Coefficient bounds for certain subclasses of analytic functions of complex order

Serap Bulut*

Abstract

In this paper, we introduce and investigate two subclasses of analytic functions of complex order, which are introduced here by means of a certain nonhomogeneous Cauchy-Euler-type differential equation of order m. Several corollaries and consequences of the main results are also considered.

Keywords: Analytic functions, Differential operator, Nonhomogeneous CauchyEuler differential equations, Coefficient bounds, Subordination.

2000 AMS Classification: 30C45

Received: 19.12.2014 Accepted: 16.09.2015 Doi: 10.15672/HJMS.20164514273

1. Introduction, definitions and preliminaries

Let $\mathbb{R}=(-\infty, \infty)$ be the set of real numbers, \mathbb{C} be the set of complex numbers,

$$
\mathbb{N}:=\{1,2,3, \ldots\}=\mathbb{N}_{0} \backslash\{0\}
$$

be the set of positive integers and

$$
\mathbb{N}^{*}:=\mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\} .
$$

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{i=2}^{\infty} a_{i} z^{i} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

[^0]Recently, Faisal and Darus [8] defined the following differential operator:

$$
\begin{align*}
D^{0} f(z)= & f(z), \\
D_{\lambda}^{1}(\alpha, \beta, \mu) f(z)= & \left(\frac{\alpha-\mu+\beta-\lambda}{\alpha+\beta}\right) f(z)+\left(\frac{\mu+\lambda}{\alpha+\beta}\right) z f^{\prime}(z), \\
D_{\lambda}^{2}(\alpha, \beta, \mu) f(z)= & D\left(D_{\lambda}^{1}(\alpha, \beta, \mu) f(z)\right) \\
& \vdots \\
D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)= & D\left(D_{\lambda}^{n-1}(\alpha, \beta, \mu) f(z)\right) . \tag{1.2}
\end{align*}
$$

If f is given by (1.1), then it is easily seen from (1.2) that

$$
\begin{align*}
& D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)=z+\sum_{i=2}^{\infty}\left(\frac{\alpha+(\mu+\lambda)(i-1)+\beta}{\alpha+\beta}\right)^{n} a_{i} z^{i} \tag{1.3}\\
& \left(f \in \mathcal{A} ; \alpha, \beta, \mu, \lambda \geq 0 ; \alpha+\beta \neq 0 ; n \in \mathbb{N}_{0}\right)
\end{align*}
$$

By using the operator $D_{\lambda}^{n}(\alpha, \beta, \mu)$, Faisal and Darus [8] defined a function class $\Psi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi)$ by

$$
\begin{aligned}
& \Re\left\{1+\frac{1}{\xi}\left(\frac{z\left[\zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z)+(1-\zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)\right]^{\prime}}{\zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z)+(1-\zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)}-1\right)\right\}>\gamma \\
& (z \in \mathbb{U} ; 0 \leq \gamma<1 ; 0 \leq \zeta \leq 1 ; \xi \in \mathbb{C} \backslash\{0\})
\end{aligned}
$$

and also investigated the subclass $\Phi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi, \tau)$ of the analytic function class \mathcal{A}, which consists of functions $f \in \mathcal{A}$ satisfying the following nonhomogenous CauchyEuler differential equation:

$$
\begin{aligned}
& z^{2} \frac{d^{2} w}{d z^{2}}+2(1+\tau) z \frac{d w}{d z}+\tau(1+\tau) w=(1+\tau)(2+\tau) q(z) \\
& (w=f(z) \in \mathcal{A} ; q \in \Psi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi) ; \tau \in(-1, \infty))
\end{aligned}
$$

In the same paper [8], coefficient bounds for the subclasses $\Psi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi)$ and $\Phi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi, \tau)$ of analytic functions of complex order were obtained.

Making use of the differential operator $D_{\lambda}^{n}(\alpha, \beta, \mu)$, we now introduce each of the following subclasses of analytic functions.

1. Definition. Let $g: \mathbb{U} \rightarrow \mathbb{C}$ be a convex function such that

$$
g(0)=1 \quad \text { and } \quad \Re\{g(z)\}>0 \quad(z \in \mathbb{U}) .
$$

We denote by $\mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi)$ the class of functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{\xi}\left(\frac{z\left[\zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z)+(1-\zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)\right]^{\prime}}{\zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z)+(1-\zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)}-1\right) \in g(\mathbb{U})
$$

where $z \in \mathbb{U} ; 0 \leq \zeta \leq 1 ; \xi \in \mathbb{C} \backslash\{0\}$.
2. Definition. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi ; m, \tau)$ if it satisfies the following nonhomogenous Cauchy-Euler differential equation:
$z^{m} \frac{d^{m} w}{d z^{m}}+\binom{m}{1}(\tau+m-1) z^{m-1} \frac{d^{m-1} w}{d z^{m-1}}+\cdots+\binom{m}{m} w \prod_{j=0}^{m-1}(\tau+j)=q(z) \prod_{j=0}^{m-1}(\tau+j+1)$

$$
\begin{equation*}
\left(w=f(z) \in \mathcal{A} ; q \in \mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi) ; m \in \mathbb{N}^{*} ; \tau \in(-1, \infty)\right) \tag{1.4}
\end{equation*}
$$

Remark 1. There are many choices of the function g which would provide interesting subclasses of analytic functions of complex order. In particular, (i) if we choose the function g as

$$
g(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1 ; z \in \mathbb{U})
$$

it is easy to verify that g is a convex function in \mathbb{U} and satisfies the hypotheses of Definition 1. If $f \in \mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi)$, then we have

$$
1+\frac{1}{\xi}\left(\frac{z\left[\zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z)+(1-\zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)\right]^{\prime}}{\zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z)+(1-\zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)}-1\right) \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U})
$$

We denote this new class by $\mathcal{H}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi, A, B)$. Also we denote by $\mathcal{B}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi, A, B ; m, \tau)$ for corresponding class to $\mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi ; m, \tau)$;
(ii) if we choose the function g as

$$
g(z)=\frac{1+(1-2 \gamma) z}{1-z} \quad(0 \leq \gamma<1 ; z \in \mathbb{U})
$$

it is easy to verify that g is a convex function in \mathbb{U} and satisfies the hypotheses of Definition 1. If $f \in \mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi)$, then we have

$$
\Re\left\{1+\frac{1}{\xi}\left(\frac{z\left[\zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z)+(1-\zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)\right]^{\prime}}{\zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z)+(1-\zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z)}-1\right)\right\}>\gamma \quad(z \in \mathbb{U})
$$

that is

$$
f \in \Psi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi)
$$

Remark 2. In view of Remark 1(ii), by taking

$$
g(z)=\frac{1+(1-2 \gamma) z}{1-z} \quad(0 \leq \gamma<1 ; z \in \mathbb{U})
$$

in Definitions 1 and 2, we easily observe that the function classes

$$
\mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi) \quad \text { and } \quad \mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi ; 2, \tau)
$$

become the aforementioned function classes

$$
\Psi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi) \quad \text { and } \quad \Phi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi, \tau)
$$

respectively.
In this work, by using the principle of subordination, we obtain coefficient bounds for functions in the subclasses

$$
\mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi) \quad \text { and } \quad \mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi ; m, \tau)
$$

of analytic functions of complex order, which we have introduced here. Our results would unify and extend the corresponding results obtained earlier by Robertson [13], Nasr and Aouf [12], Altıntaş et al. [1], Faisal and Darus [8], Srivastava et al. [16], and others.

In our investigation, we shall make use of the principle of subordination between analytic functions, which is explained in Definition 3 below (see [11]).
3. Definition. For two functions f and g, analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

if there exists a Schwarz function $\mathfrak{w}(z)$, analytic in \mathbb{U}, with

$$
\mathfrak{w}(0)=0 \quad \text { and } \quad|\mathfrak{w}(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(\mathfrak{w}(z)) \quad(z \in \mathbb{U}) .
$$

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to

$$
f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

2. Main results and their demonstration

In order to prove our main results (Theorems 1 and 2 below), we first recall the following lemma due to Rogosinski [14].

1. Lemma. Let the function \mathfrak{g} given by

$$
\mathfrak{g}(z)=\sum_{k=1}^{\infty} \mathfrak{b}_{k} z^{k} \quad(z \in \mathbb{U})
$$

be convex in \mathbb{U}. Also let the function \mathfrak{f} given by

$$
\mathfrak{f}(z)=\sum_{k=1}^{\infty} \mathfrak{a}_{k} z^{k} \quad(z \in \mathbb{U})
$$

be holomorphic in \mathbb{U}. If

$$
\mathfrak{f}(z) \prec \mathfrak{g}(z) \quad(z \in \mathbb{U}),
$$

then

$$
\left|\mathfrak{a}_{k}\right| \leq\left|\mathfrak{b}_{1}\right| \quad(k \in \mathbb{N}) .
$$

We now state and prove each of our main results given by Theorems 1 and 2 below.

1. Theorem. Let the function $f \in \mathcal{A}$ be defined by (1.1). If the function f is in the class $\mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi)$, then

$$
\begin{equation*}
\left|a_{i}\right| \leq \frac{(\alpha+\beta)^{n+1} \prod_{j=0}^{i-2}\left[j+|\xi|\left|g^{\prime}(0)\right|\right]}{(i-1)![\alpha+\zeta(\mu+\lambda)(i-1)+\beta][\alpha+(\mu+\lambda)(i-1)+\beta]^{n}} \quad\left(i \in \mathbb{N}^{*}\right) \tag{2.1}
\end{equation*}
$$

Proof. Let the function $f \in \mathcal{A}$ be given by (1.1). Suppose that the function $\mathcal{F}(z)$ is defined, in terms of the differential operator $D_{\lambda}^{n}(\alpha, \beta, \mu)$, by

$$
\begin{equation*}
\mathcal{F}(z)=\zeta D_{\lambda}^{n+1}(\alpha, \beta, \mu) f(z)+(1-\zeta) D_{\lambda}^{n}(\alpha, \beta, \mu) f(z) \quad(z \in \mathbb{U}) . \tag{2.2}
\end{equation*}
$$

Then, clearly, \mathcal{F} is an analytic function in \mathbb{U}, and a simple computation shows that \mathcal{F} has the following power series expansion:

$$
\begin{equation*}
\mathcal{F}(z)=z+\sum_{i=2}^{\infty} A_{i} z^{i} \quad(z \in \mathbb{U}), \tag{2.3}
\end{equation*}
$$

where, for convenience,

$$
\begin{equation*}
A_{i}=\frac{[\alpha+\zeta(\mu+\lambda)(i-1)+\beta][\alpha+(\mu+\lambda)(i-1)+\beta]^{n}}{(\alpha+\beta)^{n+1}} a_{i} \quad\left(i \in \mathbb{N}^{*}\right) . \tag{2.4}
\end{equation*}
$$

From Definition 1 and (2.2), we thus have

$$
1+\frac{1}{\xi}\left(\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}-1\right) \in g(\mathbb{U}) \quad(z \in \mathbb{U}) .
$$

Let us define the function $p(z)$ by

$$
\begin{equation*}
p(z)=1+\frac{1}{\xi}\left(\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}-1\right) \quad(z \in \mathbb{U}) . \tag{2.5}
\end{equation*}
$$

Hence we deduce that

$$
p(0)=g(0)=1 \quad \text { and } \quad p(z) \in g(\mathbb{U}) \quad(z \in \mathbb{U})
$$

Therefore, we have

$$
p(z) \prec g(z) \quad(z \in \mathbb{U})
$$

Thus, according to the Lemma 1, we obtain

$$
\begin{equation*}
\left|\frac{p^{(l)}(0)}{l!}\right| \leq\left|g^{\prime}(0)\right| \quad(l \in \mathbb{N}) \tag{2.6}
\end{equation*}
$$

Also from (2.5), we find

$$
\begin{equation*}
z \mathcal{F}^{\prime}(z)=[1+\xi(p(z)-1)] \mathcal{F}(z) \tag{2.7}
\end{equation*}
$$

Next, we suppose that

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{2.8}
\end{equation*}
$$

Since $A_{1}=1$, in view of $(2.3),(2.7)$ and (2.8), we obtain

$$
\begin{equation*}
(i-1) A_{i}=\xi\left\{c_{i-1}+c_{i-2} A_{2}+\cdots+c_{1} A_{i-1}\right\} \quad\left(i \in \mathbb{N}^{*}\right) \tag{2.9}
\end{equation*}
$$

By combining (2.6) and (2.9), for $i=2,3,4$, we obtain

$$
\begin{aligned}
\left|A_{2}\right| & \leq|\xi|\left|g^{\prime}(0)\right| \\
\left|A_{3}\right| & \leq \frac{|\xi|\left|g^{\prime}(0)\right|\left(1+|\xi|\left|g^{\prime}(0)\right|\right)}{2!} \\
\left|A_{4}\right| & \leq \frac{|\xi|\left|g^{\prime}(0)\right|\left(1+|\xi|\left|g^{\prime}(0)\right|\right)\left(2+|\xi|\left|g^{\prime}(0)\right|\right)}{3!}
\end{aligned}
$$

respectively. Also, by using the principle of mathematical induction, we obtain

$$
\left|A_{i}\right| \leq \frac{\prod_{j=0}^{i-2}\left[j+|\xi|\left|g^{\prime}(0)\right|\right]}{(i-1)!} \quad\left(i \in \mathbb{N}^{*}\right)
$$

Now from (2.4), it is clear that

$$
\left|a_{i}\right| \leq \frac{(\alpha+\beta)^{n+1} \prod_{j=0}^{i-2}\left[j+|\xi|\left|g^{\prime}(0)\right|\right]}{(i-1)![\alpha+\zeta(\mu+\lambda)(i-1)+\beta][\alpha+(\mu+\lambda)(i-1)+\beta]^{n}} \quad\left(i \in \mathbb{N}^{*}\right)
$$

This evidently completes the proof of Theorem 1.
2. Theorem. Let the function $f \in \mathcal{A}$ be defined by (1.1). If the function f is in the class $\mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi ; m, \tau)$, then
$\left|a_{i}\right| \leq \frac{(\alpha+\beta)^{n+1} \prod_{j=0}^{i-2}\left[j+|\xi|\left|g^{\prime}(0)\right|\right] \prod_{j=0}^{m-1}(\tau+j+1)}{(i-1)![\alpha+\zeta(\mu+\lambda)(i-1)+\beta][\alpha+(\mu+\lambda)(i-1)+\beta]^{n} \prod_{j=0}^{m-1}(\tau+j+i)}\left(i \in \mathbb{N}^{*}\right)$.
Proof. Let the function $f \in \mathcal{A}$ be given by (1.1). Also let

$$
h(z)=z+\sum_{i=2}^{\infty} b_{i} z^{i} \in \mathcal{M}_{g}(n, \alpha, \beta, \mu, \lambda, \zeta, \xi)
$$

Hence, from (1.4), we deduce that

$$
a_{i}=\frac{\prod_{j=0}^{m-1}(\tau+j+1)}{\prod_{j=0}^{m-1}(\tau+j+i)} b_{i} \quad\left(i \in \mathbb{N}^{*}, \tau \in(-1, \infty)\right)
$$

Thus, by using Theorem 1, we obtain

$$
\left|a_{i}\right| \leq \frac{(\alpha+\beta)^{n+1} \prod_{j=0}^{i-2}\left[j+|\xi|\left|g^{\prime}(0)\right|\right]}{(i-1)![\alpha+\zeta(\mu+\lambda)(i-1)+\beta][\alpha+(\mu+\lambda)(i-1)+\beta]^{n}} \frac{\prod_{j=0}^{m-1}(\tau+j+1)}{\prod_{j=0}^{m-1}(\tau+j+i)}
$$

This completes the proof of Theorem 2.

3. Corollaries and consequences

In this section, we apply our main results (Theorems 1 and 2 of Section 2) in order to deduce each of the following corollaries and consequences.

1. Corollary. ([19]) Let the function $f \in \mathcal{A}$ be defined by (1.1). If the function f is in the class $\mathcal{M}_{g}(0, \alpha, \beta, \mu, \lambda, \zeta, \xi) \equiv \mathcal{S}_{g}(\zeta, \xi)$, then

$$
\left|a_{i}\right| \leq \frac{\prod_{j=0}^{i-2}\left[j+|\xi|\left|g^{\prime}(0)\right|\right]}{(i-1)!(1+\zeta(i-1))} \quad\left(i \in \mathbb{N}^{*}\right)
$$

2. Corollary. ([19]) Let the function $f \in \mathcal{A}$ be defined by (1.1). If the function f is in the class $\mathcal{M}_{g}(0, \alpha, \beta, \mu, \lambda, \zeta, \xi ; m, \tau) \equiv \mathcal{K}_{g}(\zeta, \xi, m ; \tau)$, then

$$
\left|a_{i}\right| \leq \frac{\prod_{j=0}^{i-2}\left[j+|\xi|\left|g^{\prime}(0)\right|\right]}{(i-1)!(1+\zeta(i-1))} \frac{\prod_{j=0}^{m-1}(\tau+j+1)}{\prod_{j=0}^{m-1}(\tau+j+i)} \quad\left(i \in \mathbb{N}^{*}\right)
$$

3. Corollary. ([17]) Let the function $f \in \mathcal{A}$ be defined by (1.1). If the function f is in the class $\mathcal{M}_{g}(n, 1,0,0,1, \zeta, \xi) \equiv \mathcal{M}_{g}(n, \zeta, \xi)$, then

$$
\left|a_{i}\right| \leq \frac{\prod_{j=0}^{i-2}\left[j+|\xi|\left|g^{\prime}(0)\right|\right]}{i^{n}(1+\zeta(i-1))(i-1)!} \quad\left(i \in \mathbb{N}^{*}\right)
$$

4. Corollary. ([17]) Let the function $f \in \mathcal{A}$ be defined by (1.1). If the function f is in the class $\mathcal{M}_{g}(n, 1,0,0,1, \zeta, \xi ; 2, \tau) \equiv \mathcal{M}_{g}(n, \zeta, \xi ; \tau)$, then

$$
\left|a_{i}\right| \leq \frac{(1+\tau)(2+\tau) \prod_{j=0}^{i-2}\left[j+|\xi|\left|g^{\prime}(0)\right|\right]}{i^{n}(1+\zeta(i-1))(i-1)!(i+\tau)(i+1+\tau)} \quad\left(i \in \mathbb{N}^{*}\right)
$$

Setting

$$
m=2 \quad \text { and } \quad g(z)=\frac{1+(1-2 \gamma) z}{1-z} \quad(0 \leq \gamma<1 ; z \in \mathbb{U})
$$

in Theorems 1 and 2, we have following corollaries, respectively.
5. Corollary. [8] Let the function $f \in \mathcal{A}$ be defined by (1.1). If the function f is in the class $\Psi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi)$, then

$$
\left|a_{i}\right| \leq \frac{(\alpha+\beta)^{n+1}}{\prod_{j=0}^{i-2}[j+2|\xi|(1-\gamma)]}(i-1)![\alpha+\zeta(\mu+\lambda)(i-1)+\beta][\alpha+(\mu+\lambda)(i-1)+\beta]^{n} \quad \quad\left(i \in \mathbb{N}^{*}\right)
$$

6. Corollary. [8] Let the function $f \in \mathcal{A}$ be defined by (1.1). If the function f is in the class $\Phi(n, \alpha, \beta, \mu, \lambda, \zeta, \gamma, \xi, \tau)$, then

$$
\left|a_{i}\right| \leq \frac{(1+\tau)(2+\tau)(\alpha+\beta)^{n+1} \prod_{j=0}^{i-2}[j+2|\xi|(1-\gamma)]}{(i+\tau)(i+1+\tau)(i-1)![\alpha+\zeta(\mu+\lambda)(i-1)+\beta][\alpha+(\mu+\lambda)(i-1)+\beta]^{n}}\left(i \in \mathbb{N}^{*}\right) .
$$

For several other closely-related investigations, see (for example) the recent works [1-7, 12, 13].

References

[1] Altıntaş, O., Irmak, H., Owa, S. and Srivastava, H.M. Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Letters 20, 1218-1222, 2007.
[2] Altıntaş, O., Irmak, H. and Srivastava, H.M. Fractional calculus and certain starlike functions with negative coefficients, Comput. Math. Appl. 30 (2), 9-15, 1995.
[3] Altıntaş, O. and Özkan, Ö. Starlike, convex and close-to-convex functions of complex order, Hacet. Bull. Nat. Sci. Eng. Ser. B 28, 37-46, 1991.
[4] Altıntaş, O. and Özkan, Ö. On the classes of starlike and convex functions of complex order, Hacet. Bull. Nat. Sci. Eng. Ser. B 30, 63-68, 2001.
[5] Altıntaş, O., Özkan, Ö. and Srivastava, H.M. Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Letters 13 (3), 63-67, 1995.
[6] Altıntaş, O., Özkan, Ö. and Srivastava, H.M. Majorization by starlike functions of complex order, Complex Variables Theory Appl. 46, 207-218, 2001.
[7] Altıntaş, O., Özkan, Ö. and Srivastava, H.M. Neighborhoods of a certain family of multivalent functions with negative coefficient, Comput. Math. Appl. 47, 1667-1672, 2004.
[8] Faisal, I. and Darus, M. Application of nonhomogenous Cauchy-Euler differential equation for certain class of analytic functions, Hacet. J. Math. Stat. 43 (3), 375-382, 2014.
[9] Flett, T.M. The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38, 746-765, 1972.
[10] Jurg, I.B., Kim, Y.C. and Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176, 138-147, 1993.
[11] Miller, S.S. and Mocanu, P.T. Differential subordinations: Theory and applications. Monographs and Textbooks in Pure and Applied Mathematics, 225. Marcel Dekker, Inc., New York, 2000.
[12] Nasr, M.A. and Aouf, M.K. Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. A 12 (1), 153-159, 1983.
[13] Robertson, M.S. On the theory of univalent functions, Ann. of Math. (2) 37 (2), 374-408, 1936.
[14] Rogosinski, W. On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2) 48, 48-82, 1943.
[15] Sălăgean, G.Ş. Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362-372.
[16] Srivastava, H.M., Altıntaş, O. and Serenbay, S.K., Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Letters 24 (8), 1359-1363, 2011.
[17] Srivastava, H.M., Xu, Q.-H. and Wu, G.-P. Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Letters 23, 763-768, 2010.
[18] Uralegaddi, B.A. and Somanatha, C. Certain classes of univalent functions. Current topics in analytic function theory, 371-374, World Sci. Publ., River Edge, NJ, 1992.
[19] Xu, Q.-H., Gui, Y.-C. and Srivastava, H.M. Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math. 15 (5), 2377-2386, 2011.

[^0]: *Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, 41285 Kartepe-Kocaeli, TURKEY
 Email : serap.bulut@kocaeli.edu.tr

