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Equivariant estimation of quantile vector of two
normal populations with a common mean
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Abstract

The problem of estimating quantile vector θ˜ = (θ1, θ2) of two normal

populations, under the assumption that the means (µis) are equal has
been considered. Here θi = µ + ησi, i = 1, 2, denotes the pth quantile
of the ith population, where η = Φ−1(p), 0 < p < 1, and Φ denotes
the c.d.f. of a standard normal random variable. The loss function is
taken as sum of the quadratic losses. First, a general result has been
proved which helps in constructing some improved estimators for the
quantile vector θ˜. Further, classes of equivariant estimators have been
proposed and su�cient conditions for improving estimators in these
classes are derived. In the process, two complete class results have
been proved. A numerical comparison of these estimators are done
and recommendations have been made for the use of these estimators.
Finally, we conclude our results with some practical examples.
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1. Introduction

Let X˜ = (X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) be independent random samples

drawn from two normal populations N(µ, σ2
1) and N(µ, σ2

2) respectively. Here the com-
mon mean µ, and the variances σ2

1 , σ
2
2 are unknown. The pth quantile of the �rst and

second populations are θ1 = µ + ησ1 and θ2 = µ + ησ2 respectively where η = Φ−1(p);
0 < p < 1. Here Φ(.) denotes the cumulative distribution function of a standard normal
random variable. The problem is to estimate the quantile vector θ˜ = (θ1, θ2) with respect
to the sum of the quadratic losses given by,

L(d˜, θ˜) =

2∑
i=1

(di − θi
σi

)2

,(1.1)

where d˜ = (d1, d2) is an estimator of θ˜ = (θ1, θ2).
The problem of estimation of quantiles has attracted several researchers in the recent

past due to its real life applications. For example, quantiles of exponential populations
are widely used in the study of reliability, life testing, survival analysis and some related
areas. We refer to Keating and Tripathi [7] and Saleh [16] for some applications of
exponential quantiles.

We note that, in the literature most of the results on quantile estimation are for a
single parameter, θ = µ + ησ, whereas the current work is for simultaneous estimation
of a vector θ˜ = (θ1, θ2) of two quantiles. Probably, Zidek [21] was the �rst to consider
the estimation of quantile of normal population with respect to a quadratic loss function.
Zidek [21, 22] proved that the best a�ne equivariant estimator of the quantile θ = µ+ησ is
inadmissible if |η| is chosen very large. Rukhin [14] derived a class of minimax estimators
for quantile θ, each of which improves upon the best equivariant estimator. For some
decision theoretic results on estimation of quantiles of an exponential population one may
refer to Rukhin [15] and the references therein.

Some study also has been done in estimating the quantile θ1, when two or more pop-
ulations are available from normal populations. Kumar and Tripathy [9] considered the
estimation of θ1 = µ + ησ1 under a quadratic loss function using a decision theoretic
approach. Exploiting the information available for the common mean, they could obtain
improved estimators for quantiles θ1. They also derived some inadmissibility conditions
for estimators belonging to equivariant classes. A similar type of results have been ob-
tained by Sharma and Kumar [17] in the case of exponential populations while estimating
the quantile θ1 of the �rst population.

The problem under consideration has its importance in the sense that it uses the
information available for estimating a common mean. The problem of estimating the
common mean of normal populations is an age old problem and has its origin in the
study of recovery of inter-block information in balance incomplete block designs. In the
literature, this problem is also referred as Meta-Analysis, where samples (data) from
multiple sources are combined with a common objective. One may refer to Vazquez
et al. [20] for application of Meta-Analysis in clinical trials. For a detailed review on
inference on common mean of two or more normal populations one may refer to Moore
and Krishnamoorthy [11], Lin and Lee [10], Chang and Pal [5], Tripathy and Kumar [18]
and the references therein.

It should be noted that, the underlying model has been considered previously by
Kumar and Tripathy [9], and estimated the �rst component θ1. We in this paper, con-
sider the simultaneous estimation of quantiles, that is, the vector θ˜ = (θ1, θ2), which
is important from theoretical as well as application point of view. For some results on
simultaneous estimation of location and scale parameters with application we refer to
Bai and Durairajan [2], Alexander and Chandrasekar [1] and Tsukuma [19]. The rest
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of our work is organized as follows. In Section 2, we derive a basic result which helps
in constructing improved estimators for quantile vector θ˜. In Section 3, we derive a�ne
and location equivariant estimators. Su�cient conditions for improving estimators in
the class have been obtained. In the process, two complete class results proved. An
extensive simulation study has been done in order to numerically compare the relative
risk performances of various proposed estimators in Section 4. We conclude with some
practical examples in Section 5.

2. A General Result and Some Improved Estimators

In this section we discuss the model and prove a general result which will be handy
in constructing some good estimators for the quantile vector θ˜ = (θ1, θ2).

Suppose X˜ = (X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) be independent random

samples taken from two normal populations N(µ, σ2
1) and N(µ, σ2

2) respectively. Here
the parameters µ, σ2

1 and σ2
2 are unknown. Our aim is to estimate the vector θ˜ = (θ1, θ2),

where θi = µ+ησi, (η 6= 0 and i = 1, 2) with respect to the loss function (1.1). Obviously,
θi is the p

th quantile of the ith population that is, η = Φ−1(p), (0 < p < 1) where Φ(.) is
the cumulative distributive function of a standard normal random variable. A minimal
su�cient statistic for this problem is (X̄, Ȳ , S2

1 , S
2
2) where

X̄ =
1

m

m∑
i=1

Xi, Ȳ =
1

n

n∑
j=1

Yj , S
2
1 =

m∑
i=1

(Xi − X̄)2 and S2
2 =

n∑
j=1

(Yj − Ȳ )2.

It is well known that the maximum likelihood estimator (MLE) for µ, is not obtain-
able in a closed form (see Pal et al. [12]). Also the minimal su�cient statistics for
this problem are not complete, hence the usual approaches to �nd uniformly minimum
variance unbiased estimator (UMVUE) for individual quantile do not work as ancillary
statistics may carry relevant information for the parameter of interest. Therefore, it is
not known if a UMVUE exists or not, and it is di�cult to �nd even if one exists. Further,
it is known that when we have only one population (say X˜ ) the best a�ne equivariant

estimator for estimating quantile θ1 = µ + ησ1 is minimax (see Kiefer [8]). When we
have both the populations X˜ and Y˜ the problem of estimating the �rst component θ1

has been considered by Kumar and Tripathy [9]. Following their arguments, a natural
way to construct improved estimators for θ˜ is to combine the improved estimators for
the common mean and the improved estimators for the respective standard deviations.
Hence we �rst propose a basic estimator for θ˜ as,

d˜ = (d1, d2), where di = X̄ + cSi, i = 1, 2.

Let us de�ne

cm+n =
η
√

2

m+ n− 2

[
Γ(m

2
)

Γ(m−1
2

)
+

Γ(n
2

)

Γ(n−1
2

)

]
.(2.1)

2.1. Theorem. If we estimate the quantiles θ˜ by d˜ = (X̄ + cS1, X̄ + cS2) with respect to

the loss function (1.1), then the value of c for which the risk is minimum is found to be
cm+n.

Let us denote d˜X = (X̄ + cm+nS1, X̄ + cm+nS2). Next, we give a general result which

in parallel to Theorem 2.1 of Kumar and Tripathy [9] that valid for estimating only θ1.

2.2. Theorem. Suppose d˜M = (dM , dM ) be an estimator for µ˜ = (µ, µ), and d˜S =

(dS1 , dS2) be an estimator for σ˜ = (σ1, σ2). Consider d˜Q = (dQ1, dQ2) = d˜M + ηd˜S as an
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estimator for θ˜. Further, assume that given dS1 , and dS2 , dM is conditionally unbiased
for µ, that is

E(dM |dS1) = E(dM |dS2) = µ,(2.2)

then,

E(dQ1 − θ1)2 + E(dQ2 − θ2)2 = 2E(dM − µ)2 + η2{E(dS1 − σ1)2

+E(dS2 − σ2)2}.(2.3)

Proof. The proof is similar to the arguments used in proving Theorem 2.1 of Kumar and
Tripathy [9], hence omitted. �

2.3. Remark. It is easy to observe that, condition (2.3) will satisfy if we choose dM to
be an unbiased estimator for µ and both dS1 and dS2 are independent of dM . For example
we may take dM = X̄ and dS1 = S1, dS2 = S2.

2.4. Remark. As a consequence of Theorem 2.2, to construct a good estimator for θ˜,it is su�cient to have a good estimator for µ and/or a good estimator for σ1 or/and a
good estimator for σ2.

2.5. Remark. Let dM = dφ, where dφ = φ(S1, S2)X̄+(1−φ(S1, S2))Ȳ be any unbiased
estimator for µ, and dS1 = cS1/η, dS2 = cS2/η (η 6= 0), it is easy to see that, the
condition of Theorem 2.2 satis�es and we prove the following result.

2.6. Theorem. Let dφ = φ(S1, S2)X̄+(1−φ(S1, S2))Ȳ be an estimator for the common
mean µ. Consider the estimator d˜φ(c) = (dφ+cS1, dφ+cS2) for estimating quantile vector

θ˜. Then d˜φ(c) has smaller risk than d˜ with respect to the sum of quadratic loss (1.1) if

and only if dφ has smaller risk than X̄. Further, d˜φ(c) has minimum risk with respect to

the loss (1.1) when c = cm+n.

We note that, the minimizing choice of c is cm+n which is symmetric in both m and
n. One may construct an estimator for the quantile θ˜ using Ȳ for the common mean. Let

us denote d˜∗ = (Ȳ + cS1, Ȳ + cS2). The results of Theorem 2.6 will remain true if we
replace d˜ by d˜∗. Hence we have the following remark.

2.7. Remark. Let dφ = φ(S1, S2)X̄ + (1−φ(S1, S2))Ȳ be an estimator for the common
mean µ. Consider the estimator d˜φ(c) = (dφ + cS1, dφ + cS2) for estimating quantile

vector θ˜. Then d˜φ(c) has smaller risk than d˜∗ with respect to the sum of quadratic loss

(1.1) if and only if dφ has smaller risk than Ȳ . Further, d˜φ(c) has minimum risk with

respect to the loss (1.1) when c = cm+n. Let us denote d˜Y = (Ȳ + cm+nS1, Ȳ + cm+nS2).

2.8. Remark. Following Theorem 2.6, one can easily construct good estimators for θ˜ by
replacing X̄ in d˜X or Ȳ in d˜Y by any improved estimator of the form dφ for the common
mean µ.

Following the above remarks and Theorem 2.2, we propose the following estimators
for θ˜ which have smaller risk than d˜X or/and d˜Y under certain conditions on the sample
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sizes.

d˜GM = (µ̂GM + cm+nS1, µ̂GM + cm+nS2),

d˜GD = (µ̂GD + cm+nS1, µ̂GD + cm+nS2),

d˜KS = (µ̂KS + cm+nS1, µ̂KS + cm+nS2),

d˜CS = (µ̂CS + cm+nS1, µ̂CS + cm+nS2),

d˜MK = (µ̂MK + cm+nS1, µ̂MK + cm+nS2),

d˜TK = (µ̂TK + cm+nS1, µ̂TK + cm+nS2),

d˜BC1 = (µ̂BC1 + cm+nS1, µ̂BC1 + cm+nS2),

d˜BC2 = (µ̂BC2 + cm+nS1, µ̂BC2 + cm+nS2).

Here we denote µ̂GM = mX̄+nȲ
m+n

, µ̂TK =
√
m bn−1S2X̄+

√
n bm−1S1Ȳ√

m bn−1S2+
√
n bm−1S1

, and µ̂GD, µ̂KS , µ̂BC1,

µ̂BC2, µ̂CS , µ̂MK , are estimators for the common mean µ, as de�ned in Tripathy and
Kumar [18]. Although the closed form of the MLE of µ is not available, one can obtain
it numerically by solving a system of three equations in three unknowns. Let us denote
µ̂ML as the MLE of the common mean. Using this estimator for the common mean we
propose an estimator for the quantile vector θ˜ as,

d˜ML = (µ̂ML + cm+nS1, µ̂ML + cm+nS2).

All these estimators belong to the class d˜φ(cm+n) and will be compared numerically in
Section 4.

2.9. Theorem. Let the estimators d˜X , d˜Y , d˜GD, d˜KS , d˜BC1, d˜BC2, and d˜CS as de�ned

above for estimating θ˜. The loss function be taken as the sum of the quadratic losses (1.1).

(i) The estimator d˜GD performs better than both d˜X and d˜Y if and only if m,n ≥ 11.

(ii) The estimator d˜KS performs better than both d˜X and d˜Y if and only if (m −
7)(n− 7) ≥ 16.

(iii) The estimator d˜BC1 performs better than d˜X if and only if m ≥ 2, n ≥ 3 and

for 0 < b1 < bmax(m,n).
(iv) The estimator d˜BC2 performs better than d˜X if and only if m ≥ 2, n ≥ 6 and

for 0 < b2 < bmax(m,n− 3).
(v) The estimator d˜CS performs better than d˜X if m = n ≥ 7.

Here b1, b2 and bmax(m,n) are as de�ned in Kumar and Tripathy [9].

Proof. The proof of (i)-(v) can be done by using Theorem 2.6 and the arguments given
in the proof of Theorem 2.4 in Kumar and Tripathy [9]. �

2.10. Remark. The estimator d˜MK uses the estimator proposed by Moore and Krish-

namoorthy [11] that uses the estimates of standard deviation instead of variance. Their
estimator does not improve upon X̄ uniformly. The estimator d˜TK proposed by Tripathy

and Kumar [18], also does not improve upon X̄ uniformly. As our numerical results shows
(in Section 4), these two estimators perform quite well for moderate values of σ2/σ1 > 0
and also they are good competitor of each other.

3. Inadmissibility Results for Equivariant Estimators

In this section, we introduce the concept of invariance to the problem of simultaneous
estimation of quantiles of two normal populations and derive classes of a�ne and location
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equivariant estimators. Further su�cient conditions for improving estimators in these
classes have been derived. Consequently some complete class results are also proved.

Consider the group GA = {ga,b : ga,b(x) = ax+ b, a > 0, b ∈ R} of a�ne transforma-
tions. Under the transformation, X̄ → aX̄ + b, Ȳ → aȲ + b, S2

i → a2S2
i , µ → aµ + b,

σ2
i → a2σ2

i , and θ˜ → aθ˜+ be˜, where e˜ = (1, 1) and θ˜ = (θ1, θ2), θi = µ + ησi, i = 1, 2.
The problem considered is invariant if we choose the loss function as the sum of a�ne
invariant loss functions (1.1). Based on the su�cient statistics (X̄, Ȳ , S2

1 , S
2
2) the form

of an a�ne equivariant estimator for estimating the vector θ˜ is obtained as,

(d1(X̄, Ȳ , S2
1 , S

2
2), d2(X̄, Ȳ , S2

1 , S
2
2)) = (X̄ + S1Ψ1(T1, T2), X̄ + S1Ψ2(T1, T2))

= (dΨ1 , dΨ2)

= d˜Ψ˜ say,(3.1)

where T1 = Ȳ−X̄
S1

and T2 =
S2
2

S2
1
.

Denote M1 = min(t1, 0), and M2 = max(t1, 0). Let us de�ne the following functions
for any a�ne equivariant estimator d˜Ψ˜.

Ψ˜0 = (min(max(Ψ1,M1),M2),min(max(Ψ2,M1),M2))(3.2)

Ψ˜1 = (max{M1 + ηbm+n,Ψ1},max{M1 + ηbm+n

√
t2,Ψ2}),(3.3)

Ψ˜2 = (min{M2 + ηbm+n,Ψ1},min{M2 + ηbm+n

√
t2,Ψ2}).(3.4)

Next we prove the following inadmissibility result for a�ne equivariant estimators.

3.1. Theorem. Let d˜Ψ˜ be an a�ne equivariant estimator of the form (3.1) of a quantile

vector θ˜, and the loss function be the sum of quadratic loss (1.1) or the sum of squared er-

rors. Let the functions Ψ˜0, Ψ˜1 and Ψ˜2 be de�ned as in (3.2), (3.3) and (3.4) respectively.

Let α˜ = (µ, σ2
1 , σ

2
2).

(i) When η = 0, the estimator d˜Ψ˜ is improved by d˜Ψ˜0 if Pα˜(Ψ˜0 6= Ψ˜) > 0 for some

choices of α˜.
(ii) When η > 0, the estimator d˜Ψ˜ is improved by d˜Ψ˜1 if Pα˜(Ψ˜1 6= Ψ˜) > 0 for some

choices of α˜.
(iii) When η < 0, the estimator d˜Ψ˜ is improved by d˜Ψ˜2 if (Ψ˜2 6= Ψ˜) > 0 for some

choices of α˜.
Proof. To prove this theorem we use a result due to Brewster and Zidek [3]. Consider
the conditional risk function of d˜Ψ˜ given T˜ = (T1, T2) :

R((d˜Ψ˜, θ˜)|T˜) = E{L(d˜Ψ˜, θ˜)|T˜}
=

1

σ2
1

E{(X̄ + S1Ψ1(T˜)− µ− ησ1)2|T˜ = t˜}
+

1

σ2
2

E{(X̄ + S1Ψ2(T˜)− µ− ησ2)2|T˜ = t˜}.(3.5)

The above risk function (3.5) is a sum of two convex functions in Ψ1 and Ψ2, which is a
convex function. The minimizing choices of Ψ1(t˜) and Ψ2(t˜), are obtained respectively
as,

Ψ1(t˜) = −
E{(X̄ − µ)S1|T˜}

E(S2
1 |T˜)

+ ησ1

E(S1|T˜)

E(S2
1 |T˜)
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and

Ψ2(t˜) = −
E{(X̄ − µ)S1|T˜}

E(S2
1 |T˜)

+ ησ2

E(S1|T˜)

E(S2
1 |T˜)

.

Using the conditional expectations derived in Kumar and Tripathy [9], the minimizing
choices for Ψ1(t˜) and Ψ2(t˜) are simpli�ed and are given by

Ψ1(t˜, ρ) =
t1

1 + ρ
+ ηbm+n

√
λ(3.6)

and

Ψ2(t˜, ρ) =
t1

1 + ρ
+ ηbm+n

√
nρ

m

√
λ.(3.7)

Here λ =
mt21
1+ρ

+ mt2
nρ

+ 1, bm+n =
Γ( m+n

2
)

√
2Γ( m+n+1

2
)
and ρ =

mσ2
2

nσ2
1
.

In order to prove the theorem, we need to �nd the in�mum and supremum values of
Ψ1(t˜, ρ) and Ψ2(t˜, ρ) with respect to ρ > 0, for all values of η and t˜. After analyzing the

terms Ψ1(t˜, ρ) and Ψ2(t˜, ρ), for separate values of η, we have the following cases:

(i) When η = 0, and t1 ∈ R,

inf
ρ

Ψ1(t˜, ρ) = M1 and sup
ρ

Ψ1(t˜, ρ) = M2

inf
ρ

Ψ2(t˜, ρ) = M1 and sup
ρ

Ψ2(t˜, ρ) = M2.(3.8)

(ii) When η > 0, and t1 ∈ R, we have

inf
ρ

Ψ1(t˜, ρ) ≥M1 + ηbm+n (equality holds if t1 > 0)

and sup
ρ

Ψ1(t˜, ρ) = +∞

inf
ρ

Ψ2(t˜, ρ) ≥M1 + ηbm+n

√
t2(equality holds if t1 < 0)

and sup
ρ

Ψ2(t˜, ρ) = +∞.(3.9)

(iii) When η < 0, t1 ∈ R, we have

sup
ρ

Ψ1(t˜, ρ) ≤M2 + ηbm+n (equality holds if t1 < 0)

and inf
ρ

Ψ1(t˜, ρ) = −∞

sup
ρ

Ψ2(t˜, ρ) ≤M2 + ηbm+n

√
t2 (equality holds if t1 > 0)

and inf
ρ

Ψ2(t˜, ρ) = −∞.(3.10)

Utilizing the expressions (3.8)-(3.10), for η = 0, η > 0 and η < 0, respectively, for an
a�ne equivariant estimator d˜Ψ˜ = (dΨ1 , dΨ2), we can easily de�ne the functions Ψ˜0, Ψ˜1,

Ψ˜2 as in (3.2)-(3.4) respectively. An application of orbit-by-orbit improvement technique

for improving equivariant estimators of Brewster and Zidek [3], proves the theorem. �

3.2. Remark. The above theorem is basically a complete class result. It tells that for
an equivariant estimator of the form (3.1),

(i) if Pα˜({Ψ1 ∈ [min(T1, 0),max(T1, 0)]c}
⋃
{Ψ2 ∈ [min(T1, 0), max(T1, 0)]c}) > 0,

then the estimator d˜Ψ˜ is improved by d˜Ψ˜0 , when η = 0.

(ii) if P ({Ψ1 < min(T1, 0) + ηbm+n}
⋃
{Ψ2 < min(T1, 0) + ηbm+n

√
T2}) > 0, then

the estimator d˜Ψ˜1 will improve upon d˜Ψ˜, when η > 0,
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(iii) if P ({Ψ1 > max(T1, 0) + ηbm+n}
⋃
{Ψ2 > max(T1, 0) + ηbm+n

√
T2}) > 0, then

the estimator d˜Ψ˜2 will improve upon d˜Ψ˜ when η < 0.

Here [a, b]c stands for complement of the interval [a, b] in R.

3.3. Remark. All the estimators discussed in Section 2 (except d˜ML whose closed form

does not exist), belong to the class (3.1). But it has been seen that for none of these
estimators, the choices of Ψ1 and Ψ2 satisfy the above conditions in Remark 3.2. So
the estimators considered can not be improved by using Theorem 3.1, but they form a
complete class. The result we write as a theorem below.

3.4. Theorem. Let the loss function be (1.1).

(i) The class of estimators {d˜Ψ˜ : Ψ1 ∈ [min(T1, 0),max(T1, 0)] and Ψ2 ∈ [min(T1, 0),

max(T1, 0)]} is complete for η = 0.
(ii) The class of estimators {d˜Ψ˜ : Ψ1 > min(T1, 0) + ηbm+n and Ψ2 > min(T1, 0)

+ηbm+n

√
T2} is complete for η > 0.

(ii) The class of estimators {d˜Ψ˜ : Ψ1 < max(T1, 0) + ηbm+n and Ψ2 < max(T1, 0)

+ηbm+n

√
T2} is complete for η < 0.

Next, we consider a smaller group of transformations and hence a larger class of
estimators for estimating the vector θ˜. Consider the groupGL = {gc : gc(x) = c+x, c ∈ R}
of location transformations. Under the transformation, X̄ → X̄+c, Ȳ → Ȳ +c, S2

i → S2
i ,

µ→ µ+ c, σi → σi, θi = µ+ ησi → θi + c where i = 1, 2.
The estimation problem is invariant if we take the loss function as the sum of squared

error losses (1.1), and the form of a location equivariant estimator for estimating the
vector θ˜ based on the su�cient statistics (X̄, Ȳ , S2

1 , S
2
2), is obtained as

d˜ψ˜ = (X̄ + ψ1(U˜), X̄ + ψ2(U˜)),(3.11)

where U˜ = (T, S2
1 , S

2
2) and T = Ȳ − X̄.

Let us denote N1 = min(t, 0) and N2 = max(t, 0). For a location equivariant estimator
d˜ψ˜, de�ne the functions ψ˜0, ψ˜1 and ψ˜2 as,

ψ˜0(u˜) = (min(max(ψ1, N1), N2),min(max(ψ2, N1), N2))(3.12)

ψ˜1(u˜) = (max{N1, ψ1},max{N1, ψ2}),(3.13)

ψ˜2(u˜) = (min{N2, ψ1},min{N2, ψ2}).(3.14)

Next, we prove a theorem regarding inadmissibility of location equivariant estimators.

3.5. Theorem. Let d˜ψ˜ be a location equivariant estimator of the quantile θ˜ and the

loss function be the sum of quadratic losses (1.1) or the sum of squared error. Let the
functions ψ˜0, ψ˜1 and ψ˜2 be de�ned as in (3.12), (3.13) and (3.14) respectively.

(i) When η = 0, the estimator d˜ψ˜ is improved by d˜ψ˜0 if Pα˜(ψ˜0 6= ψ˜) > 0 for some

choices of α˜.
(ii) When η > 0, the estimator d˜ψ˜ is improved by d˜ψ˜1 if Pα˜(ψ˜1 6= ψ˜) > 0 for some

choices of α˜.
(iii) When η < 0, the estimator d˜ψ˜ is improved by d˜ψ˜2 if Pα˜(ψ˜2 6= ψ˜) > 0 for some

choices of α˜.
Proof. The proof is similar to the arguments used in proving Theorem 3.1. The details
of the proof is omitted. �
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3.6. Remark. Similar to Theorem 3.1 above Theorem 3.5 is also a complete class result.
It tells that for an estimator of the form (3.11),

(i) if P ({ψ1 ∈ [min(T, 0),max(T, 0)]c}
⋃
{ψ2 ∈ [min(T, 0),max(T, 0)]c}) > 0 then

the estimator d˜ψ˜ is improved by d˜ψ˜0 , when η = 0,

(ii) if P ({ψ1 < min(T, 0)}
⋃
{ψ2 < min(T, 0)}) > 0, then the estimator d˜ψ˜1 will

improve upon d˜ψ˜, for η > 0, and

(iii) if P ({ψ1 > max(T, 0)}
⋃
{ψ2 > max(T, 0)}) > 0, then the estimator d˜ψ˜2 will

improve upon d˜ψ˜ when η < 0.

3.7. Remark. All the estimators discussed in Section 2 (except d˜ML whose closed form

does not exist), belong to the class (3.11). But it has also been seen that for none of
these estimators the choices of ψ1 and ψ2 satisfy the above conditions in Remark 3.6. So
the estimators considered can not be improved by using Theorem 3.5, but they form a
complete class. This we write as a theorem.

3.8. Theorem. Let the loss function be (1.1).

(i) The class of estimators {d˜ψ˜ : ψ1 ∈ [min(T, 0),max(T, 0)] and ψ2 ∈ [min(T,

0),max(T, 0)]} is complete for η = 0.
(ii) The class of estimators {d˜ψ˜ : ψ1 > min(T, 0) and ψ2 > min(T, 0)} is complete

for η > 0.
(ii) The class of estimators {d˜ψ˜ : ψ1 < max(T, 0) and ψ2 < max(T, 0)} is complete

for η < 0.

4. Numerical Comparisons

In the previous sections we have derived several estimators for the quantile vector
θ˜ such as d˜X , d˜Y , d˜GD, d˜GM , d˜KS , d˜BC1, d˜BC2, d˜CS , d˜MK , d˜TK , and d˜ML. We have

also shown that these well structured estimators, except d˜ML, belong to the class (3.1)

and (3.11). It seems quite di�cult to compare the risk values of all these estimators
analytically. But for practical purposes, one needs the estimator to be used. Taking
the advantages of computational resources, we in this section compare numerically the
simulated risk values of all these estimators which may be handy for practical purposes.
For evaluating the risk function, we use the loss function (1.1). For numerical comparison
purpose, we have generated 20,000 random samples X˜ of sizes m and 20,000 random
samples Y˜ of sizes n from normal populations with equal mean and di�erent variances. It
can be easily checked that all the risks values are functions of τ = σ2

σ1
> 0, for �xed values

of m, n and |η|. The approximate value of π is taken to be 3.1416. We have computed
the risk values of all the estimators taking various choices of τ and the sample sizes.
However, for illustration purpose we present the risk values for some selected choices of τ
and m, n.We also observe that when the values of τ increase from 0 to∞ the risk values
converge for all the estimators except d˜GM and d˜Y . As the sample sizes increases the risk

values of all the estimators decrease for �xed |η|. Further, the risk values increase as η
increases for �xed values of τ and sample sizes. If we choose the value of b1 and b2 near
0 the estimators d˜BC1 and d˜BC2 tends to d˜X . Also if we choose the value of b2 near 1 the

estimator d˜BC2 tends to d˜GD. So for numerical comparison a convenient choice would

be an intermediate value which we take as 1
2
bmax. The value of bmax(m,n) have been

taken from the tabulated values given in Brown and Cohen [4]. We also note that, when
the sample sizes are equal the estimator d˜GD becomes same as d˜KS and d˜MK becomes

same as d˜TK .When the sample sizes are unequal the estimator d˜CS is not de�ned, so for
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unequal sample sizes we do not include it for numerical comparison purpose. A massive
simulation study has been conducted separately for the cases m = n, m > n and m < n.
The simulated risk values have been plotted against τ for all the estimators in Figure 1
and Figure 2. In Figure 1 the sample sizes have been taken as equal, whereas in Figure 2,
the simulated risk values have been plotted for unequal sample sizes. In Figures 1, and
2 we label X, Y , GM , GD, KS, BC1, BC2, CS, MK, TK and ML for the estimators
d˜X , d˜Y , d˜GM , d˜GD, d˜KS , d˜BC1, d˜BC2, d˜CS , d˜MK , d˜TK d˜ML respectively. In Tables 1-3,
we have presented the simulated values of the percentage of relative risk improvement of
all the estimators with respect to d˜X , which are de�ned as

PR1 =
(

1−
Risk(d˜Y )

Risk(d˜X)

)
× 100, PR2 =

(
1−

Risk(d˜GM )

Risk(d˜X)

)
× 100,

PR3 =
(

1−
Risk(d˜GD)

Risk(d˜X)

)
× 100, PR4 =

(
1−

Risk(d˜KS)

Risk(d˜X)

)
× 100,

PR5 =
(

1−
Risk(d˜BC1)

Risk(d˜X)

)
× 100, PR6 =

(
1−

Risk(d˜BC2)

Risk(d˜X)

)
× 100,

PR7 =
(

1−
Risk(d˜CS)

Risk(d˜X)

)
× 100, PR8 =

(
1−

Risk(d˜MK)

Risk(d˜X)

)
× 100,

PR9 =
(

1−
Risk(d˜TK)

Risk(d˜X)

)
× 100, PR10 =

(
1−

Risk(d˜ML)

Risk(d˜X)

)
× 100.

The following observations can be made from the Tables 1-3 and the Figures 1-2 as
well as from our simulation study. For illustration purpose, we have presented the risk
functions only for the case η = 1.960.
Case 1: m = n.

(i) Figure 1 represents the risk values of all the estimators for the equal sample sizes
and η = 1.960. In Figure 1, (a)-(c) it represents the risk values for sample sizes
small to moderate that is (6,6), (8,8) and (12,12) whereas (d)-(f) the sample sizes
are taken as moderate to large (20,20), (30,30) and (40,40). It has been noticed
that the risk values of the estimators d˜X , d˜BC1, d˜BC2 and d˜CS decreasing as τ

increases from 0 to ∞. The estimator d˜GD �rst increases and attains maximum

value then decreases. The estimators d˜GM , and d˜MK �rst decrease attains mini-

mum (in the neighborhood of τ = 1) then increases. The estimator d˜Y increases

as τ varies from 0 to ∞. It has also been noticed that all the estimators (except
d˜GM and d˜Y ) converge to the estimator d˜X which is true as these estimators are
consistent.

(ii) The percentage of relative risk performances of all the estimators with respect
to d˜X decrease as τ varies from 0 to ∞. Let us �rst consider the case of small

sample sizes (m,n ≤ 10). For small values of τ (τ < 0.25) the estimators d˜Y
and d˜ML has the maximum percentage of relative risk improvement and it is

seen near to 98.88%. For moderate values of τ (0.75 < τ < 2.5) the estimators
d˜GM and d˜MK compete each other however when τ = 1, the estimator d˜GMhas the maximum percentage of relative risk improvement and it is seen near to
15.68%. For large values of τ, the estimator d˜BC1 has the maximum percentage
of relative risk improvement.

Consider the case of moderate sample sizes (12 ≤ m,n ≤ 20). For small
values of τ, the estimator d˜ML has the best performance and the percentage

of relative risk improvement is seen near to 89.78%. For moderate values of τ
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(0.75 < τ < 2.5) the estimators d˜MK and d˜GD perform equally well, however

for τ = 1, the estimator d˜GM has the maximum percentage of relative risk

performances. For large values of τ, (τ > 3.5) the estimators d˜BC1 and d˜ML

compete with each other.
Consider the case of large sample sizes (m,n ≥ 30). For small values of τ

the estimators d˜ML and d˜GD compete with each other and the percentage of

relative risk performance has been noticed near to 90.40%. For moderate values
of τ (0.75 < τ < 2.5,) the estimators d˜GD, d˜ML and d˜MK compete with each

other, however for τ = 1, the estimator d˜GM has the best performance. For large

values of τ, the estimators d˜BC1 and d˜BC2 compete with d˜ML.

Case 2: m < n.

(i) Figure 2, ((a), (c) and (e)) represents the risk values of all the estimators for
η = 1.960 and the sample sizes (4,10), (12,20) and (30,40). The risk values of
the estimators d˜X , is decreasing as τ increases. The risk values of d˜GD, d˜KSincrease and attains maximum then decrease as τ increases. The risk values of
all the estimators converge to the risk of d˜X except d˜Y and d˜GM .(ii) Consider the small sample sizes (m,n ≤ 10). For small values of τ < 0.25, the
estimator d˜Y and d˜ML compete with each other and the percentage of relative

risk improvement is seen near to 98.88%. For moderate values of τ (0.75 <
τ < 3,) the estimators d˜TK and d˜GM compete each other, however for τ =

1, the estimator d˜GM has the best performance. For large values of τ (τ >

3.0,) the estimator d˜BC1 performs the best and the percentage of relative risk
performance.

Consider the case of moderate sample sizes (12 ≤ m,n ≤ 20). For small values
of τ the estimator d˜ML has the maximum percentage of relative risk performance

and it is seen near to 98.88%. For moderate values of τ (0.75 < τ < 3) the
estimators d˜TK , d˜MK and d˜KS compete each other, however for τ = 1, d˜GM has

the best performance. For large values of τ (τ > 3) the estimator d˜BC1 has the
maximum percentage of relative risk improvement.

Consider the case of large sample sizes (m,n ≥ 30). For small values of
τ (τ ≤ 0.25), the estimators d˜KS , d˜GD and d˜ML compete each other. For

moderate values of τ (0.25 < τ < 3.) the estimators d˜GD, d˜KS , d˜TK , d˜MK and

d˜ML compete each other. For large values of τ the estimators d˜ML and d˜BC1

compete each other.

Case-3: m > n.

(i) Figure 2, ((b), (d) and (f)) represent the risk values of all the estimators for
η = 1.960 and for the sample sizes (10,4), (20,12) and (40,30). The risk values
of d˜X is decreasing as τ increases. The risk values of d˜GD, d˜KS , d˜BC1 and d˜BC2

decrease as τ increases. The risk values of estimators d˜GM , and d˜Y �rst decrease
attains minimum then increase with respect to τ.

(ii) Consider the case of small sample sizes (m,n ≤ 10). For small values of τ (τ ≤
0.25) the estimator d˜ML has maximum percentage of relative risk performance

and it is noticed near to 97.7%, for moderate values of τ (0.75 < τ < 2.0) the
estimators d˜TK and d˜GM compete each other, however for τ = 1, the estimator

d˜GM has the best performance. For large values of τ, (τ > 3) the estimator d˜BC1

has the best performance.
Consider the case of moderate sample sizes (12 ≤ m,n ≤ 20). For small values

of τ (τ < 0.25) the estimator d˜ML has the best performance, for moderate values
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of τ (0.75 ≤ τ < 2.0), the estimator d˜KS and d˜GD compete each other. For τ = 1

the estimator d˜GM performs the best. For large values of τ the estimator d˜BC1

and d˜ML compete each other.

Consider the case of large sample sizes (m,n ≥ 30). For small values of τ the
estimators d˜ML has the maximum percentage of risk improvement, for moderate

values of τ the estimators d˜ML, d˜GD, d˜KS , d˜TK , and d˜MK compete each other.

However for τ = 1 the estimator d˜GM has the best performance. For large values

of τ the estimators d˜ML, d˜GD, d˜BC1, d˜BC2 and d˜KS perform equally well.

On the basis of the above discussion and observations the following recommendations
may be done for the use of the estimators.

(i) We conclude from the above discussion that, none of the estimators completely
dominate others in terms of the risk function for the full range of the parameters.

(ii) When the sample sizes are small that is m,n ≤ 10, the estimators d˜ML and

d˜Y can be used if τ is near to 0. For values of τ in the neighborhood of 1, the

estimators d˜MK and d˜TK may be used, however for τ = 1, that is, when the

variances are of the two populations are same, the estimator d˜GM should be

used. For large values of τ we recommend to use d˜BC1.

(iii) When the sample sizes are from moderate to large the estimators d˜ML, d˜GD,
or d˜KS may be used if τ is near to 0, however for moderate values of τ we

recommend to use either of the estimators d˜GD, d˜KS , d˜MK , d˜TK , or d˜ML. For

values of τ = 1, the estimator d˜GM is strongly recommended to use. For large

values of τ, the estimators d˜ML, d˜BC1, or d˜BC2 may be used.

(iv) A similar type of observations have been made for other combinations of sample
sizes and η.
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Table 1: Percentage of Relative Risk Improvements of Various Estimators of
Normal Quantiles with η = 1.960, (m,n) = (8, 8), (12, 12), (20, 20), (40, 40)

τ ↓ PR1 PR2 PR3 PR5 PR6 PR7 PR8 PR10

98.72 74.20 98.72 55.40 53.86 30.17 98.46 98.73
0.05 98.76 74.20 98.76 70.66 75.75 63.20 98.52 98.76

98.76 74.19 98.76 83.70 88.49 84.65 98.54 98.76
98.80 74.22 98.80 92.81 94.90 95.05 98.58 98.80

89.50 68.21 89.45 50.46 48.60 27.28 88.06 89.50
0.15 89.73 68.29 89.74 64.02 68.62 57.31 88.45 89.76

89.75 68.39 89.79 76.20 80.40 76.96 88.59 89.79
90.16 68.66 90.20 84.69 86.62 86.77 89.05 90.20

75.29 59.03 75.28 42.83 40.68 22.89 73.34 75.43
0.25 75.77 59.25 75.89 54.65 57.81 48.33 73.97 75.93

76.07 59.45 76.28 64.74 68.12 65.22 74.43 76.29
76.32 59.75 76.57 71.96 73.48 73.62 74.77 76.58

40.53 36.89 41.99 24.76 22.66 12.60 41.28 41.92
0.50 41.25 37.75 43.22 31.97 33.03 27.52 42.35 43.21

41.60 38.23 44.02 37.94 39.44 37.74 43.01 44.03
41.79 38.54 44.60 42.16 42.88 42.95 43.48 44.60

17.86 24.31 23.92 15.07 13.37 07.07 24.71 23.45
0.75 18.06 24.87 25.04 19.29 19.57 15.87 25.52 24.77

17.79 24.86 25.47 22.42 22.99 21.74 25.63 25.40
17.45 25.02 25.81 24.66 24.94 24.90 25.81 25.79

-0.86 15.68 13.55 09.61 08.38 04.16 15.01 12.70
1.00 -0.18 16.58 15.10 12.37 12.39 09.65 16.14 14.64

01.15 17.20 16.38 14.65 14.93 13.72 16.98 16.24
00.56 16.99 16.51 15.83 15.97 15.76 16.85 16.48

-15.31 10.10 08.78 06.77 05.86 02.75 10.05 07.96
1.25 -17.90 09.50 09.08 08.06 08.01 06.04 09.81 08.69

-16.36 10.49 10.32 09.62 09.72 08.80 10.81 10.18
-16.82 10.67 11.02 10.71 10.78 10.60 11.17 10.97

-31.46 04.87 05.88 05.07 04.33 01.97 06.51 05.19
1.50 -32.18 04.77 06.44 06.00 05.87 04.38 06.62 06.29

-34.66 04.40 06.96 06.76 06.80 06.21 06.68 06.88
-34.23 05.07 08.09 07.90 07.92 07.80 07.54 08.08

-67.82 -5.69 02.45 02.94 02.54 01.13 01.45 02.30
2.00 -70.73 -6.03 03.48 03.54 03.47 02.61 01.95 03.46

-69.55 -4.90 04.53 04.35 04.37 03.99 03.00 04.51
-72.31 -5.85 04.57 04.52 04.53 04.48 02.63 04.57

-116.05 -18.14 01.11 01.89 01.68 00.77 -1.87 01.24
2.50 -115.39 -17.45 02.27 02.46 02.40 01.82 -0.84 02.38

-120.07 -18.71 02.59 02.68 02.66 02.47 -1.00 02.68
-119.29 -18.49 02.74 02.78 02.77 02.75 -0.81 02.76

-169.15 -31.75 00.49 01.45 01.21 00.57 -4.27 01.09
3.00 -170.01 -31.47 01.27 01.56 01.57 01.22 -3.49 01.42

-172.46 -31.42 02.11 02.12 02.09 01.93 -2.55 02.17
-176.39 -32.49 02.20 02.17 02.17 02.14 -2.59 02.20

-293.23 -61.96 00.38 00.88 00.78 00.36 -6.55 00.80
4.00 -304.09 -65.67 00.48 00.81 00.82 00.66 -7.06 00.68

-311.09 -66.74 01.19 01.20 01.19 01.10 -6.02 01.23
-319.53 -69.42 01.03 01.06 01.06 01.05 -6.51 01.05
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Table 2: Percentage of Relative Risk Improvements of Various Estimators of
Normal Quantiles with η = 1.960, (m,n) = (4, 10), (12, 20), (30, 40)

τ PR1 PR2 PR3 PR4 PR5 PR6 PR8 PR9 PR10

98.74 90.72 98.72 98.74 48.01 53.65 98.51 98.53 98.74
0.05 98.69 84.86 98.69 98.69 79.81 83.67 98.53 98.54 98.69

98.67 80.62 98.67 98.67 91.94 93.71 98.50 98.50 98.67

89.99 82.96 89.77 89.92 43.60 48.41 88.72 88.83 89.98
0.15 89.34 77.33 89.35 89.35 72.34 75.63 88.45 88.46 89.36

89.21 73.63 89.24 89.24 83.16 84.76 88.31 88.31 89.24

76.50 71.03 75.95 76.33 36.96 40.55 74.39 74.57 76.48
0.25 75.22 66.08 75.27 75.28 61.08 63.67 73.81 73.84 75.30

74.94 62.96 75.07 75.07 69.93 71.23 73.52 73.53 75.08

46.57 44.83 45.59 46.46 22.71 23.98 44.43 44.65 46.53
0.50 43.61 41.04 44.23 44.28 36.01 37.19 42.89 42.93 44.31

42.16 39.03 43.48 43.49 40.56 41.16 42.17 42.17 43.50

29.00 29.96 28.53 29.48 14.74 15.03 28.38 28.58 28.88
0.75 24.71 27.02 27.10 27.17 22.40 22.85 26.75 26.77 27.11

20.91 25.07 25.53 25.53 24.10 24.37 25.31 25.32 25.52

18.38 21.72 19.56 20.22 10.59 10.54 20.24 20.38 19.29
1.00 11.35 18.16 17.45 17.48 14.86 15.01 17.78 17.79 17.36

07.2 17.09 16.77 16.77 15.93 16.05 16.96 16.96 16.74

09.62 15.57 13.89 14.02 07.97 07.77 15.03 15.12 13.32
1.25 02.77 13.30 12.91 12.93 11.06 11.09 13.50 13.51 12.74

-4.45 11.25 11.45 11.45 11.02 11.02 11.77 11.77 11.41

03.39 11.56 10.57 10.33 06.29 06.10 12.03 12.07 09.84
1.50 -8.37 07.64 09.18 09.15 08.16 08.13 09.66 09.65 08.99

-15.42 06.25 08.30 08.29 07.98 07.99 08.34 08.33 08.27

-13.23 01.65 05.59 03.91 04.05 03.82 06.86 06.78 04.87
2.00 -29.23 -1.70 05.12 05.03 04.86 04.83 05.06 05.03 05.00

-44.68 -4.36 04.66 04.64 04.65 04.64 03.58 03.57 04.65

-29.19 -6.74 03.43 00.82 02.96 02.77 04.27 04.11 02.86
2.50 -54.92 -12.23 03.36 03.25 03.32 03.29 02.20 02.15 03.32

-73.59 -14.60 02.94 02.93 02.98 02.97 00.74 00.73 02.95

-49.24 -17.00 02.39 -0.89 02.31 02.15 02.43 02.18 01.92
3.00 -87.01 -25.22 02.26 02.13 02.37 02.34 -0.28 -0.36 02.31

-110.99 -26.79 02.34 02.33 02.34 02.31 -0.94 -0.96 02.36

-76.25 -31.59 00.89 -3.42 01.63 01.51 -0.37 -0.76 00.76
3.50 -120.65 -38.15 01.77 01.66 01.85 01.83 -1.67 -1.76 01.82

-159.48 -43.07 01.61 01.59 01.63 01.64 -3.08 -3.10 01.62

-83.63 -34.56 01.41 -2.41 01.64 01.53 00.17 -0.21 01.22
3.75 -138.71 -45.64 01.33 01.21 01.49 01.47 -2.67 -2.77 01.41

-181.46 -49.60 01.60 01.59 01.59 01.58 -3.22 -3.25 01.61

-99.21 -42.8 00.90 -3.31 01.42 01.31 -0.97 -1.42 00.81
4.00 -157.38 -53.73 00.97 00.86 01.18 01.16 -3.7 -3.80 01.08

-199.50 -55.59 01.39 01.39 01.38 01.37 -3.54 -3.57 01.40
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Table 3: Percentage of Relative Risk Improvements of Various Estimators of
Normal Quantiles with η = 1.960, (m,n) = (10, 4), (20, 12), (40, 30)

τ PR1 PR2 PR3 PR4 PR5 PR6 PR8 PR9 PR10

96.66 47.61 96.65 96.61 31.74 06.15 96.10 96.04 96.66
0.05 97.65 59.62 97.65 97.65 73.60 76.84 97.28 97.28 97.65

98.16 66.31 98.16 98.16 90.21 93.39 97.90 97.89 98.16

74.93 38.57 74.89 73.82 25.03 04.75 73.28 73.07 75.01
0.15 81.95 51.36 82.00 81.98 62.19 64.41 80.44 80.41 82.01

85.51 58.82 85.58 85.57 78.61 81.31 84.22 84.21 85.58

51.02 28.76 51.30 49.01 17.79 03.27 50.24 50.00 51.33
0.25 60.73 40.31 61.25 61.21 46.87 48.12 59.58 59.54 61.27

66.65 47.91 67.08 67.08 61.81 63.78 65.37 65.36 67.09

11.92 13.43 17.02 15.51 07.06 01.24 18.18 18.11 16.37
0.50 23.63 21.38 27.08 26.99 21.28 21.32 26.88 26.85 27.00

30.09 27.26 33.27 33.26 30.78 31.58 32.56 32.55 33.27

-7.17 07.28 05.65 05.53 03.32 00.57 07.09 07.16 04.80
0.75 01.51 12.33 12.52 12.51 10.49 10.37 13.11 13.11 12.31

07.33 16.57 17.34 17.34 16.42 16.67 17.52 17.52 17.31

-22.64 04.15 01.39 02.30 01.87 00.34 02.23 02.41 01.16
1.00 -13.11 07.75 06.84 06.88 06.14 05.98 07.26 07.27 06.68

-9.14 10.03 09.55 09.55 09.27 09.34 09.76 09.77 09.52

-37.14 01.91 -0.45 00.84 01.11 00.21 -0.44 -0.18 -0.40
1.25 -27.24 04.17 04.00 04.06 03.82 03.70 03.75 03.78 03.96

-21.59 06.40 06.57 06.58 06.36 06.38 06.46 06.46 06.55

-50.31 00.63 -0.75 00.55 00.87 00.17 -1.31 -1.01 -0.17
1.50 -42.87 00.85 02.20 02.30 02.41 02.32 01.18 01.23 02.27

-38.20 02.26 04.45 04.46 04.37 04.39 03.55 03.56 04.45

-89.75 -3.66 -2.23 -0.43 00.41 00.09 -4.51 -4.06 -0.24
2.00 -77.46 -4.60 01.17 01.26 01.41 01.33 -1.18 -1.11 01.33

-72.94 -5.01 02.44 02.45 02.46 02.45 00.30 00.31 02.46

-130.42 -7.14 -2.33 -0.55 00.26 00.06 -5.74 -5.21 -0.18
2.50 -125.44 -11.86 00.60 00.68 00.85 00.81 -3.25 -3.16 00.78

-115.91 -13.22 1.64 01.65 01.64 01.63 -1.63 -1.61 01.66

-190.10 -12.31 -2.55 -0.66 00.13 00.03 -7.50 -6.85 -0.24
3.00 -175.49 -19.09 00.36 00.42 00.56 00.53 -4.33 -4.23 00.50

-162.38 -21.35 01.32 01.32 01.29 01.28 -2.49 -2.47 01.32

-250.22 -17.03 -2.10 -0.49 00.10 00.03 -8.03 -7.31 -0.17
3.50 -234.56 -27.38 00.29 00.34 00.43 00.42 -5.11 -5.00 00.40

-225.80 -34.25 00.75 00.76 00.78 00.77 -4.54 -4.51 00.78

-285.75 -19.42 -1.88 -0.42 00.16 00.04 -7.97 -7.23 00.06
3.75 -264.67 -31.69 00.20 00.25 00.36 00.33 -5.41 -5.30 00.32

-264.47 -41.68 00.55 00.56 00.59 00.60 -5.42 -5.39 00.57

-328.00 -23.98 -2.36 -0.77 00.08 00.02 -9.20 -8.41 -0.09
4.00 -296.86 -35.41 00.37 00.40 00.44 00.40 -5.16 -5.04 00.45

-296.24 -47.50 00.50 00.51 00.53 00.53 -5.68 -5.65 00.52

5. Concluding Remarks and Illustrative Examples

We note here that, in the literature most of the results on estimation of quantiles
are for a single parameter θ = µ+ησ either using one or more populations. In this
article, we consider the simultaneous estimation of the quantile vector θ˜ = (θ1, θ2)
which is important from an application point of view. The loss function is taken as
the sum of the quadratic loss functions. It should be noted that, Kumar and Tri-
pathy [9] considered this model and estimated the �rst component θ1 with respect
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Figure 1. Comparison of risk values of various estimators for quantile
vector (θ1, θ2) when η = 1.960 and the sample sizes are equal
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Figure 2. Comparison of risk values of various estimators for quantile
vector (θ1, θ2) when η = 1.960 and the sample sizes are unequal
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to a quadratic loss function. We have implemented the Brewster and Zidek [3]
technique to the case of estimating a vector parameter, which is interesting. Fur-
ther we have proposed some new estimators such as the d˜Y , d˜GM , and d˜ML which
was not considered by them. First, we derived su�cient conditions for improving
equivariant estimators and in the process some complete class results obtained.
We have constructed some improved estimators using one of our result obtained
in Section 2. However, the analytical comparison of these estimators is not possi-
ble. We have conducted a detailed simulation study to numerically compare these
estimators which can be used in practice. Our conclusions regarding the use of
the estimators are completely based on the simulation study as no analytical com-
parison is possible among all the estimators. It will be interesting to generalize
the results to the case of k ≥ 3 normal populations, where proving inadmissibility
of these estimators will be challenging. Below we present some examples where
our model �ts well and also compute the estimates for practical purposes. In the
examples below we have taken the value of η = 1.960 for convenient.

5.1. Example. We consider the example discussed in Hines et al. [6], (p. 290).
Suppose a manufacturer of video display units produces two micro circuit designs
design A and design B. He wants to test whether the two design produce same
current �ow. The summarized data for design A are given by m = 15, x̄ = 24.2,
s21 = 10 where as the data for design B are given by n = 10, ȳ = 23.9, s22 = 20.
It is also given that both the data follow normal distributions with a common
mean. The experimental conditions ensures that the variances are unequal. This
is a situation where our model will be very much useful. The several estimators
for quantiles are calculated as d˜X = (25.97, 26.71), d˜Y = (25.67, 26.41), d˜GM =

(25.85, 26.59), d˜GD = (25.92, 26.65), d˜KS = (25.92, 26.66), d˜BC1 = (25.97, 26.71),

d˜BC2 = (25.94, 26.68), d˜MK = (25.88, 26.61), d˜TK = (25.88, 26.61) and d˜ML =
(25.92, 26.65). If the variances of both the data set di�er signi�cantly we may use
either the estimator d˜GD, d˜ML, or d˜BC1. If the variances di�er marginally we may

use either d˜KS , or d˜MK .

5.2. Example. Rohatgi and Saleh [13], (p.515) discussed one example regard-
ing the mean life time (in hours) of light bulbs. Suppose a random sample of
9 bulbs has sample mean 1309 hours with standard deviation of 420 hours. A
second sample of 16 bulbs chosen from a di�erent batch has sample mean 1205
hours and standard deviation 390 hours. A two sample t-test fails to reject the
hypothesis that the means are equal. This is a situation where our model will be
useful. Suppose we want to know the life time of both the bulbs at any instant
of time then we can use our estimators. The various estimators are calculated
as d˜X = (1543.45, 1526.70), d˜Y = (1439.45, 1422.70), d˜GM = (1476.89, 1460.14),

d˜GD = (1460.82, 1444.08), d˜KS = (1458.47, 1441.73), d˜BC1 = (1501.44, 1484.69),

d˜BC2 = (1498.38, 1481.64), d˜MK = (1474.51, 1457.77), d˜TK = (1474.18, 1457.43)

and d˜ML = (1457.08, 1440.33). Also a F-test fails to reject the hypothesis that the

population variances are equal. In this situation we recommend to use either d˜TK ,

or d˜MK .
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