Note that if I ⊆ P 2 and i ≥ 2, then I+P i ⊆ P 2.
In this case we have I + P i 6= R and I + P i 6= P . This shows that I ⊆ P 2 forces n = 1.

(iii)⇒ (ii) Let P be a nonzero prime ideal ofR. Note thatMP and (R(P∞))a are⊕-supplemented
by [12, Propositions A.7 and A.8]. We divide the rest of the proof into three cases:

Case 1. Assume that I ⊆ P 2. By hypothesis, n = 1. Therefore BP (1, . . . , n) = BP (1) is
semisimple. HenceMP

∼= (R(P∞))a⊕BP (1) is I-⊕-supplemented (see Proposition 5.1 and Theorem
3.22).

Case 2. Suppose that I 6⊆ P 2 and I 6⊆ P . Then, IMP = MP by Lemma 5.12(iii). Therefore,
MP is I-⊕-supplemented by Corollary 3.18.

Case 3. Assume that I 6⊆ P 2 and I ⊆ P . In this case we have IMP = PMP by Lemma 5.12.
Applying Corollary 3.19, we conclude that MP is I-⊕-supplemented. This completes the proof. �

5.14. Remark. Let I be an ideal of a nonlocal Dedekind domain R. Using Theorem 5.13, [17,
Theorem 1] and an analysis similar to that in Remark 5.5, we conclude that every I-⊕-supplemented
R-module is completely I-⊕-supplemented.
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