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A Bayesian approach to Cox-Gompertz model
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Abstract

Survival analysis has a wide application area from medicine to market-
ing and Cox model takes an important part in survival analysis. When
the distribution of survival data is known or it is appropriate to assume
a survival distribution, use of a parametric form of Cox model is em-
ployed. In this article, we take into account Cox-Gompertz model from
the Bayesian perspective. Considering the di�culties in parameter es-
timation in classical setting, we propose a simple Bayesian approach for
Cox-Gompertz model. We derive full conditional posterior distributions
of all parameters in Cox-Gompertz model to run Gibbs sampling. Over
an extensive simulation study, estimation accuracies of the classical
Cox model and classical and Bayesian settings of Cox-Gompertz model
are compared with each other by generating exponential, Weibull, and
Gompertz distributed survival data sets. Consequently, if survival data
follows Gompertz distribution, most accurate parameter estimates are
obtained by the Bayesian setting of Cox-Gompertz model. We also
provide a real data analysis to illustrate our approach. In the data
analysis, we observe the importance of use of the most accurate model
over the survival probabilities of censored observations.
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1. Introduction

Survival analysis is a class of statistical methods for studying occurrence and timing
of events. An event can be de�ned as development of a disease, response to a treatment,
relapse, or death. Therefore, the time from start of a treatment to response, length
of remission, and time to death may be taken as a survival time. The most common
approach to model covariate e�ects on survival times is the Cox's semi-parametric re-
gression model, which takes into account the e�ect of censored observations [5]. In the
Cox model, no particular form of probability distribution is assumed for survival times.
However, if it is known, parametric models, such as exponential, Weibull, or Gompertz
can be applied.

The Cox model is sensitive to the violations of proportional hazards assumption. The
form of baseline hazard rate in�uences the properties of estimators [2]. Because there is
no need to assume a particular form of probability distribution for the survival times,
the Cox model is more advantageous than the parametric counterparts if baseline hazard
is incompatible with a particular distribution. Hazard function is not restricted to a
speci�c functional form; hence, the model has �exibility and widespread applicability. On
the other hand, if the assumption of a particular probability distribution is appropriate
for data, inferences based on such an assumption will be more precise. In particular,
parameter estimates and estimates of quantities such as relative hazards and median
survival times will tend to have smaller standard errors than those obtained without
a distributional assumption [4]. Based on asymptotic results, Efron [7] and Oakes [29]
showed that parametric models lead to more e�cient parameter estimates than the Cox
model under certain circumstances [28].

Making special assumptions on the distribution of survival times, such as exponential,
Weibull, or Gompertz, leads to parametric regression models. Exponential distribution
is widely used in survival studies. It plays a role in lifetime studies analogous to normal
distribution in other areas of statistics. It is often referred as purely random failure
pattern [26]. Although exponential distribution is characterized by a constant hazard
function, its constant hazard rate appears to be restrictive in both health and industrial
applications [22]. Weibull distribution is a generalization of exponential distribution. It
has a hazard function that is monotone increasing, decreasing, or constant. Therefore,
it has broader applications. Although use of exponential or Weibull model may be suf-
�cient for a realistic description of various survival time data, other distributions such
as Gompertz are required for more precise results. Gompertz distribution is used to
describe mortality curves and later modi�ed by Makeham [27] by addition of a constant
hazard function. Only exponential, Weibull, and Gompertz models have the assumption
of proportional hazards with the Cox model [2]. Because of the functional form of its
hazard rate, Gompertz model is more �exible than Weibull model. Also, it allows to
asses the in�uence of independent variables on both parameters of the distribution [3].

Cox-Gompertz model has a wide application area from automobile industry to medicine.
Gompertz distribution is commonly used in actuary, reliability, and life testing as a sur-
vival time distribution [1]. Firstly, it is used to �t mortality tables by Gompertz [15].
Spickett and Ark [30] �tted the Gompertz distribution to dose-response data of larval
tick populations. Grunkemeier et al. [16] used the Gompertz model for the survival
times after a surgery for acquired hearth disease. Classical analysis of Gompertz model
for cure rate models was given by Gieser, et al. [13]. Willekens [31] provided connections
between the Gompertz, the Weibull and other Type-I extreme value distributions. Fab-
rizio [8] used Gompertz model for cabinet duration times. Klepper [23] used Gompertz
distribution to estimate hazard rate models for the length of time for a particular �rm
stays in the market. Cantner et al. [3] used the approach of Klepper [23] for German
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automobile industry. Jeong and Fine [19] and Jeong [18] used Gompertz distribution
to parameterize cumulative incidence function, which is used to estimate the cumulative
probability of locoregional recurrences in the presence of other competing events. Goko-
vali et al. [14] use Gompertz distribution to analyze the determinants of tourists' length
of stay at a destination. Launder and Bender [24] developed adjusted risk di�erence
and number needed to treat measures for use in observational studies with survival time
outcomes within the framework of the Cox model taking the distribution of confounders
into account. The performance of these estimators is assessed by performing Monte Carlo
simulations and is also illustrated by means of data of the Dusseldorf Obesity Mortality
Study. Ghitanya et al. [12] studied the maximum-likelihood estimates of the parameters
by considering a progressively Type-II censored sample from the Gompertz distribution.

Estimation of parameters of Cox-Gompertz model requires use of numerical techniques
such as Newton-Raphson (NR). Because NR method requires only �rst and second partial
derivatives of likelihood function, it is very �exible. However, it is highly sensitive to
the initial values, it may require a large number of iterations to converge, and it may
converge to a local maximum or may not converge in some cases. NR method gives no
insight into the distribution of parameters. Moreover, numerical methods such as NR are
asymptotic; hence, standard deviations of parameters are obtained only approximately.
These are important disadvantages of the classical setting. Another general disadvantage
of the classical setting is that ML estimators need not be �nite, so it can occur outside the
parameter space. Considering these weaknesses, we propose use of a Bayesian approach
for estimation of Cox-Gompertz model.

In survival analysis, Bayesian approaches provide a �exible tool via the Gibbs sampling
when the full conditional distributions are found in a closed form. Dellaportas and
Smith [6] give a Bayesian approach for proportional hazards model with baseline hazard
function of exponential and Weibull distributions. Bayesian approaches to the parametric
survival models have some advantages over the classical setting. In the Bayesian setting,
inference is exact rather than asymptotic. It provides an entire posterior distribution for
each element of the model. However, the classical setting yields a point estimate and
a precision estimated via an asymptotic method. In addition, the Bayesian approach
would give better estimates of variability than the likelihood analysis [9].

Bayesian approaches to some parametric forms of the Cox model are given by Kim
and Ibrahim [21]. They consider Cox-Weibull and extreme value regression models,
and suggest use of a uniform prior instead of the Je�rey's. They also derive su�cient
conditions for the existence of posterior moment generating functions and those of the
posterior distributions to be proper in the case of Cox-Weibull and extreme value regres-
sion models. Kim and Ibrahim [21] give Bayesian estimation procedure for an extreme
value type I distribution. In their approach, data is a log-completely observed time or
log-censoring time. In this study, however, we consider the Gompertz distribution as
the distribution of a completely observed or censoring time without any transformations
such as log. Then, we propose a Bayesian approach to Cox-Gompertz model. Although
the distributional forms of extreme value and Gompertz distributions are similar, their
domains are not the same (see for the distributional forms Bender et al. [2] and Kim
and Ibrahim [21]. In fact, there are several distributional forms of Gompertz distribution
[20, p.25-26, 81-85]. The one used here can be interpreted as a truncated extreme value
type-I distribution. Therefore, we give a Bayesian approach for a di�erent parametric
model than the one given by Kim and Ibrahim [21]. In addition, we derive full conditional
posterior distributions of the model parameters. Because of not using an approximate
method to generate random numbers from the full conditionals, our derivations make the
application of Bayesian setting more �exible.
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In Section 2 the Cox-Gompertz model is illustrated. In Section 3, Bayesian inference
for the Cox-Gompertz model is demonstrated and full conditional distributions are given
to derive posterior inferences by the Gibbs sampling. In Section 4, a real data analysis
is presented to illustrate our approach. We observe that use of classical Cox model can
produce notably di�erent estimates of survival probabilities for censored observations.
In Section 5, the simulation study on the comparison of estimation accuracies of Cox,
Cox-Gompertz models in the classical setting, and Cox-Gompertz model in the Bayesian
setting is given. In Section 6, a short discussion is given.

2. The Cox-Gompertz model

A data set, based on a random sample of size n, consists of (tj , δj ,xj) for j = 1, . . . , n,
where tj is the time on study for the jth individual, δj is the event indicator taking 1 if
the event has occurred and 0 otherwise, and xj is the vector of covariates or risk factors
for the jth individual. Hazard function for the Cox model is given as follows:

h(t;x) = h0(t) exp{Xβ}, (1)

whereX is the design matrix including categorical variables or continuous measurements
of each individual, h0(t) is the baseline hazard function obtained for an individual with
xji = 0, and β[p×1] is a vector of unknown parameters. In the absence of tied observations,
complete censored-data likelihood is given as follows:

L(β, h0(t))=

n∏
j=1

h0(tj |xj)δjS(tj |xj)

=

n∏
j=1

h0(tj)
δj [exp{β

′
xj}]δj exp

{
−H0(tj) exp{β

′
xj}

}
,

(2)

where H0(t) is cumulative baseline hazard function and S(tj |xj) is survival function [22].
Under Gompertz distribution, the baseline hazard function is de�ned as follows:

h0(t) = λ exp{αt}, (3)

where 0 < t ≤ ∞, λ > 0 is a scale and −∞ < α <∞ is a shape parameter. Cumulative
baseline hazard function is as following:

H0(t) = (λ/α)[exp{αt} − 1]. (4)

Using (3), (4) and the general likelihood function given in (2), likelihood function of
the Gompertz model is obtained as following:

L(h0(t),β|t)∝
n∏
j=1

λδj exp
{
δj(αtj + β

′
xj)
}
exp

{
(λ/α)[1− exp(αtj)]

× exp(β
′
xj)
}
.

(5)

NR method is a frequently used method to obtain the ML estimates over (5).

3. Bayesian setting for the Cox-Gompertz model

The likelihood function given in (5) is used to obtain a posterior distribution. We
consider use of an improper prior distribution to conduct a noninformative Bayesian
analysis. Joint prior distribution of h0(t) and β is taken as p(h0(t),β) ∝ constant. Then
the joint posterior distribution of h0(t) and β given the data is found from (5) as follows:

p(h0(t),β|t)∝ λ
∑n

j=1 δj exp

{ n∑
j=1

δj(αtj + β
′
xj) + (λ/α)

n∑
j=1

[1− exp(αtj)] exp(β
′
xj)

}
.

(6)
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where p(h0(t),β|t) = p(α, λ,β|t).

Gibbs sampling is employed to draw posterior inferences from the posterior given in
(6). Full conditional posterior distributions of α, λ, βi are required to run the Gibbs
sampling. The following full conditionals are obtained:

α|λ,β ∼ N
[
3
∑n
j=1(δjtj − λ

t2j
2
eβ

′
xj )

λ
∑n
j=1 t

3
je
β
′
xj

,
3

λ
∑n
j=1 t

3
je
β
′
xj

]
, (7)

λ|α,β ∼ Gamma
[ n∑
j=1

δj + 1,
α∑n

j=1[exp(αtj)− 1] exp(β
′
xj)

]
, (8)

βi|α, λ,β−i ∼ N
[
s2
s1
,
1

s1

]
, (9)

where β−i contains the regression parameters but βi, s1 = (λ/α)
∑n
j=1 cjx

2
ji [exp(αtj)−

1], and s2 =
∑n
j=1 δjxji − (λ/α)

∑n
j=1 cjxji[exp(αtj) − 1]. Derivation of all of these

full conditionals are given in the Appendices A1-A3. Implementation of Gibbs sampling
using these full conditional distributions is straightforward. Number of iterations is
determined such that achievement of convergence is ensured. Convergence check can be

made by using the potential scale reduction factor, R̂, given by Gelman [11]. If value of

R̂ is close to 1 and less than 1.2 then it is concluded that the convergence is achieved for
the relevant parameter [11].

The su�cient conditions for the existence of posterior moment generating function of
the model parameters and the propriety of the posterior distribution are mentioned by
Kim and Ibrahim [21] for the Weibull and extreme value distribution cases. Kim and
Ibrahim [21] assume that one of the parameters of hazard function, corresponding to
Weibull distribution, is known; and hence, one of the parameters of hazard function in
the extreme value distribution case is also assumed to be known. In addition, they note
that if these do not assumed, joint posterior distributions are always improper. On the
contrary, all of the parameters of the hazard function of the Gompertz distribution that
we are working on are random. Thus, the propriety of our joint posterior distribution is
uncertain when looked from the perspective of Kim and Ibrahim [21]. Gelfand and Shau
[10] state that if a Gibbs sampler is used on the improper joint posterior, it is possible to
use obtained iterates to draw inferences on the lower-dimensional proper posteriors. As
a result, if full conditionals are proper, foregoing transition density remains valid. When
the full conditionals given in (7)- (9) are investigated, it is seen that they are proper if
α and λ are both �nite. Therefore, we do not need to ascertain propriety of our joint
posterior distribution in another way. Instead, we utilize directly the result given by
Gelfand and Shau [10] due to the propriety of the full conditionals.

4. A real data example

A popular data set is taken into account to illustrate and discuss our �ndings. The
data is on lung cancer and given by Lawless [25]. The data set is also used by Gelfand
and Mallic [9] and Kim and Ibrahim [21]. Gelfand and Mallic [9] used the data set to
illustrate their work on Cox model, for which the baseline hazard, the covariate link, and
the covariate coe�cients are all unknown. Thus, they investigated four models from the
Bayesian perspective. Kim and Ibrahim [21] gave the ML and Bayesian estimates using a
uniform prior under the Cox-Weibull model by including an intercept term and assuming
one of the parameters of the hazard function is known.
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The data set consists three covariates that performance status at diagnosis (measure
between 0 and 100), age of patients in years, and months from diagnosis to entry into
the study. Three of the 40 observations are censored. There are 3 tied observation pairs.
One of them includes one censored and one uncensored observations. The censored one
and one of the other two tied pairs were discarded from the data set. These tied observa-
tions were not noticed by Gelfand and Mallic [9] and Kim and Ibrahim [21]. In addition
they do not mention anything about the tied observations. We �t Cox-Gompertz model
under the Bayesian setting. In Gibbs sampling, total number of iterations was taken
as 2500, and 10 parallel chains were generated. To �ltrate the e�ect of starting values,
burn-in period was taken as the �rst 500 iterations of each chain. Every 25 iterations
were recorded to reduce the autocorrelation in each of the chains. Parameter estimates
with their estimated standard deviations for the Cox model in classical setting and the
Cox-Gompertz model in both of the classical and Bayesian settings, and potential scale
reduction factor, corresponding to each parameter are given by Table 1.

Table 1. Classical and Bayesian parameter estimates (estimated standard
deviations) over Cox and Cox-Gompertz models, and values of potential scale

reduction factor (R̂) values.

Classical Estimates Bayesian Estimates

Cox Model Cox-Gompertz Model Cox-Gompertz Model R̂

α 0.0003 (7.42 · 10−7) -0.0019 (2.65 · 10−7) 1.003
λ 0.0196(2.70 · 10−7) 0.0331 (5.41 · 10−3) 1.001
β1 -0.0130(1.13 · 10−4) -0.0504 (9.12 · 10−5) -0.0121 (2.86 · 10−5) 1.001
β2 0.0135(3.16 · 10−4) 0.0351 (8.79 · 10−5) -0.0076 (2.97 · 10−5) 1.001
β3 -0.0149(1.42 · 10−4) 0.0219 (2.65 · 10−5) -0.0015 (4.58 · 10−7) 1.004

R̂ values indicate that the convergence is achieved for all of the parameters. Estimated
standard deviations given in Table 1 are obtained by using inverse of the Hessian matrix
and the generated Gibbs sequence in the classical and Bayesian settings, respectively. It
is seen from the Table 1 that estimated standard deviations of the parameters of Cox-
Gompertz model are smaller than that of the Cox model in both of the classical and
Bayesian settings. ML and the Bayesian estimates are not far from each other. The
Bayesian estimates of the covariate coe�cients, which are more precise, are closer to that
of the classical Cox model.

To investigate which model is more successful in explaining the censoring, we estimate
P (t12 > 231|x12), P (t15 > 103|x15) and P (t23 > 25|x23) over the considered models,
where x12, x15 and x23 are the observed values of covariates corresponding to the relevant
censored observations. The same approach of Gelfand and Mallic [9] is used to calculate
the probabilities in the Bayesian case. ML estimates of the Cox-Weibull model given by
Kim and Ibrahim [21] are used. The results and product of these probabilities, referred
as overall, are given in Table 2.

Bene�t of the parametric approach for this data set is clearly seen in the Table 2 that
Cox-Gompertz model is better than the classical Cox model in the estimation of censored
survival times. Cox-Weibull model is also unsuccessful. This is an example of the case
that the baseline hazard is not compatible with the parametric distribution. The Cox-
Gompertz model seems to be more successful in the estimation of survival probabilities
in both of settings. When the classical and Bayesian settings of Cox-Gompertz model are
compared, the probabilities obtained over the classical estimates for the survival times
of 25 and 103 are greater than their Bayesian counterparts. However, the case is just the
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Table 2. Survival probabilities for censored observations.

Classical Estimates Bayesian Estimates

Cox Cox-Gompertz Cox-Weibull Cox-Gompertz

P (t12 > 231|x12) < 0.0001 0.0619 < 0.0001 0.1122
P (t15 > 103|x15) < 0.0001 0.7083 < 0.0001 0.3795
P (t23 > 25|x23) < 0.0001 0.9095 < 0.0001 0.7883

Overall < 0.0001 0.0387 < 0.0001 0.0336

reverse for the survival time of 231. Thus, the Bayesian estimates are more successful
for longer survival times for the data set of interest. As for the overall performance, the
Bayesian and classical estimates of Cox-Gompertz model are similar in estimating the
censored survival times.

Plots of posterior marginal distributions of the parameters are given by Figure 1. Most
of the probability mass of all marginal posterior densities of the parameters are less or
greater than zero. And all of them are nearly symmetric. We can conclude that all of
the parameters have statistically signi�cant e�ects on the survival times.

-0.002 -0.002 -0.002 -0.002
α

0.02 0.04 0.06λ

-0.0121 -0.0121 -0.0120 -0.0120
β1

-0.0077 -0.0076 -0.0076 -0.0075 -0.0075 -0.0074
β2

-0.001469 -0.001468 -0.001467 -0.001466
β3

Figure 1. Marginal posterior densities of α, λ and the elements of β.

5. Simulation study

A simulation study is conducted to investigate the features of our approach and to
compare them with classical Cox and Cox-Gompertz models. Two covariates were taken
into account. Values of the X1 is generated from N(3, 0.1) and values of the X2 is
generated from N(4, 0.5). The survival data were generated by using formulas of (10),
given by Bender, et al. [2], from the Exponential(λ), Gompertz(α, λ), and Weibull(ν, λ)
distributions, respectively.
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TEj = − log(U)

λ exp{β1xj1 + β2xj2}
, TGj = (1/α) log

[
1− α log(U)

λ exp{β1xj1 + β2xj2}

]
TWj =

[
− log(U)

λ exp{β1xj1 + β2xj2}

]1/ν
,

(10)

where U ∼Uniform(0,1) and βi's, i = 1, 2, are regression coe�cients.
To use a moderate sample size, it is taken as 20. True values of parameters for each

survival distribution are given in the third columns of Tables 3-11. Censoring rate is
taken as 0 and 0.1, which correspond to cases of no censoring and a moderate rate of
censoring, respectively. 1000 independent samples were generated for each of the com-
binations. Parameter estimates, given by the Tables 3-11 were calculated by averaging
the estimates over the generated 1000 samples. Absolute and relative bias, standard
deviation and mean square error (MSE) values are reported in Tables 3-11.

It is seen from the Table 3, 4, and 5 that when the survival data are distributed as ex-
ponential, parameter estimates and their estimated standard deviations are not a�ected
by the increased censoring for all of three settings. Classical parameter estimates of Cox
and Cox-Gompertz models are very di�erent from each other, and estimated standard
deviations and MSEs of the parameter estimates of Cox model are smaller than that
of Cox-Gompertz model. Absolute and relative biases of parameter estimates of Cox
model are smaller than that of Cox-Gompertz model. Thus, Cox model generates better
estimates than Cox-Gompertz model in case of exponentially distributed survival data
with the classical setting. As for the Bayesian setting, it is interesting that the parameter
estimates are similar in all of the cases, in addition their standard deviations and MSEs
are close to zero. Absolute biases in the Bayesian setting are somewhat greater than that
of Cox model in the classical setting, whereas MSEs are smaller in the Bayesian setting.
The cause of this situation is smaller estimated standard deviations of the Bayesian set-
ting. When the classical and Bayesian settings of Cox-Gompertz models are compared, it
is seen that absolute and relative biases and the MSEs of the Bayesian setting are smaller
than that of the classical setting. As the result, it can be stated the Bayesian approach
is neither better nor worse than the classical Cox approach and better than the classical
settings of Cox-Gompertz model when the data come from exponential distribution. The
side e�ects of the disagreement between the survival distribution and baseline hazard is
clearly seen here for the classical settings and obtained smaller variances are neutralized
the side e�ects of the disagreement in the Bayesian setting.

It can be concluded from the Table 6, 7, and 8 that in contrast to the preceding infer-
ences, absolute and relative biases of the parameter estimates obtained over Cox model
is greater than that of Cox-Gompertz model for the cases 3 and 4 when the survival data
comes from Weibull distribution. In addition, estimated standard deviations and MSEs
of the model parameters obtained by Cox model are greater than that of obtained by
Cox-Gompertz model for the cases 3 and 4. These situations are just reverse for the case
1. Absolute and relative biases and MSEs of the Bayesian estimates are less than that
of Cox and Cox-Gompertz models both. The Bayesian parameter estimates of model
parameters are also similar in all of the cases for Weibull distributed data. The cause
of this can be the con�ict between baseline hazard of the Gompertz distribution and
the Weibull distributed survival data. When the survival data come from the Weibull
distribution, the Bayesian setting is more successful than the classical setting.
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When the survival data comes from the Gompertz distribution, see the Tables 9,
10, and 11, the smallest estimated standard deviations are generated by the classical
setting of Cox-Gompertz model, whereas the smallest MSEs are given by the Bayesian
setting. The classical Cox model produces the worst standard deviations and MSEs
among the classical and Bayesian settings of Cox-Gompertz model. This implies that
when distribution of the data and underlying baseline hazard agrees, using Cox-Gompertz
model is practically reasonable. The smallest absolute biases are seen in the Bayesian
setting. Relative biases of the parameter estimates generated by the classical setting of
Cox-Gompertz model are greater than that of the Bayesian setting. While the classical
Cox model is being a�ected by the increased censoring, Cox-Gompertz model generates
smaller absolute biases for 0 and 0.1 censoring rates in all of the cases. The same inference
is valid for the Bayesian approach in the cases 5 and 6. In general, if one has strong
information on the distribution of the lifetime data are distributed as Gompertz, use of
the Bayesian setting for Cox-Gompertz model is a practically reasonable way.

When the overall results are considered, it is concluded that when survival data come
from exponential distribution, Cox model in the classical setting gives the best parameter
estimates. But if the data come from Weibull distribution, parameter estimates obtained
from all of the settings are not su�cient enough. Thus, a Cox-Weibull model can be
applied. When the data is distributed as Gompertz, due to the smallest absolute biases
and MSEs produced by the Bayesian setting, advantages of the parametric approach over
Cox model and advantages of the Bayesian approach over the classical are ascertained.

When the ratio of number of data sets for which NR method were not converged
to the total number of the generated data sets is considered, another advantage of the
Bayesian approach is clearly seen. Proportion of unconverged iterations for Cox and
Cox-Gompertz models are given in Table 12. Cases seen on the �rst column are the same
as the cases de�ned in the Tables 3, 6, and 9.

It is seen from Table 12 that NR method encounters certain convergence problems
for Cox-Gompertz model for exponential and Weibull distributions, because of its de-
pendency to the starting values. Because NR method had not converged in most of the
iterations, thus 1000 samples could not be obtained with reasonable number of genera-
tions; and hence , some cells of Tables 3 and 6 could not be �lled. Convergence of NR
method for Cox model under Weibull and Gompertz distributions were less problem-
atic. In general, the Table 12 re�ects the problematic dependency of NR method to the
starting values for considered models.

6. Discussion

In this article, we consider use of Gibbs sampling to draw posterior inferences for
Cox-Gompertz model, when all of the parameters of the hazard function are unknown.
We derive required full conditional distributions for all parameters. All of the full condi-
tionals are found to be familiar and proper distributions. Therefore, there is no need to
use a random number generation algorithm such as rejection sampling to generate ran-
dom numbers from full conditionals. This brings in a �exibility to the presented approach.

Main disadvantage of our approach is that if the survival data is not compatible with
the Gompertz distribution, it is not as successful as the classical Cox model in the esti-
mation of parameters. This situation is also observed in the simulation study. However,
if this is not the case, our approach is more advantageous than Cox model and classical
setting of Cox-Gompertz model. It utilizes superiorities of the Bayesian approaches over
the classical counterparts, which are mentioned in the Section 1. Because we are treating
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Table 3. The ML estimates of parameters of the Cox model over 1000
samples, each was generated from the exponential distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE

0
1 λ 0.071

β1 -0.100 β1 0.124 0.224 224.401 6.690 44.808
β2 -0.200 β2 -0.104 0.096 47.794 1.337 1.797

0.1
2 λ 0.071

β1 -0.100 β1 0.089 0.189 189.043 7.461 55.700
β2 -0.200 β2 -0.097 0.103 51.286 1.507 2.281

0
3 λ 0.071

β1 -1.000 β1 -1.120 0.120 -11.970 7.227 52.242
β2 -0.200 β2 -0.329 0.129 -64.442 1.516 2.315

0.1
4 λ 0.071

β1 -1.000 β1 -1.026 0.026 -2.645 > 104 > 104

β2 -0.200 β2 -0.499 0.299 -149.646 > 104 > 104

0
5 λ 0.071

β1 0.500 β1 0.248 0.252 50.452 4.071 16.637
β2 -1.000 β2 -0.577 0.423 42.287 0.836 0.878

0.1
6 λ 0.071

β1 0.500 β1 0.103 0.397 79.368 4.793 23.129
β2 -1.000 β2 -0.603 0.397 39.693 0.985 1.128

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation;
MSE: Mean square error.

all parameters of the hazard function as random, our approach is more precise. The
convergence problems of the Gibbs sampling are not as much as NR method, as seen in
the simulation study.

Gompertz distribution has many application areas, so does the Bayesian approach to
Cox-Gompertz model. Moreover, the Bayesian approach makes the application of the
Cox-Gompertz model easier, in all of the mentioned areas, because of the superiorities.

Appendix

A1. Derivation of full conditional distribution of α. Full conditional distribution
of α given the other parameters is obtained as

p(α|λ,β, t) ∝ exp

{ n∑
j=1

αδjtj + (λ/α)

n∑
j=1

[1− exp(αtj)] exp(β
′
xj)

}
. (11)

When we use Taylor expansion of exp(αtj) at 0, the following is obtained from eq.
(11):

p(α|λ,β, t) ∝ exp

{ n∑
j=1

αδjtj + [λ/α]

n∑
j=1

[
1− (Tm(α, j) +Rm(α, j))

]
exp(β

′
xj)

}
(12)

wherem is the order of Taylor expansion, Tm(α, j) = 1+αtj+(α2t2j )/2+· · ·+(αmtmj )/m!,
and Rm(α, j) is the reminder term of the Taylor expansion. Because each term is a
function of the rv α, to obtain a tractable full conditional distribution, we need to show
that the distribution of Tm(α, j) + Rm(α, j) converges to that of Tm as m → ∞. Let
Xm = αmtmj /m! be a sequence of rv's for m = 1, 2, . . . and Y = αtj , where Y ∈ R.



1631

Table 4. The ML estimates of parameters of the Cox-Gompertz model over
1000 samples, each was generated from the exponential distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE

0 α 0.022
1 λ 0.071 λ 0.283 0.211 -295.976 0.061 0.048

β1 -0.100 β1 1.377 1.477 1477.239 4.381 21.371
β2 -0.200 β2 -0.036 0.164 81.815 2.638 6.985

0.1 α * * * * *
2 λ 0.071 λ * * * * *

β1 -0.100 β1 * * * * *
β2 -0.200 β2 * * * * *

0 α 0.010
3 λ 0.071 λ 2.000 1.928 -2700.492 0.178 3.749

β1 -1.000 β1 -6.559 5.559 -555.935 63.643 4081.362
β2 -0.200 β2 -0.001 0.199 99.635 44.223 1955.697

0.1 α 0.010
4 λ 0.071 λ 1.997 1.925 -2696.298 0.201 3.746

β1 -1.000 β1 -6.561 5.561 -556.145 64.936 4247.671
β2 -0.200 β2 -0.001 0.199 99.259 45.049 2029.427

0 α 0.010
5 λ 0.071 λ 2.111 2.039 -2856.283 0.127 4.175

β1 0.500 β1 -7.004 7.504 1500.855 5628.965 > 104

β2 -1.000 β2 -0.009 0.991 99.056 4144.209 > 104

0.1 α 0.010
6 λ 0.071 λ 2.084 2.013 -2819.376 0.139 4.072

β1 0.500 β1 -6.923 7.423 1484.535 6196.135 > 104

β2 -1.000 β2 -0.004 0.996 99.553 4517.634 > 104

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.

*: 106 data sets had been generated, but the convergence could not be achieved for 1000 of them.
MSE: Mean square error.

For a �xed value of k, suppose |y| < k. Then, for all m > k the following result is
straightforwardly obtained:

|y|m−k < k(k + 1)(k + 2) · · · (m− 1).

Thus,

0 <
|y|m

m!
≤ |y|

km− k
m!

<
k(k + 1)(k + 2) · · · (m− 1)

m!
=

|y|k

(k − 1)!m
.

In terms of rv's, we have the following inequality for all values of α:

Xm ≤
|Y |k

(k − 1)!m
. (13)

The de�nition of convergence in probability to zero is as follows:

lim
m→∞

P (|Xm| < ε) = 1. (14)

The inequality in (13) implies that if

lim
m→∞

P

(
|Y |k

(k − 1)!m
< ε

)
= 1, (15)

then eq. (14) is ensured. Because k is a �xed constant, the limit in (15) is straightfor-
wardly equal to one. Thus,

Xm
p.−→ 0, as m→∞; and hence Sm =

∞∑
i=m

Xi
p.−→ 0, as m→∞.
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Table 5. The Bayesian estimates of parameters of the Cox-Gompertz model
over 1000 samples, each was generated from the exponential distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE

0 α -0.004 0.002 0.000
1 λ 0.071 λ 0.246 0.175 -244.768 0.058 0.034

β1 -0.100 β1 -0.371 0.271 -270.733 0.009 0.073
β2 -0.200 β2 -0.271 0.071 -35.286 0.005 0.005

0.1 α -0.005 0.002 0.000
2 λ 0.071 λ 0.214 0.143 -200.176 0.055 0.023

β1 -0.100 β1 -0.371 0.271 -270.686 0.010 0.073
β2 -0.200 β2 -0.270 0.070 -35.242 0.006 0.005

0 α -0.002 0.000 0.000
3 λ 0.071 λ 0.016 0.055 77.072 0.005 0.003

β1 -1.000 β1 -0.371 0.629 62.934 0.014 0.396
β2 -0.200 β2 -0.273 0.073 -36.346 0.008 0.005

0.1 α -0.002 0.000 0.000
4 λ 0.071 λ 0.015 0.057 79.510 0.005 0.003

β1 -1.000 β1 -0.371 0.629 62.929 0.015 0.396
β2 -0.200 β2 -0.273 0.073 -36.465 0.009 0.005

0 α -0.002 0.001 0.000
5 λ 0.071 λ 0.051 0.021 28.831 0.013 0.001

β1 0.500 β1 -0.371 0.871 174.291 0.010 0.760
β2 -1.000 β2 -0.261 0.739 73.900 0.006 0.546

0.1 α -0.002 0.001 0.000
6 λ 0.071 λ 0.043 0.028 39.138 0.012 0.001

β1 0.500 β1 -0.372 0.872 174.331 0.011 0.760
β2 -1.000 β2 -0.261 0.739 73.882 0.006 0.546

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.
MSE: Mean square error.

Let h be a continuous function at zero, if Ym
p.−→ 0 as m → ∞ then h(Ym)

p.−→ h(0)
as m → ∞ [17, see Theorem 10.2]. Regarding this theorem, if we de�ne h(Sm) as the
following:

h(Sm) = exp

{
− [λ/α]

n∑
j=1

exp(β
′
xj)Sm

}
,

then h(Sm)
p.−→ 1, as m → ∞. This result implies that the reminder term in (12)

converges to 1 in probability ; and hence, it converges to 1 in distribution.
Right hand-side of (12) is rewritten as follows:

exp

{ n∑
j=1

αδjtj + [λ/α]

n∑
j=1

exp(β
′
xj)
[
1− Tm(α, j)

]}
· h(Sm). (16)

Because the value of n is �nite, it concludes from the well-known Slutsky's theorem [17,
p. 248] that the expression in (16) converges to the following:

exp

{ n∑
j=1

αδjtj + [λ/α]

n∑
j=1

exp(β
′
xj)
[
1− T (α, j)

]}
· 1 (17)

in distribution as m → ∞. Consequently, the distribution of the remaining expression
after the application of Taylor expansion of order m converges to the distribution of
original expression in eq. (11). Therefore, it is appropriate to use the Taylor expansion
to derive full conditional distribution of α.
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Table 6. The ML estimates of parameters of the Cox model over 1000
samples, each was generated from the Weibull distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE
1 ν 1.500 0

λ 0.015
β1 -0.100 β1 0.987 1.087 1087.272 60.900 3710.049
β2 -0.200 β2 -3.607 3.407 -1703.717 12.245 161.545

2 ν 1.500 0.1
λ 0.015
β1 -0.100 β1 -0.070 0.030 30.043 57.020 3251.321
β2 -0.200 β2 -3.170 2.970 -1484.821 11.487 140.772

3 ν 1.500 0
λ 0.015
β1 -1.000 β1 -5.077 4.077 -407.700 14.652 231.293
β2 -0.200 β2 -1.124 0.924 -462.180 2.975 9.703

4 ν 1.500 0.1
λ 0.015
β1 -1.000 β1 -7.710 6.710 -670.990 19.151 411.769
β2 -0.200 β2 -1.964 1.764 -882.138 3.931 18.568

5 ν 1.500 0
λ 0.015
β1 0.500 β1 1.446 0.946 -189.221 12.754 163.557
β2 -1.000 β2 -2.107 1.107 -110.657 2.568 7.820

6 ν 1.500 0.1
λ 0.015
β1 0.500 β1 2.260 1.760 -351.977 15.216 234.637
β2 -1.000 β2 -2.453 1.453 -145.310 3.094 11.682

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.
MSE: Mean square error.

We use the third order Taylor expansion of exp(αtj) at 0 to obtain p(α|λ,β, t). As
the result it is obtained that

p(α|λ,β, t)∝ exp

{ n∑
j=1

αδjtj + [λ/α]

n∑
j=1

[
1− (1 + αtj +

α2t2j
2

+
α3t3j
6

)
]
exp(β

′
xj)

}
∝ exp

{
−1
2

[
λα2

3

n∑
j=1

t3je
β
′
xj − 2α

n∑
j=1

(δjtj − λ
t2j
2
eβ

′
xj )

]}

∝ exp

{
−1
2

λ
∑n
j=1 t

3
je
β
′
xj

3

[
α2 − 2α

3
∑n
j=1(δjtj − λ

t2j
2
eβ

′
xj )

λ
∑n
j=1 t

3
je
β
′
xj

]}
∝ exp

{
−1
2σ2

α

(α− µα)2
}
.

(18)
Then the full conditional distribution of α is obtained normal distribution with mean

and variance

µα =
3
∑n
j=1(δjtj − λ

t2j
2
eβ

′
xj )

λ
∑n
j=1 t

3
je
β
′
xj

, σ2
α =

[
λ
∑n
j=1 t

3
je
β
′
xj

3

]−1

, (19)

respectively.
To demonstrate appropriateness of the third order Taylor expansion, we consider the

mechanism that generates survival times under the Gompertz model. Bender et al. [2]
demonstrate that survival times from Gomperts(α, λ) distribution is generated by the
transformation of uniformly distributed r.v. U given in eq. (10). We investigate the
impact of the value of α on survival times in Gompertz model over eq. (1). Note that in
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Table 7. The ML estimates of parameters of the Cox-Gompertz model over
1000 samples, each was generated from the Weibull distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE
1 ν 1.500 0 α 0.051 1.449 96.579 0.022 2.099

λ 0.015 λ 0.179 0.164 -1090.546 0.044 0.029
β1 -0.100 β1 1.287 1.387 1387.414 0.688 2.398
β2 -0.200 β2 -0.046 0.154 76.980 0.514 0.288

2 ν 1.500 0.1 α * * * * *
λ 0.015 λ * * * * *
β1 -0.100 β1 * * * * *
β2 -0.200 β2 * * * * *

3 ν 1.500 0 α 0.010 1.490 99.329 18.455 342.805
λ 0.015 λ 2.222 2.207 -14713.681 0.136 4.890
β1 -1.000 β1 -7.373 6.373 -637.282 5115.662 26170042.877
β2 -0.200 β2 0.000 0.200 99.910 3801.955 14454860.217

4 ν 1.500 0.1 α 0.010 1.490 99.322 12.018 146.645
λ 0.015 λ 2.178 2.163 -14417.268 0.147 4.699
β1 -1.000 β1 -7.234 6.234 -623.372 3115.142 9704147.295
β2 -0.200 β2 -0.001 0.199 99.713 2252.882 5075475.292

5 ν 1.500 0 α * * * * *
λ 0.015 λ * * * * *
β1 0.500 β1 * * * * *
β2 -1.000 β2 * * * * *

6 ν 1.500 0.1 α * * * * *
λ 0.015 λ * * * * *
β1 0.500 β1 * * * * *
β2 -1.000 β2 * * * * *

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.

*: 106 data sets had been generated, but the convergence could not be achieved for 1000 of them.
MSE: Mean square error.

eq. (1), λ > 0, exp{β1xj1 + β2xj2} > 0, and log(u) < 0. Because

lim
α→−∞

TGj = lim
α→∞

TGj = 0,

survival times goes to zero for greater values of α. For smaller values of λ exp{β1xj1 +
β2xj2}, the value of U should approach to one to make eq. (1) proper. Only for this case
the rate of convergence of TGj to zero decreases; and hence, we can observe reasonable
survival times for greater values of α. Due to the decreased range of reasonable values
of U , the probability of having such a situation in practice is small. For greater values
of λ exp{β1xj1 + β2xj2}, any value of U from (0, 1) interval makes eq. (1) proper. In
this case, values of α close to zero give reasonable survival times. Therefore, the rate of
convergence will be very fast due to the small values of α; and hence, use of the third
order Taylor expansion is appropriate.

A2. Derivation of full conditional distribution of λ. To derive the p(λ|α,β, t), (6)
is rewritten by discarding the constants as

p(λ|α,β, t) ∝ λ
∑n

j=1 δj exp

{
− (λ/α)

n∑
j=1

[exp(αtj)− 1] exp(β
′
xj)

}
. (20)

The distribution reached in (14) is gamma with the following shape and scale param-
eters

n∑
j=1

δj + 1, α

[ n∑
j=1

[exp(αtj)− 1] exp(β
′
xj)

]−1

. (21)
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Table 8. The Bayesian estimates of parameters of the Cox-Gompertz model
over 1000 samples, each was generated from the Weibull distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE
1 ν 1.500 0 α -0.005 1.505 100.329 0.004 2.265

λ 0.015 λ 0.342 0.327 -2179.422 0.081 0.113
β1 -0.100 β1 -0.371 0.271 -270.731 0.009 0.073
β2 -0.200 β2 -0.272 0.072 -35.797 0.006 0.005

2 ν 1.500 0.1 α -0.006 1.506 100.426 0.004 2.269
λ 0.015 λ 0.301 0.286 -1906.160 0.077 0.088
β1 -0.100 β1 -0.371 0.271 -270.931 0.010 0.073
β2 -0.200 β2 -0.271 0.071 -35.532 0.006 0.005

3 ν 1.500 0 α -0.002 1.502 100.102 0.001 2.255
λ 0.015 λ 0.044 0.029 -190.718 0.012 0.001
β1 -1.000 β1 -0.370 0.630 63.018 0.010 0.397
β2 -0.200 β2 -0.271 0.071 -35.593 0.007 0.005

4 ν 1.500 0.1 α -0.002 1.502 100.113 0.001 2.255
λ 0.015 λ 0.038 0.023 -153.024 0.011 0.001
β1 -1.000 β1 -0.370 0.630 63.024 0.012 0.397
β2 -0.200 β2 -0.271 0.071 -35.465 0.007 0.005

5 ν 1.500 0 α -0.002 1.502 100.139 0.001 2.256
λ 0.015 λ 0.106 0.091 -604.296 0.026 0.009
β1 0.500 β1 -0.372 0.872 174.431 0.010 0.761
β2 -1.000 β2 -0.256 0.744 74.389 0.006 0.553

6 ν 1.500 0.1 α -0.002 1.502 100.159 0.001 2.257
λ 0.015 λ 0.094 0.079 -525.466 0.025 0.007
β1 0.500 β1 -0.372 0.872 174.458 0.010 0.761
β2 -1.000 β2 -0.256 0.744 74.359 0.006 0.553

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.
MSE: Mean square error.

A3. Derivation of full conditional distribution of βi. With the same manner as
in Appendix A1, full conditional distribution of a particular regression parameter given
the others is obtained by using the Taylor expansion. Then, p(βi|β−i, α, λ, t) is obtained
by discarding the constants as follows:

p(βi|β−i, α, λ, t) ∝ exp

{
βi

n∑
j=1

δjxji + (λ/α)

n∑
j=1

[1− exp(αtj)] exp(xjiβi)cj

}
, (22)

where cj = exp(
∑n
k=1,k 6=i βkxjk). It is obtained using the second order Taylor expansion

of exp(xjiβi) at 0 that

p(βi|β−i, α, λ, t) ∝ exp

{
βi
[ n∑
j=1

δjxji − (λ/α)

n∑
j=1

cjxji[exp(αtj)− 1]
]

−[λ/(2α)]β2
i

n∑
j=1

cjx
2
ji[exp(αtj)− 1]

} (23)

by simply arranging (23),

p(βi|β−i, α, λ, t) ∝ exp

{
−1
2s1

[
βi − s2/s1

]2}
, (24)

where s1 = (λ/α)
∑n
j=1 cjx

2
ji[exp(αtj) − 1] and s2 =

∑n
j=1 δjxji − (λ/α)

∑n
j=1 cjxji ×

[exp(αtj)−1]. Then p(βi|β−i, α, λ, t) is approached by the normal distribution with mean
s2/s1 and variance 1/s1.

As for the appropriateness of the second order Taylor expansion, we evaluate the
impact of the value of βi on survival times in Gompertz model as done in Appendix A1.
Regarding the second equation in (10), we have the following results for the �xed values
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Table 9. The ML estimates of parameters of the Cox model over 1000
samples, each was generated from the Gompertz distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE
1 α 0.000 0

λ 0.010
β1 -0.100 β1 -0.012 0.088 88.380 6.763 45.746
β2 -0.200 β2 -0.362 0.162 -81.164 1.345 1.834

2 α 0.000 0.1
λ 0.010
β1 -0.100 β1 -0.959 0.859 -859.053 11.972 144.077
β2 -0.200 β2 -0.658 0.458 -228.872 2.328 5.631

3 α 0.000 0
λ 0.100
β1 -1.000 β1 -2.257 1.257 -125.700 9.299 88.055
β2 -0.200 β2 -0.627 0.427 -213.332 1.938 3.940

4 α 0.000 0.1
λ 0.100
β1 -1.000 β1 -4.193 3.193 -319.286 14.321 215.294
β2 -0.200 β2 -1.439 1.239 -619.288 3.076 10.999

5 α -0.001 0
λ 1.000
β1 0.500 β1 0.254 0.246 49.240 5.368 28.872
β2 -1.000 β2 -0.087 0.913 91.284 1.070 1.979

6 α -0.001 0.1
λ 1.000
β1 0.500 β1 -0.046 0.546 109.288 6.397 41.216
β2 -1.000 β2 -0.168 0.832 83.214 1.289 2.353

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.
MSE: Mean square error.

of α, λ, and β−i:

lim
βi→−∞

TGj =∞ and lim
βi→∞

TGj = 0.

Values close the −∞ are unreasonable and greater values give nearly zero survival
times. Positive and larger values of βi correspond to reasonable survival times for very
small values of U ; hence, probability of occurrence of this situation is small. Accordingly,
small values of βi will correspond to reasonable survival times in practice. Therefore, the
rate of convergence will be very fast; and hence, use of the second order Taylor expansion
is appropriate.
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