Investigation of spectral analysis of matrix quantum difference equations with spectral singularities

Yelda Aygar* ${ }^{*}$

Abstract

In this paper, we investigate the Jost solution, the continuous spectrum, the eigenvalues and the spectral singularities of a nonselfadjoint matrixvalued q-difference equation of second order with spectral singularities.

Keywords: Quantum difference equation, Discrete spectrum, Spectral theory, Spectral singularity, Eigenvalue.
2000 AMS Classification: 39A05, 39A70, 47A05, 47A10, 47A55.

Received : 17.02.2015 Accepted: 02.07.2015 Doi: 10.15672/HJMS. 20164513107

1. Introduction

Spectral analysis of nonselfadjoint differential equations including Sturm-Liouville, Schrödinger and Klein-Gordon equations has been treated by various authors since 1960 [23, 9, 11, 22, 12]. Study of spectral theory of nonselfadjoint discrete Schrödinger and Dirac equations were obtained in $[1,20,8,10,7]$. Also, spectral analysis of these equations in self-adjoint case is well-known [4,5]. In addition to differential and discrete equations, spectral theory of q-difference equations has been investigated in recent years [2, 3], and important generalizations and results were given for dynamic equations including q-difference equations as a special case in [14, 13].

Some problems of spectral theory of differential and difference equations with matrix coefficients were studied in $[15,24,18,6]$. But spectral analysis of the matrix q-difference equations with spectral singularities has not been investigated yet.

In this paper, we let $q>1$ and use the notation $q^{\mathbb{N}_{0}}:=\left\{q^{n}: n \in \mathbb{N}_{0}\right\}$, where \mathbb{N}_{0} denotes the set of nonnegative integers. Let us introduce the Hilbert space $\ell_{2}\left(q^{\mathbb{N}}, \mathbb{C}^{m}\right)$ consisting of all vector sequences $y \in \mathbb{C}^{m},\left(y=y(t), \quad t \in q^{\mathbb{N}}\right)$, such that $\sum_{t \in q^{\mathbb{N}}} \mu(t)\|y(t)\|_{\mathbb{C}^{m}}^{2}<\infty$ with the inner product $\langle y, z\rangle_{q}:=\sum_{t \in q^{\mathbb{N}}} \mu(t)(y(t), z(t))_{\mathbb{C}^{m}}$, where \mathbb{C}^{m} is m-dimensional $(m<\infty)$ Euclidean space, $\mu(t)=(q-1) t$ for all $t \in q^{\mathbb{N}}$, and $\|\cdot\|_{\mathbb{C}^{m}}$ and $(\cdot, \cdot)_{\mathbb{C}^{m}}$ denote

[^0]the norm and inner product in \mathbb{C}^{m}, respectively. We denote by L the operator generated in $\ell_{2}\left(q^{\mathbb{N}}, \mathbb{C}^{m}\right)$ by the q-difference expression
$$
(l y)(t):=q A(t) y(q t)+B(t) y(t)+A\left(\frac{t}{q}\right) y\left(\frac{t}{q}\right), \quad t \in q^{\mathbb{N}},
$$
and the boundary condition $y(1)=0$, where $A(t), t \in q^{\mathbb{N}_{0}}$ and $B(t), t \in q^{\mathbb{N}}$ are linear operators (matrices) acting in \mathbb{C}^{m}. Throughout the paper, we will assume that $A(t)$ is invertible and $A(t) \neq A^{*}(t)$ for all $t \in q^{\mathbb{N}_{0}}$. Furthermore $B(t) \neq B^{*}(t)$ for all $t \in q^{\mathbb{N}}$, where $*$ denotes the adjoint operator. It is clear that L is a nonselfadjoint operator in $\ell_{2}\left(q^{\mathbb{N}}, \mathbb{C}^{m}\right)$. Related to the operator L, we will consider the matrix q-difference equation of second order
\[

$$
\begin{equation*}
q A(t) y(q t)+B(t) y(t)+A\left(\frac{t}{q}\right) y\left(\frac{t}{q}\right)=\lambda y(t), \quad t \in q^{\mathbb{N}} \tag{1.1}
\end{equation*}
$$

\]

where λ is a spectral parameter.
The set up of this paper is summarized as follows: Section 2 discusses the Jost solution of (1.1) and contains analytical properties and asymptotic behavior of this solution. In Section 3, we give the continuous spectrum of L, by using the Weyl compact perturbation theorem. In Section 4, we investigate the eigenvalues and the spectral singularities of L. In particular, we prove that L has a finite number of eigenvalues and spectral singularities with a finite multiplicity.

2. Jost solution of L

We assume that the matrix sequences $\{A(t)\}$ and $\{B(t)\}, t \in q^{\mathbb{N}}$ satisfy

$$
\begin{equation*}
\sum_{t \in q^{\mathbb{N}}}(\|I-A(t)\|+\|B(t)\|)<\infty \tag{2.1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the matrix norm in \mathbb{C}^{m} and I is identity matrix. Let $F(\cdot, z)$, denotes the matrix solution of the q-difference equation

$$
\begin{equation*}
q A(t) y(q t)+B(t) y(t)+A\left(\frac{t}{q}\right) y\left(\frac{t}{q}\right)=2 \sqrt{q} \cos z y(t), \quad t \in q^{\mathbb{N}} \tag{2.2}
\end{equation*}
$$

satisfying the condition

$$
\begin{equation*}
\lim _{t \rightarrow \infty} F(t, z) e^{i \frac{\ln t}{\ln q} z} \sqrt{\mu(t)}=I, \quad z \in \overline{\mathbb{C}}_{+}:=\{z \in \mathbb{C}: \operatorname{Im} z \geq 0\} \tag{2.3}
\end{equation*}
$$

The solution $F(\cdot, z)$ is called the Jost solution of (2.2).
2.1. Theorem. Assume (2.1). Let the solution $F(\cdot, z)$ be the Jost solution of (2.2). Then

$$
\begin{equation*}
F(t, z)=\frac{e^{i \frac{\ln t}{\ln q} z}}{\sqrt{\mu(t)}} I+\sum_{s \in[q t, \infty) \cap q^{\mathbb{N}}} \sqrt{\frac{s}{q t}} \quad \frac{\sin \left(\frac{\ln s-\ln t}{\ln q}\right) z}{\sin z} H(s), \tag{2.4}
\end{equation*}
$$

where

$$
H(s):=\left[I-A\left(\frac{s}{q}\right)\right] F\left(\frac{s}{q}, z\right)-B(s) F(s, z)+q[I-A(s)] F(q s, z)
$$

Proof. Using (2.2), we obtain

$$
\begin{equation*}
F\left(\frac{t}{q}\right)+q F(q t)-2 \sqrt{q} \cos z F(t)=H(t) \tag{2.5}
\end{equation*}
$$

Since $\frac{\exp \left(i \frac{\ln t}{\ln q} z\right)}{\sqrt{\mu(t)}} I$ and $\frac{\exp \left(-i \frac{\ln t}{\ln q} z\right)}{\sqrt{\mu(t)}} I$ are linearly independent solutions of the homogeneous equation

$$
F\left(\frac{t}{q}\right)+q F(q t)-2 \sqrt{q} \cos z F(t)=0
$$

we get the general solution of (2.5) by

$$
\begin{align*}
F(t, z) & =\frac{e^{i \frac{\ln t}{\ln q} z}}{\sqrt{\mu(t)}} \alpha+\frac{e^{-i \ln t} z}{\sqrt{\mu(t)}} \beta \\
& +\sum_{s \in[q t, \infty) \cap q^{\mathbb{N}}} \sqrt{\frac{\mu(s)}{q}} \frac{1}{\sqrt{\mu(t)}} \frac{\sin \left(\frac{\ln s-\ln t}{\ln q}\right) z}{\sin z} H(s), \tag{2.6}
\end{align*}
$$

where α and β are constants in \mathbb{C}^{m}. Using (2.1), (2.3), and (2.6), we find $\alpha=I$ and $\beta=0$. This completes the proof, i.e., $F(t, z)$ satisfies (2.4).
2.2. Theorem. Assume (2.1). Then the Jost solution $F(\cdot, z)$ has a representation

$$
\begin{equation*}
F(t, z)=T(t) \frac{e^{i \frac{\ln t}{\ln q} z}}{\sqrt{\mu(t)}}\left(I+\sum_{r \in q^{\mathbb{N}}} K(t, r) e^{i \frac{\ln r}{\ln q} z}\right), \quad t \in q^{\mathbb{N}_{0}} \tag{2.7}
\end{equation*}
$$

where $z \in \overline{\mathbb{C}}_{+}, T(t)$ and $K(t, r)$ are expressed in terms of $\{A(t)\}$ and $\{B(t)\}$.
Proof. If we put $F(\cdot, z)$ defined by (2.7) into (2.2), then we have the relations

$$
\begin{aligned}
& A(t) T(t)=T(q t), \quad K(t, q)-K\left(\frac{t}{q}, q\right)=\frac{1}{\sqrt{q}} T^{-1}(t) B(t) T(t) \\
& K\left(\frac{t}{q}, q^{2}\right)-K\left(t, q^{2}\right)=T^{-1}(t)\left(T(t)-A^{2}(t) T(t)-\frac{1}{\sqrt{q}} B(t) T(t) K(t, q)\right), \\
& K\left(t, r q^{2}\right)-K\left(\frac{t}{q}, r q^{2}\right)=T^{-1}(t)\left(A^{2}(t) T(t) K(q t, r)+\frac{1}{\sqrt{q}} B(t) T(t) K(t, q r)\right)-K(t, r),
\end{aligned}
$$

and using these relations, we obtain

$$
\begin{aligned}
& T(t)=\prod_{p \in[t, \infty) \cap q^{\mathbb{N}}}[A(p)]^{-1}, \quad K(t, q)=-\frac{1}{\sqrt{q}} \sum_{p \in[q t, \infty) \cap q^{\mathbb{N}}} T^{-1}(p) B(p) T(p), \\
& K\left(t, q^{2}\right)=\sum_{p \in[q t, \infty) \cap q^{\mathbb{N}}} T^{-1}(p)\left[-\frac{1}{\sqrt{q}} B(p) T(p) K(p, q)+\left(I-A^{2}(p)\right) T(p)\right], \\
& K\left(t, r q^{2}\right)=K(q t, r)+\sum_{p \in[q t, \infty) \cap q^{\mathbb{N}}} T^{-1}(p)\left[I-A^{2}(p)\right] T(p) K(q p, r) \\
& -\frac{1}{\sqrt{q}} \sum_{p \in[q t, \infty) \cap q^{\mathbb{N}}} T^{-1}(p) B(p) T(p) K(p, q r),
\end{aligned}
$$

for $r \in q^{\mathbb{N}}$ and $t \in q^{\mathbb{N}_{0}}$. Due to the condition (2.1), the infinite product and the series in the definition of $T(t)$ and $K(t, r)$ are absolutely convergent.

Note that, in analogy to the Sturm-Liouville equation the function $F(1, z):=\frac{T(1)}{\sqrt{\mu(1)}}\left(I+\sum_{r \in q^{\mathbb{N}}} K(1, r) e^{i \frac{\ln r}{\ln q} z}\right)$ is called the Jost function.
2.3. Theorem. Assume

$$
\begin{equation*}
\sum_{t \in q^{\mathbb{N}}} \frac{\ln t}{\ln q}(\|I-A(t)\|+\|B(t)\|)<\infty \tag{2.8}
\end{equation*}
$$

Then the Jost solution $F(\cdot, z)$ is continuous in $\overline{\mathbb{C}}_{+}$and analytic with respect to z in $\mathbb{C}_{+}:=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.

Proof. Using the equalities for $K(t, r)$ given in Theorem 2.2 and mathematical induction, we get

$$
\begin{equation*}
\|K(t, r)\| \leq C \sum_{p \in\left[q^{\left\lfloor\frac{\ln r}{2 \ln q}\right\rfloor}, \infty\right) \cap q^{\mathbb{N}}}(\|I-A(p)\|+\|B(p)\|), \tag{2.9}
\end{equation*}
$$

where $C>0$ is a constant and $\left\lfloor\frac{\ln r}{2 \ln q}\right\rfloor$ is the integer part of $\frac{\ln r}{2 \ln q}$. From (2.8) and (2.9), we get that the series

$$
\sum_{r \in q^{\mathbb{N}}} K(t, r) e^{i \frac{\ln r}{\ln q} z}, \quad \sum_{r \in q^{\mathbb{N}}} \frac{\ln r}{\ln q} K(t, r) e^{i \frac{\ln r}{\ln q} z}
$$

are absolutely convergent in $\overline{\mathbb{C}}_{+}$and in \mathbb{C}_{+}, respectively. This completes the proof.
2.4. Theorem. Under the condition (2.8), the Jost solution satisfies

$$
\begin{align*}
& F(t, z)=\frac{e^{i \frac{\ln t}{\ln q}}}{\sqrt{\mu(t)}}(I+o(1)), z \in \overline{\mathbb{C}}_{+}, t \rightarrow \infty, \tag{2.10}\\
& F(t, z)=T(t) \frac{e^{i \frac{\ln t}{\ln q} z}}{\sqrt{\mu(t)}}(I+o(1)), t \in q^{\mathbb{N}_{0}}, \operatorname{Im} z \rightarrow \infty . \tag{2.11}
\end{align*}
$$

Proof. It follows from the definition of $T(t)$, (2.8), and (2.9) that
(2.12) $\lim _{t \rightarrow \infty} T(t)=I$,
and

$$
\begin{equation*}
\sum_{r \in q^{\mathbb{N}}} K(t, r) e^{i \frac{\ln r}{\ln q} z}=o(1), z \in \overline{\mathbb{C}}_{+}, t \rightarrow \infty \tag{2.13}
\end{equation*}
$$

From (2.7), (2.12), and (2.13), we get (2.10). Using (2.8) and (2.9), we have

$$
\begin{equation*}
\sum_{r \in q^{\mathbb{N}}} K(t, r) e^{i \frac{\ln r}{\ln q} z}=o(1), z \in \overline{\mathbb{C}}_{+}, \operatorname{Im} z \rightarrow \infty . \tag{2.14}
\end{equation*}
$$

From (2.7) and (2.14), we get (2.11).

3. Continuous spectrum of L

Let L_{1} and L_{2} denote the q-difference operators generated in $\ell_{2}\left(q^{\mathbb{N}}, \mathbb{C}^{m}\right)$ by the q difference expressions

$$
\left(l_{1} y\right)(t)=q y(q t)+y\left(\frac{t}{q}\right)
$$

and

$$
\left(l_{2} y\right)(t)=q[A(t)-I] y(q t)+B(t) y(t)+\left[A\left(\frac{t}{q}\right)-I\right] y\left(\frac{t}{q}\right)
$$

with the boundary condition $y(1)=0$, respectively. It is clear that $L=L_{1}+L_{2}$.
3.1. Lemma. The operator L_{1} is self-adjoint in $\ell_{2}\left(q^{\mathbb{N}}, \mathbb{C}^{m}\right)$.

Proof. Since

$$
\left\|L_{1} y\right\|_{q} \leq 2 \sqrt{q}\|y\|_{q}
$$

for all $y \in \ell_{2}\left(q^{\mathbb{N}}, \mathbb{C}^{m}\right), L_{1}$ is bounded in the Hilbert space $\ell_{2}\left(q^{\mathbb{N}}, \mathbb{C}^{m}\right)$, and since

$$
\begin{aligned}
\left\langle l_{1} y, z\right\rangle_{q} & =\sum_{t \in q^{\mathbb{N}}} \mu(t)(z(t))^{*}\left(q y(q t)+y\left(\frac{t}{q}\right)\right) \\
& =\sum_{t \in q^{\mathbb{N}}} \mu(t)\left(q z(q t)+z\left(\frac{t}{q}\right)\right)^{*} y(t)=\left\langle y, l_{1} z\right\rangle_{q}
\end{aligned}
$$

the operator L_{1} is self-adjoint in $\ell_{2}\left(q^{\mathbb{N}}, \mathbb{C}^{m}\right)$.
3.2. Theorem. Assume (2.8). Then $\sigma_{c}(L)=[-2 \sqrt{q}, 2 \sqrt{q}]$, where $\sigma_{c}(L)$ denotes the continuous spectrum of L.
Proof. It is easy to see that L_{1} has no eigenvalues, so the spectrum of the operator L_{1} consists only its continuous spectrum and

$$
\sigma\left(L_{1}\right)=\sigma_{c}\left(L_{1}\right)=[-2 \sqrt{q}, 2 \sqrt{q}],
$$

where $\sigma\left(L_{1}\right)$ denotes the spectrum of the operator L_{1}. Using (2.8), we find that L_{2} is compact operator in $\ell_{2}\left(q^{\mathbb{N}}, \mathbb{C}^{m}\right)[21]$. Since $L=L_{1}+L_{2}$ and $L_{1}=\left(L_{1}\right)^{*}$, we obtain that

$$
\sigma_{c}(L)=\sigma_{c}\left(L_{1}\right)=[-2 \sqrt{q}, 2 \sqrt{q}]
$$

by using Weyl's theorem of a compact perturbation [19, p.13].

4. Eigenvalues and spectral singularities of L

If we define

$$
\begin{equation*}
f(z):=\operatorname{det} F(1, z), z \in \overline{\mathbb{C}}_{+} \tag{4.1}
\end{equation*}
$$

then the function f is analytic in $\mathbb{C}_{+}, f(z)=f(z+2 \pi)$ and is continuous in $\overline{\mathbb{C}}_{+}$. Let us define the semi-strips $P_{0}=\left\{z \in \mathbb{C}_{+}: 0 \leq \operatorname{Re} z \leq 2 \pi\right\}$ and $P=P_{0} \cup[0,2 \pi]$. We will denote the set of all eigenvalues and spectral singularities of L by $\sigma_{d}(L)$ and $\sigma_{s s}(L)$, respectively. From the definitions of eigenvalues and spectral singularities of nonselfadjoint operators[22, 23], we have

$$
\begin{align*}
& \sigma_{d}(L)=\left\{\lambda \in \mathbb{C}: \lambda=2 \sqrt{q} \cos z, z \in P_{0}, f(z)=0\right\} \tag{4.2}\\
& \sigma_{s s}(L)=\{\lambda \in \mathbb{C}: \lambda=2 \sqrt{q} \cos z, z \in[0,2 \pi], f(z)=0\} \backslash\{0\} . \tag{4.3}
\end{align*}
$$

4.1. Theorem. Assume (2.8). Then
i) the set $\sigma_{d}(L)$ is bounded and countable, and its limit points lie only in the interval $[-2 \sqrt{q}, 2 \sqrt{q}]$,
ii) $\sigma_{s s}(L) \subset[-2 \sqrt{q}, 2 \sqrt{q}]$ and the linear Lebesgue measure of the set $\sigma_{s s}(L)$ is zero.

Proof. In order to investigate the quantitative properties of eigenvalues and spectral singularities of L, it is necessary to discuss the quantitative properties of zeros of f in P from (4.2) and (4.3). Using (2.11) and (4.1), we get

$$
\begin{equation*}
f(z)=\operatorname{det} T(1) \frac{1}{\mu(1)}[I+o(1)], \operatorname{Im} z>0, z \in P_{0}, \operatorname{Im} z \rightarrow \infty \tag{4.4}
\end{equation*}
$$

where $\operatorname{det} T(1) \neq 0$. From (4.4), we get the boundedness of zeros of f in P_{0}. Since f is a 2π-periodic function and is analytic in \mathbb{C}_{+}, we obtain that f has at most a countable number of zeros in P_{0}. By the uniqueness of analytic functions, we find that the the limit points of zeros of f in P_{0} can lie only in $[0,2 \pi]$. We get $\sigma_{s s}(L) \subset[-2 \sqrt{q}, 2 \sqrt{q}]$ using
(4.3). Since $f(z) \neq 0$ for all $z \in \mathbb{C}_{+}$, we get that the linear Lebesgue measure of the set of zeros of f on real axis is not positive, by using the boundary uniqueness theorem of analytic functions [17], i.e., the linear Lebesgue measure of the $\sigma_{s s}(L)$ is zero.
4.2. Definition. The multiplicity of a zero of f in P is called the multiplicity of the corresponding eigenvalue or spectral singularity of L.
4.3. Theorem. If, for some $\varepsilon>0$,

$$
\begin{equation*}
\sup _{t \in q^{\mathbb{N}}}\left\{e^{\varepsilon \frac{\ln t}{\ln q}}(\|I-A(t)\|+\|B(t)\|)\right\}<\infty \tag{4.5}
\end{equation*}
$$

then the operator L has a finite number of eigenvalues and spectral singularities, and each of them is of finite multiplicity.

Proof. Since $F(1, z)=\frac{T(1)}{\sqrt{q-1}}\left(I+\sum_{r \in q^{\mathbb{N}}} K(1, r) e^{i \frac{\ln r}{\ln q} z}\right)$, using (2.9) and (4.5), we get that

$$
\begin{equation*}
\|K(1, r)\| \leq D e^{-\frac{\varepsilon}{4} \frac{\ln r}{\ln q}}, r \in q^{\mathbb{N}}, \tag{4.6}
\end{equation*}
$$

where $D>0$ is a constant. From (4.1) and (4.6), we obtain that the function f has an analytic continuation to the half-plane $\operatorname{Im} z>-\frac{\varepsilon}{4}$. Because the series

$$
\sum_{r \in q^{\mathbb{N}}} i K(1, r) \frac{\ln r}{\ln q} e^{i \frac{\ln r}{\ln q} z}
$$

is uniformly convergent in $\operatorname{Im} z>-\frac{\varepsilon}{4}$. Since f is a 2π periodic function, the limit points of its zeros in P cannot lie in $[0,2 \pi]$. Using Theorem 4.1, we find that the bounded sets $\sigma_{d}(L)$ and $\sigma_{s s}(L)$ have no limit points, i.e., the sets $\sigma_{d}(L)$ and $\sigma_{s s}(L)$ have a finite number of elements. From the analyticity of f in $\operatorname{Im} z>-\frac{\varepsilon}{4}$, we get that all zeros of f in P have a finite multiplicity.

References

[1] Adıvar, M. and Bairamov, E. Spectral properties of non-selfadjoint difference operators, J. Math. Anal. Appl. 261 (2), 461-478, 2001.
[2] Adıvar, M. and Bohner, M. Spectral analysis of q-difference equations with spectral singularities, Math. Comput. Modelling 43 (7), 695-703, 2006.
[3] Adıvar, M. and Bohner, M. Spectrum and principal vectors of second order q-difference equations, Indian J. Math. 48 (1), 17-33, 2006.
[4] Agarwal, R.P. Difference equations and inequalities, Monographs and Textbooks in Pure and Applied Mathematics (Marcel Dekker Inc., New York, 2000).
[5] Agarwal, R.P. and Wong, P.J.Y. Advanced topics in difference equations (Kluwer Academic Publishers Group, Dordrecht, 1997).
[6] Aygar, Y. and Bairamov, B. Jost solution and the spectral properties of the matrix-valued difference operators, Appl. Math. Comput. 218 (19), 9676-9681, 2012.
[7] Bairamov, E. Aygar, Y. and Koprubasi, T. The spectrum of eigenparameter-dependent discrete Sturm-Liouville equations, J. Comput. Appl. Math. 235, 4519-4523, 2011.
[8] Bairamov, E. and Coskun, C. Jost solutions and the spectrum of the system of difference equations, Appl. Math. Lett. (2) 17 (9), 1039-1045, 2004.
[9] Bairamov, E. Çakar, Ö. and Çelebi, A.O. Quadratic pencil of Schrödinger operators with spectral singularities: discrete spectrum and principal functions, J. Math. Anal. Appl. 216 (1), 303-320, 1997.
[10] Bairamov, E. Çakar, Ö. and Krall, A.M. Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Math. Nachr. 229, 5-14, 2001.
[11] Başcanbaz Tunca, G. Spectral properties of the Klein-Gordon s-wave equation with spectrAL parameter-dependent boundary condition, Int. J. Math. Math. Sci. (25-28), 1437-1445, 2004.
[12] Başcanbaz Tunca, G. and Bairamov, E. Discrete spectrum and principal functions of nonselfadjoint differential operator, Czechoslovak Math. J. 49 (4), 689-700, 1999.
[13] Bohner, M. Guseinov, G. and Peterson, A. Introduction to the time scales calculus. In Advances in dynamic equations on time scales (Birkhäuser Boston, MA, 2003), 1-15.
[14] Bohner, M. and Peterson, A. Dynamic equations on time scales (Birkhäuser Boston, MA, 2001).
[15] Clark, S. Gesztesy, F. and Renger, W. Trace formulas and Borg-type theorems for matrixvalued Jacobi and Dirac finite difference operators, J. Differential Equations 219 (1), 144182, 2005.
[16] Coskun, C. and Olgun, M. Principal functions of non-selfadjoint matrix Sturm-Liouville equations, J. Comput. Appl. Math. 235 (16), 4834-4838, 2011.
[17] Dolzhenko, E.P., Boundary-value uniqueness theorems for analytic functions, Mathematical notes of the Academy of Sciences of the USSR 25, (6), 437-442, 1979.
[18] Gesztesy, F. Kiselev, A. and Makarov, K.A. Uniqueness results for matrix-valued Schrödinger, Jacobi, and Dirac-type operators, Math. Nachr. 239/240, 103-145, 2002.
[19] Glazman, I.M. Direct methods of qualitative spectral analysis of singular differential operators (Jerusalem, 1966).
[20] Krall, A.M. Bairamov, E. and Çakar, Ö. Spectral analysis of non-selfadjoint discrete Schrödinger operators with spectral singularities, Math. Nachr. 231, 89-104, 2001.
[21] L.A. Lusternik and V.J. Sobolev, Elements of functional analysis (Hindustan Publishing Corp., Delhi, 1974).
[22] Lyance, V.E. A differential operator with spectral singularities I-II, Amer. Math. Soc. Transl. 60 (2) 185-225, 227-283, 1967.
[23] Naimark, M.A. Linear differential operators. Part II: Linear differential operators in Hilbert space (Frederick Ungar Publishing Co., New York, 1960).
[24] Olgun, M. and Coskun, C. Non-selfadjoint matrix Sturm-Liouville operators with spectral singularities, Appl. Math. Comput. 216, (8), 2271-2275, 2011.

[^0]: *University of Ankara, Faculty of Science, Department of Mathematics, 06100, Ankara, Turkey, Email: yaygar@science.ankara.edu.tr
 \dagger Corresponding Author.

