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Estimation of the waiting time of patients in a
hospital with simple Markovian model using order

statistics
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Abstract

In this paper, consider a single server queue in a hospital environment
whose service time is governed by a Markov process. It is possible that
the server changes its service speed many times while serving a patient.
Here we have studied the order statistics for waiting time distribution
where the probability density function of single order statistics φi:n, cu-
mulative density function of Φi:n, joint probability density function of
φi:n and φj:n, probability density function of extreme order statistics.
Also have been considered the moments and recurrence relation of order
statistics, the probability density function of sample range and sample
median. We derive minimum and maximum order statistics of the ser-
vice time of patients in the system using �rst step analysis to obtain an
insight on the service process. Further, we use order statistics to com-
pute performance measures such as average queue length and waiting
time for severe diseases especially in the outpatient department. This
result e�ectively establishes that as the number of server increases, then
the utmost and the minimum waiting time of the patients decreases.
Also illustrate the application of the simple Markovian model by using
real hospital data.
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1. Introduction

The theory of queues has wide applications in the �eld of health-care management
system. The study of queuing systems in hospitals has often been concerned with the
busy period and waiting time, because they play a very signi�cant role there. A queuing
system is normally described by the patient's entry into a queue, who are then served at
a service point by the server (doctor), after which they leave the queue.

Dhar et al.[9] studied the comparison between single and multiple Markovian queuing
model in an outpatient department. Also Mahanta et al.[13] proposed a single server
queueing model for severe diseases especially in outpatient department. Further consider
the in�nite server queues with time-varying arrival and departure pattern when the pa-
rameters are varying with time derive by Dhar et al.[16].

Order statistics are widely used in applications of statistical models and inference.
Both describes random variables which are arranged in order of magnitude. According to
Aleem [1], usually the ordered values of independent and identically distributed samples
arranged in ascending order of magnitude are known as order statistics. The simplest and
most important function of order statistics is the sample cumulative distribution function
Fn(x). Suppose X1, X2, . . . , Xn are n jointly distributed random variables. Arranging
the X's in increasing order of magnitude, X1:n, X2:n, . . . , Xn:n are said to be smallest,
second smallest and largest order statistics. Thus X1:n < X2:n, . . . , < Xn:n. Arnold et al.
[2] and David and Nagaraja [7] studied order statistics and functions of these statistics
as it plays an important role in wide range of theoretical and practical problems such as
characterizations of probability distributions and goodness of �t test, entropy estimation,
analysis of censored samples, reliability analysis, quality control and strength of materi-
als. Order statistics arise naturally in many real-life applications involving data relating
to life testing studies proved by Shawky[10]. Aleem [1] reported that methods of inter-
pretation based on order statistics are most e�cient and are used extensively because of
robustness and parsimonious nature. The sample mean and standard deviation provide
e�cient estimators of the corresponding population parameter under the assumption of
normality, but sample range is simpler to use than the sample standard deviation in
statistical quality control and the sample median and its deviation furnish more robust
estimators when the population have long tail. Extreme (largest and smallest) values
statistics, which is an o�spring of order statistics, has its importance in hydrology, aero-
nautics, oceanography, material strength, signal processing and meteorology. Moments
of order statistics also plays an important role in the area of quality control testing and
reliability. According to David and Nagaraja [8] moments of order statistics can be used
to measure the failure rate of reliability and to predict the failure of future events.

A recursive procedure for computing the moments of the busy period for the single-
server model can be found in Tarabia [12]. Limit theorems are proved by investigating
the extreme values of the maximum queue length, the waiting time and virtual waiting
time for di�erent queue models in literature. Serfozo [14] discussed the asymptotic be-
havior of the maximum value of birth-death processes over large time intervals. Serfozo's
results concerned the transient and recurrent birth-death processes and related M/M/c
queues. Asmuseen[4] introduced a survey of the present state of extreme value theory
for queues and focused on the regenerative properties of queuing systems, which reduced
the problem to study the tail of the maximum of the queuing process X(t) during a
regenerative cycle, where X(t) is in discrete or continuous time. Artalejo et al.[3] pre-
sented an e�cient algorithm for computing the distribution for the maximum number of
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customers in orbit and in the system during a busy period for the M/M/c retrial queue.
The main idea of their algorithm is to reduce the computation of the distribution of the
maximum customer number in orbit by computing certain absorption probabilities. For
more details of extreme value in queues by Park [15].

In this paper, we studied the maximum and minimum service and waiting time respec-
tively, of the patients who su�er from severe disease especially in public hospital. Here
we considered one of the leading public hospitals of the region, viz. Pandu P.H.C/F.R.U,
Guwahati where it was observed that there was a heavy �ow of patients throughout the
day. Data was collected from Hospital( viz. outpatient department) and from other allied
sources. The current chapter will have utility for various practical problems for which
the distributions of order statistics play a role and the queuing theory implicit to the
health related problems.

2. Formulation of the problem

LetX1, X2, . . . , Xn be a random sample from a continuous population with probability
density function φ(x) and cumulative distribution function Φ(x) and X1:n, X2:n, . . . , Xn:n
be the order statistics obtained by arranging the random sample in increasing order of
magnitude. Then according to David and Nagaraja [7] the probability density function
of the ith order statistics Xi:n, 1 < i < n is given by

(2.1) φi:n(x) =
n!

(i− 1)!(n− i)! [Φ(x)]i−1[1− Φ(x)]n−if(x),−∞ < x <∞

The probability density functions of smallest and largest order statistics are given by
Arnold et al.[2] as

(2.2) φ1:n = n[1− Φ(x)]n−1φ(x),−∞ < x <∞

and

(2.3) φn:n = n[Φ(x)]n−1φ(x),−∞ < x <∞

respectively. According to Arnold et al.[2] the cumulative density functions of smallest
and largest order statistics are given as

(2.4) Φ1:n = 1− [1− Φ(x)]n,−∞ < x <∞

and

(2.5) Φn:n = [Φ(x)]n,−∞ < x <∞

respectively.
The pth order moment for the ith order statistics is also given by Arnold et al.[2] as

µ
′
(r : n) =

∫ ∞
−∞

xpφr:n(x)dx

=
n!

(i− 1)!(n− i)!

∫ ∞
−∞

xp[Φ(x)]i−1[1− Φ(x)]n−i

φ(x)dx, −∞ < x <∞(2.6)

Assuming u = Xi:n and v = Xj:n as the ith and jth order statistics, 1 < i < j < n from
n independent random variable each with probability density function φ(x), the joint
density function of u = Xi:n and v = Xj:n is given by Arnold at el. [2], as

φ(u, v : n) = c
′
(i, j, n)[Φ(u)]i−1[Φ(v)− Φ(u)]i−j−1[1− Φ(v)]n−j

φ(v)φ(u),−∞ < u < v <∞(2.7)
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where c
′
(i, j, n) = n!

(i−1)!(i−j−1)!(n−i)!
David and Nagaraja [7], has given the probability density function of double moment as

µ
′
p,q(i, j : n) =

n!

(i− 1)!(i− j − 1)(n− j)!∫ ∫
0<u<v<∞

upvqdudv, −∞ < x <∞(2.8)

Arnold at el.[2] de�ned the sample range as Wn = Xn:n −X1:n and

φwn(w) = n(n− 1)∫ ∞
−∞

[Φ(x1 + w)− Φ(x1)]n−2φ(x1)φ(x1 + w)dx1, 0 < w <∞(2.9)

Percentage points of distributions are the most fundamental tools used in test of hy-
pothesis to take decision about various situations of the population based on sample
observations and also used to express the di�erence of risks of probabilities. The per-
centile points are the point on the measurement scale below which a speci�ed percentage
of score falls. In many applications involving these distributions percentage points are
required. Bagui[5] de�ned the percentage points depends on the evaluation of the inverse
probability function. In general, percentile points of the distributions have been obtained
using approximation, interpolation formula, quadrature formula and by simulation. Ac-
cording to White [11] the pth percentile equation of distribution is given as∫ χ

0

φ(x)dx = p(2.10)

where p denotes level of signi�cance.
The pth percentile equation of smallest and largest order statistics are given as

(2.11) Φ1:n =

∫ χ

0

Φ1:ndx = 1− [1− Φ(x)]n = p

and

(2.12) Φn:n =

∫ χ

0

Φn:ndx = [Φ(x)]n = p

Let X1:n, X2:n, . . . , Xn:n be the order statistics of a random variables X1, X2, . . . , Xn.
Also let Ti:n = Xi:n − Xi−1:n, i = 1, 2, 3, . . . , n , where Ti represents the di�erence
between each arrival into the system(inter-arrival) of the order statistics Xi:n and Xi−1:n.
Then the random variables T1, T2, . . . , Tn are called the inter-arrival time between the
successive order statistics X1:n, X2:n, . . . , Xn:n.
Here we consider the sample range R which is denoted by

(2.13) R =

n∑
i=2

Ti:n

Moreover, this can be used to construct the interval for the corresponding patients.

2.1. Theorem. Let T1, T2, . . . , Tn be the random sample of size n from a continuous

distribution with cumulative density function Φ and the probability density function φ.
Then the joint distribution of order statistics is given by

(2.14) ΦTi(t) = 1−
∫ ∞
−∞

(i− 1)

(
n

i− 1

)
Φ

(i−2)
X (y) 1− ΦX(x+ t)(n−i+1)φX(x) dx
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Proof. We know that,

ΦTi(t) = P (Ti ≤ t))
= P (X(i) −X(i−1) ≤ t)
= P (X(i) ≤ X(i−1) + t)(2.15)

Let w be the region bounded by X(i) ≤ X(i−1) and X(i) ≤ X(i−1) + t.
From equation (2.15),

ΦTi(t) =

∫ ∫
w

φTi,Ti−1(x, y) dx dy

=

∫ ∞
−∞

∫ x+t

x

n!φX(x)φX(y)

(i− 2)! (n− i)! [1− ΦX(y)](n−i) Φ
(i−2)
X (y)

[ΦX(y)− ΦX(x)]i−i+1−1 dx dy

=

∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i)! Φ
(i−2)
X (y)

(∫ x+t

x

φX(y) [1− ΦX(y)](n−i) dy

)
dx

=

∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i)! Φ
(i−2)
X (y)

∣∣∣∣−[1− ΦX(y)](n−i+1)

(n− i+ 1)

∣∣∣∣x+t
x

dx

=

∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i+ 1)!
Φ

(i−2)
X (y)[

−1− ΦX(x+ t)(n−i+1) + 1− ΦX(x)](n−i+1)
]
dx

=

∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i+ 1)!
Φ

(i−2)
X (y) 1− ΦX(x)](n−i+1) dx

−
∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i+ 1)!
Φ

(i−2)
X (y) 1− ΦX(x+ t)(n−i+1) dx

by using equation (2.15), since it is the integral of the (i − 1)th order statistics over
(−∞,∞)

ΦTi(t) = 1−
∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i+ 1)!
Φ

(i−2)
X (y) 1− ΦX(x+ t)(n−i+1) dx

= 1−
∫ ∞
−∞

(i− 1)

(
n

i− 1

)
Φ

(i−2)
X (y) 1− ΦX(x+ t)(n−i+1)φX(x) dx

�

2.2. Corollary. Let i = 1 and i = n in Theorem 2.1

ΦT1(t) = P (T1 ≤ t)
= P (X(1) ≤ t)
= 1 − [1− Φ(t)]n

2.3. Theorem. Let X(1), X(2), . . . , X(n) denote the order statistics of a random sample

of size n from a continuous distribution with probability density function φX(x) and a

cumulative density function ΦX(x). Then the probability density function of the jth order

statistics is given by

(2.16) φX(j)
(x) =

n!φX(x)

(j − 1)! (n− j)! Φ
(j−1)
X (x) 1− ΦX(x)(n−j)

Proof. Proof of the theorem 2.3 given in Artalejo et al.[3]. �
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2.4. Corollary. Let ΦTn(t) = X(n) −X(n−1) , 0 < t <∞. Then

P (Tn ≤ t) = 1 −
∫∞
−∞ n (n− 1)Φ

(n−2)
X (y) 1− ΦX(x+ t)φX(x) dx

3. Order statistics for waiting time distribution

When a patient wait for service, the two most important characteristics that arises are
(i) time spent in the queue and(ii) time spent in the system. Considering the system is in
equilibrium, let Tq and T be the amount of time a customer spends in queue and in the
system, respectively. However, the waiting time for service (Tq) of an arriving customer
is the amount of time required to serve the customers already in the system. The total
time in system T is Tq + service time. When there are n customers in the system, since
service times are exponential with parameter µ, the total service time of n customers is
Erlang with probability density

(3.1) φn(x) = e−µx
µnxn−1

(n− 1)!

Let Fq(t) = P (Tq ≤ t) be the distribution function of the waiting time Tq. Here
Φq(0) = P (Tq = 0) = P (Q = 0) = 1 − ρ. It is noted that because of the memoryless
property of the exponential distribution, the remaining service time of the customer in
service is also exponential with the same parameter µ.
Let dΦq(t) = P (t < Tq ≤ t+ dt), for t > 0, we have

dΦq(t) =

∞∑
n=1

pne
−µt µ

ntn−1

(n− 1)!
dt

= (1− ρ)

∞∑
n=1

ρne−µt
µntn−1

(n− 1)!
dt

After simpli�cation it is given by

= µρ(1− ρ)e−µ(1−ρ)tdt(3.2)

Because of the discontinuity at 0 in the distribution of Tq, we get

Φq(t) = P (Tq = 0) +

∫ t

0

dΦq(t)

= 1− ρe−µ(1−ρ)t,(3.3)

The probability density function of the waiting time in the queue is given by Medhi [17]

wq(t) =

{
(1− ρ), t = 0

µρ(1− ρ) e−µ(1−ρ)t, t > 0

The probability density function of the waiting time in the system is given by Bhat[6]

w(x) = µ(1− ρ)e−µ(1−ρ)x, x ≥ 0

which is a exponential distribution with parameter µ(1− ρ)

3.1. Derivation of ith order statistics for waiting time distribution. If X1, X2,
. . . , Xn is a random sample from a continuous population with probability density func-
tion φ(x) and cumulative distribution function Φ(x) and X1:n, X2:n, . . . , Xn:n are the
order statistics obtained by arranging the random sample in increasing order of mag-
nitude, then the probability density function of the ith order statistics Xi:n for waiting
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time distribution using (2.3), 1 < i < n is given by

φi:nw(x) =
n!

(i− 1)!(n− i)! [1− ρe
−µ(1−ρ)x]i−1

[1− (1− ρe−µ(1−ρ)x)]n−ie−µx
µnxn−1

(n− 1)!

Using binomial expression, the probability density function of ith order statisticsXi:n, (1 <
i < n) for waiting time distribution reduces to

φi:nw(x) =
n!

(i− 1)!(n− i)!

i−1∑
r=0

(
i− 1

r

)
(−1)rρre−µ(1−ρ)

r

ρn−ie−µ(1−ρ)x(n−i)+µx
µnxn−1

(n− 1)!

=
n!

(i− 1)!(n− i)!ρ
r+n−i µn

(n− 1)!

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
e−iρµxxn−1

= C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
e−iρµxxn−1, x > 0, µ > 0(3.4)

where

C(n, r, i) =
n!

(i− 1)!(n− i)!ρ
r+n−i µn

(n− 1)!

We observe that

i−1∑
r=0

(
i− 1

r

)
(−1)rρre−µ(1−ρ)

r
= [1− ρe−µ(1−ρ)x]i−1

The cdf of ith order statistics Xi:n, 1 < i < n for waiting time distribution is obtained as

Φi:nw(x) = C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
∫ x

0

e−iρµxxn−1dx

= C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
∞∑
j=o

(−iρµ)j

j!

xn

n
, x > 0, µ > 0

3.2. Derivation of extreme order statistics. The probability density functions of
smallest and largest order statistics can be obtained from equation (3.4) by putting i =
1 and i = n respectively. The probability density functions of smallest and largest order
statistics for waiting time distribution are obtained as

φ1:nw(x) = ne−µ(1−ρ)
r
e−ρµxxn−1, x > 0, µ > 0(3.5)

and

φn:nw(x) = n

n−1∑
r=0

(
n− 1

r

)
(−1)re−µ(1−ρ)

r
e−nρµxxn−1, x > 0, µ > 0(3.6)

respectively.
The cumulative density functions of smallest and largest order statistics for waiting time



281

distribution can be obtained using expression (2.4) and (2.5) as

Φ1:nw(x) = ne−µ(1−ρ)
r
e−ρµxxn−1, 0 < x <∞(3.7)

Φn:nw(x) = 1− n
n∑
r=0

(
n

r

)
(−1)re−µ(1−ρ)

r
e−nρµxxn−1, 0 < x <∞(3.8)

3.3. Moments and recurrence relations of ith order statistics for waiting time

distribution. Let X(1), X(2), . . . , X(n) be independent and identically distributed ran-
dom sample of size n from a continuous distribution with probability density function
φX(x) and a cumulative density function ΦX(x) from Waiting time distribution. From
the probability density function of ith order statistics for waiting time distribution the
pth order moment can be written as

µp
′
(i : n) =

n!

(i− 1)!(n− i)!
µn

(n− 1)!

∫ ∞
0

xn+p−1[1− ρe−µ(1−ρ)x]i−1

[1− (1− ρe−µ(1−ρ)x)]n−ie−µxdx

= C(n, i)

∫ ∞
0

xn+p−1[1− ρe−µ(1−ρ)x]i−1

[1− (1− ρe−µ(1−ρ)x)]n−ie−µxdx(3.9)

Here we applied the binomial expression in (3.9), we get

µp
′
(i : n) = C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
∫ ∞
0

e−iρµxxn+p−1dx

= C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r γ(n+ p)

(iµρ)n+p

putting i = n, we get the highest order moment which is given by

µp
′
(n : n) =

n−1∑
r=0

(
n− 1

r

)
(−1)re−µ(1−ρ)

r γ(n+ p)

(nµρ)n+p

The recurrence relation for moments of ith order statistics is given by

µp+1

′
(i : n) =

n−1∑
r=0

(
n− 1

r

)
(−1)re−µ(1−ρ)

r γ(n+ p+ 1)

(nµρ)n+p+1

=⇒ iµρµp+1

′
(i : n) = µp

′
(i : n)(3.10)

3.4. Mode for waiting time distribution. The modal value equation of the ith order
statistics is

C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r δ

δx

[
e−iρµxxn−1

]
= 0

=⇒ C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
e−iρµxxn−2(n− 1− iρµ) = 0

3.5. Joint distribution of two order statistics for waiting time distribution.

Let X(1), X(2), . . . , X(n) denote the order statistics of a random sample of size n from a
continuous distribution with probability density function φX(x) and a cumulative density
function ΦX(x). Let us assume that u = Xi:n and v = Xi:n as i

th and jth order statistics,
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(1 < i < j < n) from a random sample of size n, each with probability density function
φX(x). The joint density function of u = Xi:n and v = Xi:n is as follows

φw(u, v;n) =
n!

(i− 1)!(j − i− 1)!(n− j)! [Φ(xr)]
r−1[Φ(xs)− Φ(xr)]

j−i−1

[1− Φ(xs)]
n−jφ(xr)φ(xs)

=
n!

(i− 1)!(j − i− 1)!(n− j)! [1− ρe
−µ(1−ρ)u]i−1

[ρe−µ(1−ρ)u − ρe−µ(1−ρ)v]j−i−1[ρe−µ(1−ρ)v]n−j

e−µu
µnun−1

(n− 1)!
e−µv

µnvn−1

(n− 1)!
(3.11)

Using Binomial expansion on (3.11), we get

= C
′
(i, j;n)γ2

j−i−1∑
α=0

n−j∑
β=0

(
j − i− 1

α

)(
n− j
β

)
(−1)α+β(ρe−µ(1−ρ)v)j−i−1+α+β

[ρe−µ(1−ρ)u]α+i−1e−µ(u+v)un−1vn−1, u, v > 0, µ > 0

where

C
′
(i, j;n) =

n!

(i− 1)!(j − i− 1)!(n− j)! and γ =
µn

(n− 1)!

4. Derivation of distribution of sample range for waiting time dis-

tribution

Let the sample range of the waiting time distribution be de�ned as

R = X(n) −X(1)

Also, let

X(n) = x and X(1) = y ⇒ u = x and⇒ v = y − u⇒ y = u+ v

J =

∣∣∣∣ δxδu δx
δv

δy
δu

δy
δv

∣∣∣∣ =

∣∣∣∣1 0
1 1

∣∣∣∣ = 1

Now using the joint distribution of order statistics

g(u, v) =
n!

(1− 1)! (n− 1− 1)! (n− n)!
Φ1−1 [Φ(u+ v)− Φ(u)]n−2

[1− Φ(u+ v)]n−nφ(u) φ(u+ v)

=
n!

(n− 2)!
[Φ(u+ v)− Φ(u)]n−2φ(u) φ(u+ v)
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g1(v) =

∫
g(u, v) du

=

∫ ∞
−∞

n(n− 1) Φ(u+ v)− Φ(u)]n−2φ(u) φ(u+ v)

=

∫ ∞
0

n(n− 1)
[
ρ [1− e−µ(1−ρ)(u+v)]− ρ [1− e−µ(1−ρ)v]

]n−2

du

µρ(1− ρ) e−µ(1−ρ)u µρ(1− ρ) e−µ(1−ρ)(u+v)

=

∫ ∞
0

n(n− 1)
[
ρ [e−µ(1−ρ)u − e−µ(1−ρ)(u+v)]

]n−2

µρ(1− ρ) e−µ(1−ρ)(2u+v) du

=

∫ ∞
0

n(n− 1) [e−µ(1−ρ)u]n−2
[
ρ [1− e−µ(1−ρv)]

]n−2

µρ(1− ρ) e−µ(1−ρ)(2u+v) du

= n(n− 1) µρ(1− ρ) e−µ(1−ρ)v
[
ρ [1− e−µ(1−ρv)]

]n−2

∫ ∞
0

[e−µ(1−ρ)nu]du

= n(n− 1) µρ(1− ρ) e−µ(1−ρ)v
[
ρ [1− e−µ(1−ρv)]

]n−2

∣∣∣∣ e−µ(1−ρ)nu−µ(1− ρ)n

∣∣∣∣∞
0

du

= ρn (n− 1) ρ(1− ρ) e−µ(1−ρ)v
[
ρ [1− e−µ(1−ρv)]

]n−2

Therefore the range of the distribution of the waiting time is

P (R = v) = ρn (n− 1) ρ(1− ρ) e−µ(1−ρ)v[
ρ [1− e−µ(1−ρv)]

]n−2

, −∞ < v <∞(4.1)

4.1. Theorem. Let X(1), X(2), . . . , X(n) denote the order statistics of a random sample

of size n from a continuous distribution with probability density function φX(x) and a

cumulative density function ΦX(x). Then the probability density function of the range of

the waiting time distribution in the system is

P (R = s) = (n− 1) ρ(1− ρ) e−µ(1−ρ)v[
ρ [1− e−µ(1−ρv)]

]n−2

,−∞ < v <∞(4.2)

Proof. As stated as same in equation (4.1). �

5. Derivation of response time distribution

Percentiles are frequently used as indicators of performance in both the public and
private hospitals. Percentiles provide information about how a patient or thing relates to
a larger group. Relative measures of this type are often extremely valuable to researchers
employing statistical techniques.
The formula of the mean response time is given by
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Mean number in the system = Arrival rate × mean response time i.e.,

E(n) = λE(r)

=⇒ F (r) =
E(n)

λ
=

(
ρ

1− ρ

)
1

λ
=

1
µ

1− ρ(5.1)

The cumulative distribution function of the response time is given as

(5.2) F (r) = 1− e−rµ(1−ρ)

The response time is exponentially distributed and qth percentile is

F (r) =
q

100
=⇒ 1− e−rµ(1−ρ) =

q

100

=⇒ rq =
1

µ(1− ρ)
ln

(
100

100− q

)
(5.3)

The cumulative distribution function of the waiting time is

(5.4) F (w) = 1− ρe−wµ(1−ρ)

This is a truncated exponential distribution and its qth percentile is given by

(5.5) wq =
1

µ(1− ρ)
ln

(
100ρ

100− q

)
The above formula is applied only if q is greater than 100(1−ρ) and all lower percentiles
are zero.

(5.6) wq = max

{
0,
E(w)

ρ
ln

(
100ρ

100− q

)}

6. Distribution of sample median

When the sample size is odd, then the probability density function of the sample
median is given by

φ(x) =
(2n+ 1)

m!2
[Φ(z)]n[1− Φ(z)]nφ(z)

=
(2n+ 1)

n!2
[1− ρe−µ(1−ρ)z]n[ρe−µ(1−ρ)z]ne−µz

µnzn−1

(n− 1)!

= C(n, γ)

r∑
s=0

(−1)se−µ(s+r)zs+r−1

When the sample size is even, then the probability density function of the sample median
is as follows

φ(x, y) =
(2n)

(n− 1)!
[Φ(x)]n−1[1− Φ(y)]n−1φ(x)φ(y)

=
(2n)

(n− 1)!
[1− ρe−µ(1−ρ)x]n−1[ρe−µ(1−ρ)y]n−1e−µx

µnxn−1

(n− 1)!
e−µy

µnyn−1

(n− 1)!

=
(2n)

(n− 1)!
[1− ρe−µ(1−ρ)x]n−1[ρe−µ(1−ρ)y]n−1e−µ(x+y)

µnxn−1

(n− 1)!

µnyn−1

(n− 1)!

= C(n, γ)

r∑
s=0

(−1)se−µ(x+y)(xy)n−1(6.1)
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7. Results

Here we evaluate the minimum and maximum waiting time of the patients who are
in the queue. The table below gives the minimum number of patients in the system and
queue for given number of servers during each interval and it is clear that for both the
queue and the system, the waiting time drops measurably from 1st to 5th server, after
which the drop is trivial. Hence it is concluded that the maximum and minimum number
of patients decrease gradually with the increasing number of servers.

Table 1. The maximum and minimum number of patients served and
waiting in the system

Server Xn(W ) X1(Wq) R

1 5 4.16667 0.83333
2 2.72727 2.27273 0.1388
3 1.82817 1.37363 0.023148
4 1.37125 0.931446 0.003858
5 1.09697 0.671899 0.000643
6 0.914135 0.168631 0.0001071
7 0.783545 0.108038 2.97687E-6
8 0.685602 0.0704791 4.96145E-7
9 0.609424 0.0465906 8.26908E-8
10 0.548481 0.0311082 1.37818E-8

The percentage points of response and waiting times in the system have been pre-
sented in Table(2), Table(3), Table(4) and Table(5). From the tables of percentage
points of response time in the system, it is clear that for �xed values of p ( p =
0.25, 0.50, 0.75, 0.90, 0.95, 0.99 ) and µ. Percentage points remain same as µ increases.
On the other hand percentage points decreases as µ increases. Further, the range of
smallest and largest order statistics of waiting time distribution and has been presented
in Table(1). For chosen values of the parameters and n di�erent values of rq have been
obtained for di�erent signi�cant levels.
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Table 2. This table contains percentage of response time in the system
when µ = 1

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

2 0.00250 0.00501 0.00753 0.00904 0.00955 0.00995
3 0.00125 0.00251 0.00376 0.00452 0.00477 0.00497
4 0.00083 0.00167 0.00251 0.00301 0.00318 0.00332
5 0.00063 0.00125 0.00188 0.00226 0.00239 0.00249
6 0.00050 0.00100 0.00151 0.00181 0.00191 0.00199
7 0.00042 0.00084 0.00125 0.00151 0.00159 0.00166
8 0.00036 0.00072 0.00108 0.00129 0.00136 0.00142
9 0.00031 0.00063 0.00094 0.00113 0.00119 0.00124
10 0.00028 0.00056 0.00084 0.00100 0.00106 0.00111
11 0.00025 0.00050 0.00075 0.00090 0.00095 0.00099
12 0.00023 0.00046 0.00068 0.00082 0.00087 0.00090
13 0.00021 0.00042 0.0006 3 0.00075 0.00080 0.00083
14 0.00019 0.00039 0.00058 0.00070 0.00073 0.00077
15 0.00018 0.00036 0.00054 0.00065 0.00068 0.00071
16 0.00017 0.00033 0.00050 0.00060 0.00064 0.00066
17 0.00016 0.00031 0.00047 0.00057 0.00060 0.00062
18 0.00015 0.00029 0.00044 0.00053 0.00056 0.00059
19 0.00014 0.00028 0.00042 0.00050 0.00053 0.00055
20 0.00013 0.00026 0.00040 0.00048 0.00050 0.00052

Table 3. This table contains percentage of response time in the system
when µ = 2

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

3 0.00250 0.00501 0.00753 0.00904 0.00955 0.00995
4 0.00125 0.00251 0.00376 0.00452 0.00477 0.00497
5 0.00083 0.00167 0.00251 0.00301 0.00318 0.00332
6 0.00063 0.00125 0.00188 0.00226 0.00239 0.00249
7 0.00050 0.00100 0.00151 0.00181 0.00191 0.00199
8 0.00042 0.00084 0.00125 0.00151 0.00159 0.00166
9 0.00036 0.00072 0.00108 0.00129 0.00136 0.00142
10 0.00031 0.00063 0.00094 0.00113 0.00119 0.00124
11 0.00028 0.00056 0.00084 0.00100 0.00106 0.00111
12 0.00025 0.00050 0.00075 0.00090 0.00095 0.00099
13 0.00023 0.00046 0.00068 0.00082 0.00087 0.00090
14 0.00021 0.00042 0.00063 0.00075 0.00080 0.00083
15 0.00019 0.00039 0.00058 0.00070 0.00073 0.00077
16 0.00018 0.00036 0.00054 0.00065 0.00068 0.00071
17 0.00017 0.00033 0.00050 0.00060 0.00064 0.00066
18 0.00016 0.00031 0.00047 0.00057 0.00060 0.00062
19 0.00015 0.00029 0.00044 0.00053 0.00056 0.00059
20 0.00014 0.00028 0.00042 0.00050 0.00053 0.00055
21 0.00013 0.00026 0.00040 0.00048 0.00050 0.00052
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Table 4. This table contains percentage of waiting time in the system
when µ = 1

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

2 0.690644 0.688135 0.685619 0.684106 0.683602 0.683198
3 0.548055 0.5468 0.545542 0.544786 0.544533 0.544331
4 0.461264 0.460427 0.459589 0.459085 0.458916 0.458782
5 0.401734 0.401106 0.400477 0.400099 0.399973 0.399872
6 0.357851 0.357349 0.356846 0.356544 0.356443 0.356362
7 0.323901 0.323483 0.323064 0.322812 0.322727 0.32266
8 0.296705 0.296347 0.295988 0.295772 0.295699 0.295642
9 0.27434 0.274027 0.273712 0.273523 0.27346 0.273409
10 0.255565 0.255286 0.255006 0.254838 0.254782 0.254737
11 0.239539 0.239288 0.239037 0.238885 0.238835 0.238795
12 0.225673 0.225445 0.225216 0.225079 0.225033 0.224996
13 0.213537 0.213328 0.213118 0.212992 0.21295 0.212917
14 0.202812 0.202619 0.202425 0.202309 0.20227 0.202239
15 0.193253 0.193074 0.192894 0.192786 0.19275 0.192721
16 0.184672 0.184505 0.184337 0.184237 0.184203 0.184176
17 0.176919 0.176763 0.176605 0.176511 0.176479 0.176454
18 0.169875 0.169727 0.169579 0.16949 0.16946 0.169437
19 0.163441 0.163301 0.163162 0.163078 0.16305 0.163027
20 0.157538 0.157406 0.157274 0.157194 0.157168 0.157146

Table 5. This table contains percentage of waiting time in the system
when µ = 2

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

3 0.40296198 0.40045257 0.39793684 0.39642436 0.3959197 0.39551578
4 0.34532203 0.34406732 0.34280946 0.34205322 0.34180088 0.34159892
5 0.30459587 0.3037594 0.30292082 0.30241666 0.30224844 0.3021138
6 0.27402729 0.27339994 0.27277101 0.27239289 0.27226672 0.27216574
7 0.25005197 0.24955009 0.24904694 0.24874444 0.24864351 0.24856273
8 0.23063187 0.23021364 0.22979435 0.22954227 0.22945816 0.22939084
9 0.21451061 0.21415212 0.21379273 0.21357666 0.21350457 0.21344687
10 0.20086685 0.20055317 0.20023871 0.20004965 0.19998656 0.19993607
11 0.18913833 0.18885951 0.18857998 0.18841193 0.18835585 0.18831097
12 0.17892563 0.17867469 0.17842312 0.17827187 0.17822141 0.17818101
13 0.16993628 0.16970815 0.16947945 0.16934195 0.16929607 0.16925935
14 0.16195058 0.16174147 0.16153182 0.16140578 0.16136373 0.16133007
15 0.15479999 0.15460696 0.15441344 0.1542971 0.15425828 0.15422721
16 0.14835274 0.1481735 0.14799381 0.14788577 0.14784972 0.14782087
17 0.1425042 0.14233691 0.14216919 0.14206836 0.14203472 0.14200779
18 0.13717009 0.13701325 0.13685602 0.13676149 0.13672995 0.1367047
19 0.13228169 0.13213407 0.13198609 0.13189712 0.13186743 0.13184367
20 0.12778233 0.12764292 0.12750316 0.12741913 0.12739109 0.12736865
21 0.12362485 0.12349277 0.12336037 0.12328076 0.1232542 0.12323294
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Table 6. This table contains percentage of waiting time in the system
when µ = 3

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

4 0.28517894 0.28266953 0.28015381 0.27864133 0.27813666 0.27773274
5 0.25416125 0.25290654 0.25164868 0.25089244 0.25064011 0.25043815
6 0.23021468 0.22937821 0.22853964 0.22803548 0.22786726 0.22773262
7 0.21119868 0.21057133 0.2099424 0.20956428 0.20943811 0.20933713
8 0.19566522 0.19516334 0.1946602 0.1943577 0.19425677 0.19417598
9 0.18268486 0.18226662 0.18184734 0.18159526 0.18151115 0.18144383
10 0.17163852 0.17128004 0.17092065 0.17070458 0.17063248 0.17057478
11 0.16209748 0.16178381 0.16146934 0.16128028 0.1612172 0.16116671
12 0.15375458 0.15347576 0.15319623 0.15302818 0.15297211 0.15292723
13 0.14638339 0.14613245 0.14588088 0.14572963 0.14567917 0.14563877
14 0.1398129 0.13958477 0.13935607 0.13921857 0.13917269 0.13913597
15 0.13391123 0.13370211 0.13349247 0.13336643 0.13332437 0.13329072
17 0.12857487 0.12838184 0.12818832 0.12807198 0.12803316 0.12800208
18 0.12372128 0.12354204 0.12336234 0.12325431 0.12321826 0.12318941
19 0.11928376 0.11911646 0.11894875 0.11884791 0.11881427 0.11878734
20 0.11520772 0.11505088 0.11489365 0.11479912 0.11476758 0.11474233
21 0.11144805 0.11130044 0.11115245 0.11106348 0.1110338 0.11101004
22 0.10796706 0.10782764 0.10768788 0.10760386 0.10757582 0.10755338

8. Conclusion

The obtained results show that the expected value of the maximum and minimum
number of patients decreases gradually with the increasing number of servers. Besides,
it is mentioned that the system will be almost empty after the 10th server. That is, the
patient will get the service as soon as she or he arrive and will leave the system before the
next arrival. This solution accords with the fact that the service rate is greater than the
arrival rate. The range of the waiting time R decreases gradually to zero as the number
of servers increases.
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