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A kernel density approach for replacing rounded
zeros in compositional data sets

Jiajia Chen∗†, Xiaoqin Zhang‡ and Shengjia Li�

Abstract

The logratio methodology widely used in compositional data analysis
is not applicable when some components have rounded zeros. There
are many univariate and multivariate methods that have been used
to deal with rounded zeros. However, both of them have restrictions:
the univariate methods replaced the rounded zeros only using the in-
formation of the corresponding component; the multivariate methods
need to assume the distribution of transformed data. When the form
of the distribution function is unknown, a multivariate nonparametric
replacement approach is proposed in this paper. The proposed method
uses conditional expected value based on isometric logratio coordinates
to replace rounded zeros, in which the conditional density is estimated
through multivariate Gauss kernel function. The permutation invari-
ance and invariance under change of orthonormal basis are also pre-
sented. Simulation studies show that the proposed method has better
performance than previous methods as the percentage of rounded zeros
increases. The proposed method is also applied on the moss data from
the Kola project.
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1. Introduction

Compositional data, or compositions, are vectors in which all components are positive
real numbers and carry only relative information [1]. These vectors can be represented
as proportions using closure operation, that is, they multiplied by the appropriate scal-
ing factors. Two vectors are compositional equivalent if they can be expressed in the
same proportion, thus compositions can be viewed as equivalence classes, in which all
vectors convey the same compositional information [18]. This type of data often occurs
in geosciences, biosciences, economics and many other disciplines [1, 16, 18].

Compositional data provide information only about the relative magnitudes of the
components, the logratio methodology plays a key role in compositional data analysis.
Three logratio transformations including additive logratio (alr) transformation [1], cen-
tered logratio (clr) transformation [1] and isometric logratio (ilr) transformation [6] were
proposed. The relationship between alr transformation and clr transformation is well
known [1], and ilr transformation can be represented by means of alr transformation or
clr transformation [6]. Because the alr transformation is non-isometric, and the clr trans-
formation results in singular covariance matrix, the ilr transformation which can avoid
the above drawbacks is suggested. The logratio transformations transform compositional
data to coordinates in real space. However, zeros may exist in some components, thus
the logratio transformations fail.

There are three kinds of zeros in compositional data set: rounded zeros, count zeros
and essential zeros [9]. In this paper, we are interested in the rounded zero which is not
true zero and results from the existence of value below a threshold. When the threshold
is rounding-o� error, the component is present in a very small quantity and rounded to
zero; when the threshold is detection limit, the value below the detection limit cannot be
observed and is commonly reported as zero. There are many classic methods in rounded
zeros problem. Aitchison proposed the additive replacement strategy [1], but the ratios
of components having no rounded zeros are not preserved, later the multiplicative re-
placement strategy [8] was proposed. Instead of replacing rounded zeros in a component
by a �xed value, the multiplicative lognormal replacement method [13] allowing for ran-
dom imputation was suggested. The multivariate method is the modi�ed EM algorithm
[15, 12], which assumed that the alr coordinates follow multivariate normal distribution.
Later the robust modi�ed EM algorithm working on ilr coordinates [10] was introduced.
In addition, there are other algorithms, for example, the multiplicative Kaplan-Meier
method [14] was proposed, which is a univariate method. The implementations of all
these methods discussed above are available in the R package zCompositions [14].

The previous univariate methods replace rounded zeros based on the data of the
corresponding component and perform poorly when the proportion of rounded zeros
is high. The multivariate methods for rounded zeros usually rely on the underlying
assumption of multivariate normality in the space of coordinates. Furthermore, the
modi�ed EM algorithm based on alr coordinates requires that at least one component
has no rounded zeros. To avoid these disadvantages, a new multivariate nonparametric
replacement method based on multivariate Gauss kernel density estimation is proposed
in this paper. To illustrate the performance of proposed method compared with the
existing methods, this method is applied to both simulation and example analysis.

The rest of this paper is organized as follows. Some basic concepts about composi-
tional data are reviewed in Section 2. In Section 3, the proposed approach is presented.
Simulation study and real example are given in Section 4 to verify the e�ectiveness and
usefulness of proposed method. Section 5 concludes this paper.
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2. Preliminaries

Let x = [x1, x2, · · · , xD] be a row vector denoting a D-part composition represented
with constant sum k, its sample space is the simplex SD [1] de�ned as

S
D =

{
x = [x1, x2, · · · , xD]

∣∣∣∣∣xi > 0, i = 1, 2, · · · , D;

D∑
i=1

xi = k

}
,

where the constant k is an arbitrary positive real number and is usually 1 or 100 depending
on the units of measurement. The simplex is a Euclidean vector space structure [1, 17,
3] when de�ning inner product with its related norm and Aitchison distance [2]. The
distance between two compositions x and y ∈ SD is

da(x,y) =

(
D∑
i=1

(
ln

xi
gm(x)

− ln
yi

gm(x)

)2
)1/2

,

where da(·, ·) stands for the Aitchison distance in SD, and gm(x) denotes the geometric
mean of the parts of x.

The ilr transformation [6] assigns coordinates with respect to the given orthonor-
mal basis {e1, e2, · · · , eD−1} of the simplex SD. An orthonormal basis can be obtained
through sequential binary partition of parts of a composition [5]. Following the reference
[5], we can construct a (D − 1)×D matrix Ψ in which rows are

(2.1) ψi =

√
D − i

D − i+ 1

0, · · · , 0, 1,− 1

D − i , · · · ,−
1

D − i︸ ︷︷ ︸
D−i

 , i = 1, 2, · · · , D − 1,

respectively. An orthonormal basis can be obtained through ei = C(exp ψi) (i =
1, 2, · · · , D − 1), where C is the closure operation. Thus the composition x ∈ SD is
transformed to ilr coordinates z = ilr(x) = [z1, z2, · · · , zD−1] ∈ RD−1, where

(2.2) zi =

√
D − i

D − i+ 1
ln

xi

D−i

√
D∏

j=i+1

xj

, i = 1, 2, · · · , D − 1.

The ilr coordinates guarantee the invariance of distance, that is, da(x,y) = d(ilr(x),
ilr(y)), where d(·, ·) is the Euclidean distance in real space. The inverse mapping of any
real-valued vector z ∈ RD−1 to the original composition x is then given by

(2.3)



x1 = exp

{√
D−1
D

z1

}
,

xi = exp

{
−
i−1∑
j=1

1√
(D−j+1)(D−j)

zj +
√

D−i
D−i+1

zi

}
, i = 2, · · · , D − 1,

xD = exp

{
−
D−1∑
j=1

1√
(D−j+1)(D−j)

zj

}
.

The compositions can be viewed as equivalence classes, therefore the obtained composi-
tion x can be represented as constant sum vectors.
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For any random composition x = [x1, x2, · · · , xD], the measure of dispersion is the
variation matrix [1] de�ned as

(2.4) T = [tij ]D×D, tij = Var

(
ln
xi
xj

)
,

where the element in variation matrix is the logratio variance for any two parts i and j
of a D-part composition x.

3. Kernel density replacement approach

Consider a random composition x = [x1, x2, · · · , xD], the sample data set is X with
n compositions and D-part, that is

X = [xij ]n×D =


x11 x12 · · · x1D
x21 x22 · · · x2D
...

...
. . .

...
xn1 xn2 · · · xnD

 .

Suppose that the compositional data set X has rounded zeros, the corresponding thresh-
old matrix is denoted as E = [eij ]n×D, where eij is the threshold of xij . Let Rj ⊂
{1, 2, · · · , n} be the row indices referring to the rounded zeros of the jth component
(j ∈ {1, 2, · · · , D}), then Oj = {1, 2, · · · , n}\Rj refers to the remaining row indices of
the jth component, that is, Rj = {i : i ∈ {1, 2, · · · , n}, xij ≤ eij}, Oj = {i : i ∈
{1, 2, · · · , n}, xij > eij}.

Firstly, we initialize the rounded zeros by multiplicative replacement strategy in which
the rounded zero is equal to 65% of the threshold [8], thus X denotes the replaced
data set. Denote the ilr coordinates in Equation (2.2) of random composition x as
z = ilr(x) = [z1, z2, · · · , zD−1] = [z1, z−1], where z−1 refers to the remaining components
of z except for the �rst component. Then initialized data set X is transformed to real
data set Z = [zij ]n×(D−1), where each row in Z is the ilr coordinates of the corresponding
composition in X. For the element ei1 in threshold set E, the ilr transformation of
rounded zero xi1 < ei1 can result in the the unknown value zi1 less than ψi1, where

ψi1 =

√
D − 1

D
ln

ei1

D−1

√
D∏
j=2

xij

.

In the proposed approach, the unknown data zi1 (i ∈ R1) is imputed by conditional
expected value

(3.1) E(z1|z−1 = zi,−1, z1 < ψi1) =

∫ ψi1

−∞ z1f(z1|z−1 = zi,−1)dz1∫ ψi1

−∞ f(z1|z−1 = zi,−1)dz1
,

where zi,−1 is the ith row of Z except for the �rst column, the conditional density function
f(z1|z−1 = zi,−1) can be calculated as follows

(3.2) f(z1|z−1 = zi,−1) =
f(z1, z−1 = zi,−1)

f(z−1 = zi,−1)
=

f(z1, z−1 = zi,−1)∫ +∞
−∞ f(z1, z−1 = zi,−1)dz1

.

Regardless the distribution of multivariate random variable z, the density function
f(z1, z−1 = zi,−1) can be estimated by multivariate Gauss kernel density [4]. In this
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paper, the same bandwidth h is applied to di�erent coordinate direction, thus

f̂(z1, z−1 = zi,−1)

=
1

n(
√

2πh)D−1

n∑
k=1

exp

{
−1

2

(z1 − zk1
h

)2
−1

2

(zi,−1 − zk,−1

h

)(zi,−1 − zk,−1

h

)T}
=

1

n(
√

2πh)D−1

n∑
k=1

exp

{
−1

2

(z1 − zk1
h

)2
− 1

2h2
d2(zi,−1, zk,−1)

}
.(3.3)

The bandwidth h is given by h = σ
(

4
n(D+1)

) 1
D+3

[20], where σ2 = 1
D−1

D−1∑
j=1

Var(zj) =

1
D−1

tr(Var(z)), tr represents the trace of matrix Var(z).

It follows from Equation (3.2) and Equation (3.3) that

f̂(z1|z−1 = zi,−1)

=

n∑
k=1

exp
{
− 1

2

(
z1−zk1

h

)2}
exp

{
− 1

2h2 d
2(zi,−1, zk,−1)

}
n∑
k=1

exp
{
− 1

2h2
d2(zi,−1, zk,−1)

} ∫ +∞
−∞ exp

{
− 1

2

(
z1−zk1

h

)2}
dz1

=

n∑
k=1

exp
{
− 1

2

(
z1−zk1

h

)2}
exp

{
− 1

2h2 d
2(zi,−1, zk,−1)

}
n∑
k=1

√
2πh exp

{
− 1

2h2 d2(zi,−1, zk,−1)
} ,(3.4)

By conditional density function in Equation (3.4), Equation (3.1) can be expressed as

(3.5)

n∑
k=1

exp
{
− 1

2h2 d
2(zi,−1, zk,−1)

} ∫ ψi1

−∞ z1 exp
{
− 1

2

(
z1−zk1

h

)2}
dz1

n∑
k=1

exp
{
− 1

2h2 d2(zi,−1, zk,−1)
} ∫ ψi1

−∞ exp
{
− 1

2

(
z1−zk1

h

)2}
dz1

.

Since ∫ ψi1

−∞
exp

{
−1

2

(z1 − zk1
h

)2}
dz1 =

√
2πhΦ

(
ψi1 − zk1

h

)
and ∫ ψi1

−∞
z1 exp

{
−1

2

(z1 − zk1
h

)2}
dz1

=

∫ ψi1

−∞
(z1 − zk1) exp

{
−1

2

(z1 − zk1
h

)2}
dz1 + zk1

∫ ψi1

−∞
exp

{
−1

2

(z1 − zk1
h

)2}
dz1

=
√

2πh

(
−hφ

(
ψi1 − zk1

h

)
+ zk1Φ

(
ψi1 − zk1

h

))
,

where φ(·) and Φ(·) are the density and distribution function of the standard normal
distribution, respectively. Thus Equation (3.5) can be simpli�ed as

E(z1|z−1 = zi,−1, z1 < ψi1) =
n∑
k=1

(
−hφ

(
ψi1−zk1

h

)
+ zk1Φ

(
ψi1−zk1

h

))
exp

{
− 1

2h2 d
2(zi,−1, zk,−1)

}
n∑
k=1

Φ
(
ψi1−zk1

h

)
exp

{
− 1

2h2 d2(zi,−1, zk,−1)
} .(3.6)
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Hence, the unknown data zi1 is imputed by Equation (3.6). For the ilr coordinates in
Equation (2.2), since d(zi,−1, zk,−1)= da(xi,−1,xk,−1), the imputed value zi1 is related
with the Aitchison distance between subcompositions xi,−1 and xk,−1, where xi,−1 and
xk,−1 denote the remaining components of compositions xi and xk except for the �rst
component, respectively.

3.1. Property. The imputed value E(z1|z−1 = zi,−1, z1 < ψi1) in Equation (3.6) has

the following properties:

(1) It is below the threshold, that is, E(z1|z−1 = zi,−1, z1 < ψi1) < ψi1.
(2) It is unchanged when the remaining components of x except for the �rst compo-

nent are arbitrarily permuted.

(3) It is invariant under change of orthonormal basis {e2, e3, · · · , eD−1}.

Property 3.1 is quite obvious. It follows from z = xΨT that tr(Var(z)) = tr(Var(xΨT ))
= tr(ΨVar(x)ΨT ) = tr(Var(x)ΨTΨ) = tr(Var(x)GD) [18], where GD = ID − 1

D
JD, ID

is a identity matrix, JD is a matrix of units. Therefore all the underlaying elements
(d(zi,−1, zk,−1), h, zk1 and ψi1) are invariant by permutation and change of basis, thus
the imputed value in Equation (3.6) is unchanged.

Property 3.1 (2) and (3) point out that E(z1|z−1 = zi,−1, z1 < ψi1) satis�es per-
mutation invariance and invariance under change of orthonormal basis, but E(zl|z−l =
zi,−l, zl < ψil) (l = 2, · · · , D − 1) may not satisfy these two properties, for example,
zkl may changed when the remaining components of x except for the lth component
are arbitrarily permuted. To replace the rounded zeros in the lth component of x, we

de�ne the permuted composition x(l) = [x
(l)
1 , x

(l)
2 , · · · , x(l)l , x

(l)
l+1, · · · , x

(l)
D ] = [xl, x1, · · · ,

xl−1, xl+1, · · · , xD]. The ilr coordinates are denoted as z(l) = ilr(x(l)) = [z
(l)
1 , z

(l)
2 , · · · ,

z
(l)
D−1] = [z

(l)
1 , z

(l)
−1], the corresponding ilr data set is Z(l) = [z

(l)
ij ]n×(D−1). According to

Equation (3.6), the unknown data z
(l)
i1 (i ∈ Rl) resulting from the rounded zero in the

ith row and the lth component of X can be imputed by

E(z
(l)
1 |z

(l)
−1 = z

(l)
i,−1, z

(l)
1 < ψ

(l)
i1 ) =

n∑
k=1

(
−hφ

(
ψ

(l)
i1 −z

(l)
k1

h

)
+ z

(l)
k1Φ

(
ψ

(l)
i1 −z

(l)
k1

h

))
exp

{
− 1

2h2 d
2(z

(l)
i,−1, z

(l)
k,−1)

}
n∑
k=1

Φ

(
ψ

(l)
i1 −z

(l)
k1

h

)
exp

{
− 1

2h2
d2(z

(l)
i,−1, z

(l)
k,−1)

} ,(3.7)

where ψ
(l)
i1 =

√
D−1
D

ln eil

D−1

√√√√ D∏
j=2

x
(l)
ij

.

The speci�c steps of the proposed method, similar to the modi�ed EM algorithm
based on ilr coordinates [10], are as follows:

Step 1: Sort the parts of compositional data set according to the number of
rounded zeros of each part. The ilr coordinates in Equation (2.2) is used in
the proposed method, the �rst component is only included in the �rst ilr coor-
dinate. In order to reduce the error, the component with more zeros should be
put in the �rst column. Without loss of generality, assume that the parts are
already sorted, i.e. |R1| ≥ |R2| ≥ · · · ≥ |RD|, where |Rj | denotes the number of
elements of Rj (j = 1, 2, · · · , D).

Step 2: Initialize the rounded zeros by multiplicative replacement strategy.
Step 3: Set l = 1.

Step 4: Replace the unknown data z
(l)
i1 (i ∈ Rl) using Equation (3.7).

Step 5: Inverse the every row of updated data set using Equation (2.3).
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Step 6: Carry out Steps 4-5 for each l = 2, 3, · · · |C|, where C = {j : j ∈
{1, 2, · · · , D}, |Rj | 6= 0} is the index set of parts containing at least one rounded
zero.

Step 7: Repeat Steps 3-6 until the Euclidean distance between the variation ma-
trix of compositional data set from the present and the previous iteration is
smaller than a certain boundary.

Step 8: Sort the parts of replaced compositional data set in the original order.

If the data set X = [xij ]n×D is closed to a constant, then the replaced data set

is X̂ = [x̂ij ]n×D obtained from the above algorithm, otherwise, we should rescale the
replaced value x̂ij using the expression [14]

(3.8) x̂∗ij = x̂ij
xik
x̂ik

, j ∈ C, i ∈ Rj ,

where x̂∗ij is the rescaled value, xik is the originally observed element in the ith row and

kth column of compositional data set X, x̂ik is the corresponding replaced value in X̂.

4. Simulation and Example

In this section we present simulation study and real example in order to illustrate the
good performance of proposed method (multK), which is compared with the multiplica-
tive replacement strategy (multR), the multiplicative Kaplan-Meier method (multKM),
the multiplicative lognormal replacement method (multLN), the modi�ed EM algorithm
working on alr coordinates (alrEM) and the robust modi�ed EM algorithm working on ilr
coordinates (ilrEM). Given the original compositional data set X which has no rounded
zeros, we set the value below the threshold as zero, the replaced compositional data set
is denoted as X∗. We consider two measures of distortion, standardized residual sum of
squares (STRESS) [8] and relative di�erence in variation matrix (RDVM) [13]. Denote
the variation matrix in Equation (2.4) of original data set X and imputed data set X∗

as T = [tij ]D×D and T∗ = [t∗ij ]D×D, the two measures STRESS and RDVM are de�ned
as

STRESS =

∑
i<j(da(xi,xj)− da(x∗i ,x

∗
j ))

2∑
i<j d

2
a(xi,xj)

,

and

RDVM =
1

2|C|D − |C|2
∑
i,j∈C

|t∗ij − tij |
tij

,

respectively, where xi is the ith row of data set X. The two measures STRESS and
RDVM represent the distance di�erence and variation di�erence, respectively.

4.1. Simulation Study. In this subsection, several simulation studies were conducted.
We �rst simulated real data set with sample size 300 from multivariate normal distri-
bution N4(µ,Σ), then the compositional data set X can be obtained through ilr-inverse
transformation in Equation (2.3). Suppose that the rounded zero is resulting from value
below the detection limit, and the detection limits of same part-di�erent compositions
are the same, so the detection limit set is denoted as a vector, that is, E = [e1, e2, · · · , e5],
where ej (j = 1, 2, · · · 5) is the αj quantile of the jth component in X.

We set mean µ = [−2,−1.5,−1,−0.3] and covariance matrix Σ = [ρ|i−j|]4×4. To
describe di�erent levels of correlations among the components, take ρ = 0.3, 0.5, 0.7 and
0.9. Ten situations of detection limit set are conducted, where α1, α2, α3, α4 range from
0.05 to 0.5 by 0.05, 0.04 to 0.4 by 0.04, 0.03 to 0.3 by 0.03, 0.02 to 0.2 by 0.02, respectively,
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(a) ρ = 0.3.
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(b) ρ = 0.5.

Figure 1. Two measures of distortion STRESS and RDVM for six
methods (multR, multKM, multLN, ilrEM, alrEM, multK) under ten
situations of detection limit set when ρ = 0.3 (a) and ρ = 0.5 (b).

and α5 = 0. Set each data in the jth component smaller than ej (j = 1, 2, 3, 4) to a zero
value, then the percentage of rounded zeros in the �rst four components approximately
range from 5% to 50% by 5%, 4% to 40% by 4%, 3% to 30% by 3%, 2% to 20% by 2%,
respectively, and the last component has no rounded zeros, therefore the corresponding
percentage of rounded zeros in compositional data set approximately ranges from 2.8%
to 28% by 2.8%.

We run 100 Monte Carlo simulations for each setting described above. The perfor-
mance comparisons among previous methods and proposed method with varying per-
centage of rounded zeros corresponding to situations are showed in Figure 1 and Figure
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(a) ρ = 0.7.
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(b) ρ = 0.9.

Figure 2. Two measures of distortion STRESS and RDVM for six
methods (multR, multKM, multLN, ilrEM, alrEM, multK) under ten
situations of detection limit set when ρ = 0.7 (a) and ρ = 0.9 (b).

2. The values in Figure 1 and Figure 2 are the average STRESS or RDVM of 100 simula-
tions. Figure 1(a) and Figure 1(b) depict the trends in two performance measures under
ten situations of detection limit set when ρ = 0.3 and 0.5. It can be seen from Figure 1(a)
and Figure 1(b) that the ilrEM and alrEM have smaller STRESS and RDVM than those
of multR, however, the STRESS and RDVM of multKM and multLN are greater than
those of multR. Moreover, when the percentage of rounded zeros increases, the STRESS
value of multK is lower than those of previous methods. The multK method performs
worse than previous methods in the measure RDVM when ρ = 0.3, whereas it performs
better under some situations when ρ = 0.5. Figure 2 shows the trends in two measures
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among di�erent methods when ρ = 0.7 and 0.9. From Figure 2(a) and Figure 2(b), we
see that the multK method outperforms the other methods in two measures STRESS and
RDVM. The STRESS value of ilrEM is very close to that of multR, while ilrEM performs
worse than multR in measure RDVM. To sum up, when the percentage of rounded zeros
increases, the proposed method has better performance than other methods in the two
measures STRESS and RDVM.

4.2. Real example. The proposed method discussed in the previous section will be
applied to the moss data from the Kola project available in the R package StatDA [7] and
compared with the previous methods (multR, multKM, multLN, ilrEM and alrEM). The
moss data set consists of more than 50 chemical elements and 594 observations. We focus
on the 7-part subcomposition [Al, Ca, Fe, K, Mg, Na, Si] denoted as compositional data
set U = [u1,u2, · · · ,u7] with constant sum 100%, which has no rounded zeros. Similar
to the simulation analysis, we give the detection limit set, the value below detection limit
is set as zero. The aim of this study is to replace rounded zeros using di�erent methods.

Suppose that the components u1,u3,u6 and u7 have rounded zeros. Eight situations
of detection limit set are given in Table 1 in which ej (j = 1, 3, 6, 7) is the detection limit
of the jth component. Table 1 also gives the percentages of rounded zeros of components
u1,u3,u6,u7 and the total percentage of rounded zeros of compositional data set U.
Table 2 gives the computed results of STRESS and RDVM for six methods (multR,
multKM, multLN, ilrEM, alrEM, multK) under eight situations. According to Table 2,
we can �nd that the proposed method has smaller STRESS value than those of other
methods except the �rst two situations, and the RDVM value of proposed method for
each situation is always smaller than other methods. In addition, multR performs better
than ilrEM and alrEM as the percentage of rounded zeros increases, of which alrEM has
larger STRESS and RDVM than ilrEM. This is because that the ilrEM and alrEM all
assume the distribution of compositional data set. In fact, compositional data set U
departures from normal distribution on the simplex [11], which is tested using the energy
test [19] or the test based on SVD including the marginal univariate tests, the bivariate
tests and radius tests [21]. Because the ilrEM is a robust method, which performs better
than alrEM. These results suggest that the proposed method is superior to the others in
the case of moss data set.
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Table 1. Eight situations of detection limit set for compositional data
set U. The value in parentheses is the percentage of rounded zeros of
the corresponding component. The last column ZR represents the total
percentage of rounded zeros of the corresponding situation (Unit: %).

situation e1 e3 e6 e7 ZR

1 1.39(14.14) 1.41(13.97) 0.41(14.65) 1.41(14.31) 8.15
2 1.51(18.86) 1.56(18.69) 0.46(19.53) 1.55(19.19) 10.89
3 1.63(23.57) 1.72(23.23) 0.51(24.41) 1.68(23.91) 13.59
4 1.76(28.28) 1.85(27.95) 0.56(29.29) 1.76(28.62) 16.31
5 1.84(33.00) 1.96(32.49) 0.60(34.18) 1.86(33.50) 19.02
6 1.93(37.71) 2.04(37.21) 0.66(39.06) 1.98(38.22) 21.74
7 2.01(42.42) 2.22(41.75) 0.72(43.94) 2.05(42.93) 24.43
8 2.12(47.14) 2.38(46.46) 0.78(48.82) 2.13(47.81) 27.18

Table 2. Two evaluation indexes STRESS and RDVM of methods
(multR, multKM, multLN, ilrEM, alrEM, multK) for compositional
data set U under eight situations of detection limit set.

situation multR multKM multLN ilrEM alrEM multK

STRESS

1 0.0179 0.0317 0.0166 0.0148 0.0158 0.0159
2 0.0216 0.0426 0.0213 0.0182 0.0212 0.0189
3 0.0244 0.0567 0.0275 0.0222 0.0260 0.0218
4 0.0283 0.0706 0.0348 0.0265 0.0336 0.0257
5 0.0328 0.0833 0.0422 0.0312 0.0444 0.0302
6 0.0372 0.0994 0.0518 0.0372 0.0592 0.0358
7 0.0425 0.1185 0.0638 0.0468 0.0737 0.0421
8 0.0494 0.1382 0.0774 0.0613 0.1042 0.0493

RDVM

1 0.0623 0.1626 0.0645 0.0478 0.0465 0.0389
2 0.0671 0.2033 0.0864 0.0544 0.0679 0.0396
3 0.0551 0.2475 0.1165 0.0724 0.0839 0.0401
4 0.0538 0.2849 0.1423 0.0863 0.1025 0.0376
5 0.0576 0.3161 0.1653 0.0979 0.1442 0.0425
6 0.0688 0.3513 0.1959 0.1292 0.1988 0.0630
7 0.0821 0.3891 0.2311 0.1771 0.2532 0.0793
8 0.0954 0.4252 0.2681 0.2376 0.3568 0.0950

5. Conclusions

The logratio transformations do not applies when compositional data have zeros. In
this paper, a nonparametric method based on the multivariate Gauss kernel density es-
timation is suggested to deal with the rounded zeros. Because the clr coordinates add
to zero, the ilr coordinates are applied in the proposed method. Under the ilr coor-
dinates in Equation (2.2), the multivariate Gauss kernel function is related with the
Aitchison distance between subcompositions. In the simulation study and real example,
the proposed method is compared with the multiplicative replacement strategy, the mul-
tiplicative Kaplan-Meier method, the multiplicative lognormal replacement method, the
modi�ed EM algorithm based on alr coordinates and the robust modi�ed EM algorithm
based on ilr coordinates. The results in simulation study show that the proposed method
presents a good performance in comparison with other methods in the two measures
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STRESS and RDVM as the percentage of rounded zeros increases. Furthermore, in the
real example, the performance of proposed method is obvious. The feature of our frame-
work is that the proposed method works when the distribution function form is unknown.
Future work will be dedicated to the study of bandwidth matrix in multivariate kernel
function.

Acknowledgements

This work was supported by the Natural Science Foundation of Shanxi Province
of China (No. 2015011044), Shanxi International Science and Technology Coopera-
tion Project (No. 2015081020), and Graduate Education Innovation Project of Shanxi
Province (No. 2017BY001).

References

[1] Aitchison, J. The statistical analysis of compositional data, Monographs on Statistics and
Applied Probability, Chapman & Hall, London, 1986.

[2] Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J.A. and Pawlowsky-Glahn, V. Logratio
analysis and compositional distance, Mathematical Geosciences 32 (3), 271-275, 2000.

[3] Billheimer, D., Guttorp, P. and Fagan, W.F. Statistical interpretation of species composi-
tion, Journal of the American Statistical Association 96 (456), 1205-1214, 2001.

[4] Chacón, J.E., Mateu-Figueras, G. and Martín-Fernández, J.A. Gaussian kernels for density
estimation with compositional data, Computers & Geosciences 37 (5), 702-711, 2011.

[5] Egozcue, J.J. and Pawlowsky-Glahn, V. Groups of parts and their balances in compositional
data analysis, Mathematical Geosciences 37 (7), 795-828, 2005.

[6] Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G. and Barceló-Vidal, C. Isometric
logratio transformations for compositional data analysis, Mathematical Geosciences 35 (3),
279-300, 2003.

[7] Filzmoser, P. StatDA: statistical analysis for environmental data, R package version 1.6.3,
2011.

[8] Martín-Fernández, J.A., Barceló-Vidal, C. and Pawlowsky-Glahn, V. Dealing with zeros and
missing values in compositional data sets using nonparametric imputation, Mathematical
Geosciences 35 (3), 253-278, 2003.

[9] Martín-Fernández, J.A., Palarea-Albaladejo, J. and Olea, R.A. Dealing with zeros, in Com-
positional Data Analysis: Theory and Applications, V. Pawlowsky-Glahn and A. Buccianti,
eds., John Wiley & Sons Ltd., Chichester, 47-62, 2011.

[10] Martín-Fernández, J.A., Hron, K., Templ, M., Filzmoser, P. and Palarea-Albaladejo, J.
Model-based replacement of rounded zeros in compositional data: classical and robust ap-
proaches, Computational Statistics & Data Analysis 56 (9), 2688-2704, 2012.

[11] Mateu-Figueras, G., Pawlowsky-Glahn, V. and Egozcue, J.J. The normal distribution in
some constrained sample spaces, Sort-statistics and Operations Research Transactions 37
(1), 29-56, 2008.

[12] Palarea-Albaladejo J. and Martín-Fernández, J.A. A modi�ed EM alr-algorithm for replac-
ing rounded zeros in compositional data sets, Computers & Geosciences 34 (8), 902-917,
2008.

[13] Palarea-Albaladejo, J. and Martín-Fernández, J.A. Values below detection limit in compo-
sitional chemical data, Analytica Chimica Acta 764, 32-43, 2013.

[14] Palarea-Albaladejo, J. and Martín-Fernández, J.A. zCompositions-R package for multivari-
ate imputation of left-censored data under a compositional approach, Chemometrics and
Intelligent Laboratory Systems 143, 85-96, 2015.

[15] Palarea-Albaladejo, J., Martín-Fernández, J.A. and Gómez-García, J. A parametric ap-
proach for dealing with compositional rounded zeros, Mathematical Geosciences 39 (7),
625-645, 2007.

[16] Pawlowsky-Glahn, V. and Buccianti, A. Compositional Data Analysis: Theory and Appli-
cations, John Wiley & Sons Ltd., Chichester, 2011.



254

[17] Pawlowsky-Glahn, V. and Egozcue, J.J. Geometric approach to statistical analysis on the
simplex, Stochastic Environmental Research and Risk Assessment 15 (5), 384-398, 2001.

[18] Pawlowsky-Glahn, V., Egozcue, J.J. and Tolosana-Delgado, R. Modeling and analysis of
compositional data, Statistics in Practice, John Wiley & Sons, Ltd., Chichester, 2015.

[19] Rizzo, M.L. and Székely, G.J. Energy: E-statistics (energy statistics), R package version
1.1-0, 2008.

[20] Silverman, B.W. Density estimation for statistics and data analysis, Chapman & Hall,
London, 1986.

[21] van den Boogaart, K.G. and Tolosana-Delgado, R. Analyzing compositional data with R,
Springer, Heidelberg, 2013.


