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Spectral singularities of the matrix Schrödinger
equations
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Abstract

In this paper, we investigate analytical and asymptotical properties of
the Jost function of the matrix Schrödinger equation. Later, using the
analytic continuation and the uniqueness theorems of analytic functions
we study the eigenvalues and the spectral singularities of that equation.
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1. Introduction

Schrödinger di�erential equations subject to the general point interaction can be found
in many real world problems. These equations describe observed evolution phenomena.
For instance, many chemical, physical phenomena and pharmacokinetics do exhibit point
interaction e�ects [1]. The spectral analysis of Schrödinger equations with general point
interaction have been investigated in detail in [2]-[6]. To be more precise, we should
note that these equations have bound states, i.e., eigenvalues with square-integrable
eigenfunctions and spectral singularities. It is well known that the bound state of quan-
tum mechanical system correspond to the energy. Also a physical interpretation for the
spectral singularities that identi�es with the energies of scattering states having in�nite
re�ection and transmission
coe�cients. So spectral singularities correspond to the resonance states having a real
energy. Consequently, the spectral analysis of Schrödinger equations with
spectral singularities are important to study in quantum mechanics. So in this paper, we
investigate the spectral analysis of general matrix Schrödinger equations with spectral
singularities.
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The spectral analysis of di�erential equations with spectral singularities was inves-
tigated by Naimark [7]. Schwartz studied the spectral singularities of a certain class
of abstract linear operators in a Hilbert space [8]. The following de�nition of spectral
singularities is given by Schwartz.

Let H be a Hilbert space and A : H → H be a linear operator such that its spectrum
σ(A) consists of an interval J of the real axis and a �nite number of complex numbers
outside J . We will denote the resolvent operator of A by Rµ(A) := (A − µI)−1, where
µ ∈ C. Let J0 be a �nite subset of J . Assume that for any �nite subinterval ∆ of J ,
whose closure do not contain any point of J0, the limit operator

E∆ = lim
ε→0+

1

2πi

∫
∆

[Rµ+iε(A)−Rµ−iε(A)] dµ

exists in the strong limit sense, so that E∆ is a linear bounded operator on H. Denote
by d the distance from the interval ∆ to the set J0. If

lim
d→0
‖ E∆ ‖=∞

then any point of the set J0, is called a spectral singularity of the operator A. For the
selfadjoint operators ‖ E∆ ‖≤ 1, so that selfadjoint operators have no spectral singulari-
ties.

The sets of the spectral singularities for closed linear operators on a Banach space was
given by Nagy [9]. Nagy shows that the set of spectral singularities de�ned according to
his general de�nition coincides in the case of di�erential operators as de�ned by Naimark
and Lyance [7], [10]. Pavlov established the dependence of the structure of the spectral
singularities of Schrödinger operators on the behaviour of the potential function at in�nity
[11].

Note that the principal functions corresponding to the spectral singularities are not
the elements of the Hilbert space. Also, the spectral singularities belong to the continuous
spectrum and are not the eigenvalues. However, the spectral
singularities play a certain critical role in the spectral analysis of operators. Their exis-
tence is accompanied by speci�c phenomenon which are new in the sense that they do
not occur either in the spectral analysis of selfadjoint or normal operators.

The spectral singularities of the Sturm-Liouville operators with the general boundary
conditions was investigated in detail by Krall [12], [13]. Some problems of spectral theory
of di�erential equations and operators with spectral singularities were also studied in [14]-
[19].

Let S be a n-dimensional (n < ∞) Euclidian space and we denote by L2(R, S) the
Hilbert space of vector-valued functions with values in S and the norm

‖f‖2 :=

∞∫
−∞

‖f(x)‖2S dx.

Let L denote the operator generated in L2(R, S) by the matrix Schrödinger equation

(1.1) −y
′′

+Q(x)y = λ2y ,−∞ < x <∞

where Q is a non-self adjoint matrix-valued potential function (Q 6= Q∗) and λ is a
spectral parameter. It is clear that, the operator L is non-selfadjoint. L is called the
matrix Schrödinger operator.

In this paper, we investigate asymptotics and analytical properties of Jost
function of (1.1). We also obtain the resolvent of L. Later, we study the eigenvalues and
the spectral singularities of L using the analytic continuation and
uniqueness theorems of analytic functions. Afterwards we prove that the equation (1.1)
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(i.e. the operator L) has a �nite number of eigenvalues and spectral
singularities and each of them is of �nite multiplicity under the condition

sup
−∞<x<∞

{
exp

(
ε
√
|x|
)
‖Q(x)‖

}
<∞ , ε > 0.

2. Jost function

Suppose the matrix function Q satis�es

(2.1)

∞∫
−∞

(1 + |x|) ‖Q(x)‖ dx <∞.

We introduce the notation

η+(x) =

∞∫
x

‖Q(t)‖ dt , η+
1 (x) =

∞∫
x

η+(t)dt,

η−(x) =

x∫
−∞

‖Q(t)‖ dt , η−1 (x) =

x∫
−∞

η−(t)dt.

Let E+(x, λ) and F−(x, λ) denote the solutions of (1.1) subject to the conditions

lim
x→∞

E+ (x, λ) e−iλx = I, λ ∈ C+ := {λ : λ ∈ C, Imλ ≥ 0} ,

and

lim
x→−∞

F− (x, λ) eiλx = I, λ ∈ C+,

respectively, where I denotes the identity matrix in S. Under the condition (2.1) the
solution E+ (x, λ) has the following integral representation [20]

E+ (x, λ) = eiλxI +

∞∫
x

K+ (x, t) eiλtdt, λ ∈ C+.

We also denote the solution of the equation

−z
′′

+ zQ(x) = λ2z , −∞ < x <∞,
subject to the condition

lim
x→−∞

z− (x, λ) eiλx = I, λ ∈ C+

by E−(x, λ).
Under the conditon (2.1), the solution E−(x, λ) has the similar integral

representation

E− (x, λ) = e−iλxI +

x∫
−∞

K− (x, t) e−iλtdt, λ ∈ C+

where the matrix-functionsK± (x, t) are di�erentiable with respect to x and t and satis�es

(2.2)
∥∥K± (x, t)

∥∥ ≤ 1

2
η±(

x+ t

2
) exp

{
η±1 (x)− η±1 (

x+ t

2
)

}
,

(2.3)

∥∥∥∥K±x (x, t) +̄
1

4
Q(

x+ t

2
)

∥∥∥∥ ≤ 1

2
η±1 (x)η±(

x+ t

2
) exp η±1 (x),
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(2.4)

∥∥∥∥K±t (x, t) +̄
1

4
Q(

x+ t

2
)

∥∥∥∥ ≤ 1

2
η±1 (t)η±(

x+ t

2
) exp η±1 (t)

The matrix-functions E+(x, λ) and E−(x, λ) are analytic with respect to λ in
C+ := {λ : λ ∈ C, Imλ > 0} and continuous up to the real axis.

Now, let us introduce

D(λ) := W
[
E−(x, λ), E+(x, λ)

]
, λ ∈ C+,

whereW
[
E−(x, λ), E+(x, λ)

]
is the Wronskian of the solutions of E−(x, λ) and E+(x, λ).

The function D is called Jost function of (1.1). Note that Jost function is analytic in C+

and continuous on the real axis.
Theorem 2.1. The function D satis�es

(2.5) D(λ) = 2iλI − 2K+(0, 0)− 2K−(0, 0) +

∞∫
0

f(t)eiλtdt

where

f(t) = K+
x (0, t)−K−x (0,−t)−K+

t (0, t) +K−t (0,−t)−K− (0, 0)K+ (0, t)

−K+ (0, 0)K− (0,−t) +K− (0,−t) ∗K+
x (0, t) +K−x (0,−t) ∗K+ (0, t)

in which ( ∗) is the convolution operation and f ∈ L1(R, S).

Proof. By the de�nition of the Wronskian of the solutions E−(x, λ) and E+(x, λ) we
have

D(λ) = E−(0, λ)E+
x (0, λ)− E−x (0, λ)E+(0, λ).

Using the integral represantations of E−(x, λ) and E+(x, λ) we obtain (2.5). It follows
from (2.2)− (2.4) that f ∈ L1(R, S). �

Theorem 2.2. The following asymptotics hold

(2.6) D(λ) = 2iλI − 2K+(0, 0)− 2K−(0, 0) + o(1) ,λ ∈ C+, |λ| → ∞,

(2.7) D(λ) = 2iλI +O(1) λ ∈ C+, |λ| → ∞.

Proof. a) Let λ ∈ R. By the Riemann-Lebesgue lemma for the Fourier transforms we
get that [21]

(2.8)

∞∫
0

f(t)eiλtdt = o(1) , λ ∈ R, |λ| → ±∞.

b) Let λ ∈ C+. In this case, by the Lebesgue theorem we obtain that [21]

(2.9)

∞∫
0

f(t)eiλtdt = o(1) , λ ∈ C+, |λ| → ∞.

It follows from (2.8) and (2.9) that

(2.10)

∞∫
0

f(t)eiλtdt = o(1) , λ ∈ C+, |λ| → ∞.

From (2.5) and (2.10) we have (2.6). In a similar way we may also prove (2.7). �
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3. Eigenvalues and Spectral Singularities of L

Let us suppose that

(3.1) G(λ) := detD(λ)

Also, σd(L) and σss(L) will denote the eigenvalues and spectral singularities of L, respec-
tively. By the de�nition of eigenvalues and spectral singularities of di�erential operators
we can write [7], [10]

(3.2) σd(L) =
{
z : z = λ2, λ ∈ C+, G(λ) = 0

}
(3.3) σss(L) =

{
z : z = λ2, λ ∈ R\ {0} , G(λ) = 0

}
.

De�nition 3.1. The multiplicity of a zero of G in C+ is de�ned as the multiplicity
of the corresponding eigenvalue and spectral singularity of L.

In order to investigate the quantitative properties of the eigenvalues and the spectral
singularities of L, we need to discuss the quantitative properties of the zeros of G in C+.

Let M1 denotes the zeros of the function G in C+ and M2 denotes the zeros of the
function G on the real axis. Therefore, using (3.2) and (3.3) we obtain

(3.4) σd(L) =
{
z : z = λ2, λ ∈M1

}
(3.5) σss(L) =

{
z : z = λ2, λ ∈M2

}
\ {0}

Lemma 3.2. (i) The set M1 is bounded and has at most countable number of elements
and its limit points can lie only in a bounded subinterval of the real axis.

(ii) The set M2 is compact and its Lebesque measure is zero.

Proof. From (2.7), we can obtain

(3.6) ‖ K±(x, t)‖ ≤ cη±(
x+ t

2
)

where c > 0 is a constant. Using (3.1) and (3.6), we get that the function G is analytic
in C+, continuous on the real axis and satis�es the following

(3.7) G(λ) = 2iλ+O(1) , λ ∈ C+, |λ| → ∞

Equation (3.7) shows that the sets M1 and M2 are bounded. Since D(λ) is analytic
in C+, then the set M1 has at most countable number of elements. By (3.7) and the
boundary value uniqueness theorem of analytic functions, we get that the setM2 is closed
and µ(M2) = 0, where µ(M2) denote Lebesgue measure of the set M2 [22]. �

From (3.4), (3.5) and Lemma 3.2 we obtain the following theorem.
Theorem 3.3. Under the condition (2.1)
(i) The set of eigenvalues of L is bounded, is no more than countable and its limit

points can lie only in a bounded subinterval of the positive semiaxis.
(ii) The set of spectral singularities of L is bounded and µ(σss(L)) = 0.

Now, let us assume that, for some ε > 0,

(3.8)

∞∫
−∞

exp(ε |x|)‖Q(x)‖dx <∞.

From (2.2)− (2.4), we get the following

(3.9) ‖K±(x, t)‖, ‖K±x (x, t)‖, ‖K±t (x, t)‖ ≤ c exp

[
−ε(x+ t

2
)

]
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where c > 0 is a constant. Also under the condition (3.8) we have

(3.10) ‖f(t)‖ ≤ ce−
ε
2
|t|

by (3.9).
Theorem 3.4. Under the condition (3.8), the operator L has a �nite number of

eigenvalues and spectral singularities and each of them is of �nite multiplicity.

Proof. By using (3.9) and (3.10) we observe that the function G has analytic continuation
to the half plane Imλ > − ε

2
. So, the limit points of zeros of G can not lie in R. Using

Lemma 3.2, we get that the bounded sets M1 and M2 have a �nite number of elements.
Since G is analytic for Imλ > − ε

2
, we obtain that all zeros of G in C+ have a �nite

multiplicity. So that the sets σd(L) and σss(L) have a �nite number of element with a
�nite multiplicity. �

Now, let us suppose that

(3.11)

∞∫
−∞

exp(ε
√
| x |)‖Q(x)‖dx <∞ , ε > 0

which is weaker than (3.8).
It is evident that under the condition (3.11), the function G is analytic in C+and

in�nite di�erentiable on the real axis.
Let us denote the sets of all limit points of M1 and M2 by M3 and M4 respectively,

and the set of all zeros of G with in�nite multiplicity in C+ by M5. It is obvious from
the uniqueness theorem of the analytic functions that

M3 ⊂M2, M4 ⊂M2, M5 ⊂M2, M3 ⊂M5, M4 ⊂M5

and µ(M3) = µ(M4) = 0 [22].
Lemma 3.5. Under the condition (3.11), the function G and its derivatives provide

the following inequality:

(3.12)
∣∣∣G(n)(λ)

∣∣∣ ≤ An , n = 1, 2, ..., Imλ > 0

where

A1 = 2 + c22

∞∫
0

te−
ε
2

√
tdt

(3.13) An = c2n+1

∞∫
0

tne−
ε
2

√
tdt, n = 2, 3, ...

are constants. In addition, for all n ∈ N

(3.14) An ≤ Bbnn!nn

holds where B, b are constants.

Proof. We easily get the proof of the Lemma using (2.5) and (3.1). �

Theorem 3.6. If (3.11) holds, then M5 = ∅.

Proof. Using Lemma 3.2, for su�ciently large T > 0, we get

(3.14)

∣∣∣∣∣∣
T∫

−∞

ln |G(λ)|
1 + λ2

dλ

∣∣∣∣∣∣ <∞,
∣∣∣∣∣∣
∞∫
T

ln |G(λ)|
1 + λ2

dλ

∣∣∣∣∣∣ <∞
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Since G(λ) 6= 0, we obtain

(3.15)

h∫
0

lnH(s)dµ(M5, s) > −∞

by (3.12), (3.14) and Pavlov's Theorem, where H(s) = inf
n

Ans
n

n!
, µ(M5, s) is the Lebesque

measure of the s-neighbourhood of M5 and h > 0 is a constant [5]. Substituting (3.14)
into the de�nition H(s), we arrive at

H(s) ≤ B inf
n
{bnsnnn} ≤ B exp

{
−b−1s−1e−1}

and

lnH(s) ≤ −b−1s−1e−1

Consequently,

h∫
0

1

s
dµ(M5, s) <∞

holds by using (3.15) for arbitrary s, if and only if µ(M5, s) = 0 or M5 = ∅. �

Lemma 3.7. G has a �nite number of zeros with �nite multiplicity in C+.

Proof. Since M3 ⊂M5 and M4 ⊂M5, we get

(3.16) M3 = M4 = ∅.

By using Lemma 3.2 and (3.16), we obtain the �niteness of the setsM1 andM2. Because
of M5 = ∅, all of the zeros of the function G have �nite multiplicities. �

From Lemma 3.7, we get the following theorem.
Theorem 3.8. The operator L has a �nite number of eigenvalues and spectral sin-

gularities and each of them is of �nite multiplicity if condition (3.11) holds.
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