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Equivariant estimation of common location
parameter of two exponential populations using

censored samples
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Abstract

In this paper, we consider the problem of estimating common location
parameter of two exponential populations using type-II censored sam-
ples when the scale parameters are unknown. The loss function is taken
as the quadratic loss. First, we derive a class of a�ne equivariant esti-
mators, which includes the maximum likelihood estimator (MLE) and
the uniformly minimum variance unbiased estimator (UMVUE). A suf-
�cient condition for improving estimators in the class is derived. Con-
sequently, estimators dominating the MLE and the UMVUE in terms
of the risk values are obtained. An example is given to compute the
estimates using our result. Finally a simulation study has been carried
out to numerically compare the risk functions of all the estimators.
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1. Introduction

Suppose X(1) ≤ X(2) ≤ · · · ≤ X(r) (2 ≤ r ≤ m) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(s) (2 ≤ s ≤
n) be the ordered observations taken from two exponential populations Ex(µ, σ1) and
Ex(µ, σ2) respectively. Here Ex(µ, σi) denotes the exponential distribution with density
function

f(t, µ, σi) =
1

σi
exp{−(t− µ)/σi}, t > µ, σi > 0,(1.1)

−∞ < µ <∞; i = 1, 2.
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The problem is to estimate the common location parameter µ (minimum guarantee
time) when the scale parameters σ1, σ2 (residual life times) are unknown, with respect
to the loss function,

L(d, α) =
(d− µ

σ1

)2

,(1.2)

where d is an estimate for µ and α = (µ, σ1, σ2).
The model (1.1) under consideration arises naturally in the study of reliability, life

testing and survival analysis and has applications in industry, engineering, business and
social science. For example, two brands of electronic devices having m(≥ 2) and n(≥ 2)
number of units respectively put for a life testing experiment. Due to some constraints
(may be time or cost) the experimenter could able to observe only the r(≤ m) and s(≤ n)
failure times respectively. It is assumed that, the life times of each units are random and
follow exponential distributions having same minimum guarantee time. The problem we
consider, comes under the umbrella of estimation problems �estimation of parameters
of a distribution function using censored samples�. For some more examples on related
model one may refer to Suresh [13]. Basically, the censoring schemes available are type-I
(number of failures are random), type-II (censoring time is random) and random censor-
ing (both may be random) or some modi�cations of these. We consider the conventional
type-II right censoring sampling scheme which is a particular case of progressive type-II
censoring scheme. For some results on estimation of parameters of exponential distri-
butions using various such conventional censoring schemes one may refer to Lawless [9]
and Johnson et al. [8]. For some reference on estimation of parameters using progressive
type-II censored samples one may refer to Chandrasekar et al. [4], Madi [12] and Wang
et al. [14] and the references cited there in. Some applications of these types of models
have been discussed in Balakrishnan and Aggarwala [1] and Balakrishnan and Cramer
[2]. It is very surprising to see in the literature that, a very little attention has been
paid for estimation of a common mean/location (or in general common parameter) when
incomplete data (censored samples) are available from the population. In that regard,
Chiou and Cohen [5] considered the model in (1.1) under type-II censoring scheme and
estimate the common location parameter µ, when the scale parameters are unknown.
They obtained the maximum likelihood estimate (MLE) and the uniformly minimum
variance unbiased estimate (UMVUE) for µ. They have also generalized the results to
k = 3 exponential populations. Elfessi and Pal [6] considered the problem of estimation
of common scale parameter of several exponential populations under type-II censoring
scheme. They provided stein type testimators for the common scale parameter and used
this to construct estimators for the location parameters.

In the case of full sample (that is r = m and s = n) probably, Ghosh and Razmpour
[7] was the �rst to consider the problem of estimation of µ. They obtained the MLE, a
modi�cation to the MLE (MMLE) and the UMVUE for µ. Asymptotic and numerical
comparisons of these estimators were done in terms of bias and mean squared error.
Their simulation study shows that, the MLE is dominated by both the MMLE and the
UMVUE. Jin and Pal [11] considered the problem of estimation of common location
parameter of several exponential populations and suggested a class of estimators which
dominates the MLE under a class of convex loss functions. For some early results on the
estimation of common location of exponential populations we refer to Jin and Crouse
[10] and the references there in.

In this article, we consider the model in (1.1) under the conventional type-II censoring,
which was considered earlier by Chiou and Cohen [5] and estimated the common location
parameter µ with respect to a quadratic loss function. The aim of the present work is
twofold, one is to propose a wide class of estimators which include the MLE, the MMLE



1309

(we propose in next section) and the UMVUE for µ. Secondly, we derive a su�cient
condition that helps in obtaining estimators which dominate estimators belonging to
this class. The rest of the work is organized as follows. In Section 2, we present the
model and discuss some basic results. In Section 3, a general class of estimators has
been proposed and su�cient conditions for improving estimators in the class has been
derived. This class contains the MLE, MMLE and the UMVUE for µ. Using the results
of section 3, estimators dominating the MLE and the UMVUE have been obtained. In
Section 4, a massive simulation study has been carried out to numerically compare the
risk performances of all these estimators.

2. Some Basic Results

In this section, we discus the model and derive some basic estimators such as the
MLE, a modi�cation to the MLE (MMLE) and the uniformly minimum variance unbiased
estimator (UMVUE) for the common location parameter µ, when the scale parameters
are unknown.

Speci�cally, let X(1) ≤ X(2) ≤ · · · ≤ X(r), (2 ≤ r ≤ m) be the r ordered observations
taken from a random sample of size m which follows Ex(µ, σ1) as in (1.1). Similarly,
let Y(1) ≤ Y(2) ≤ · · · ≤ Y(s), (2 ≤ s ≤ n) be the s ordered observations from a random
sample of size n which follows Ex(µ, σ2) as in (1.1). We assume that the two random
samples drawn are stochastically independent. The joint probability density function of
Xr = (X(1), X(2), · · · , X(r)) and Y s = (Y(1), Y(2), · · · , Y(s)) is given by

f(xr, ys) = M exp

{
−
∑r
i=1(x(i) − µ) + (m− r)(x(r) − µ)

σ1

−
∑s
j=1(y(j) − µ) + (n− s)(y(s) − µ)

σ2

}
,(2.1)

where, µ ≤ x(1) ≤ x(2) · · · ≤ x(r); µ ≤ y(1) ≤ y(2) · · · ≤ y(s); −∞ < µ < ∞, σ1 > 0,
σ2 > 0 and

M =
m(m− 1) · · · (m− r + 1)n(n− 1) · · · (n− s+ 1)

σr1σ
s
2

.

It can be observed that, the maximum likelihood estimator (MLE) of µ is
Z = min(X(1), Y(1)) = dML (say). The MLEs of both σ1 and σ2 can be obtained by
di�erentiating the log-likelihood function with respect to σi (i = 1, 2) and equating to
zero. These are obtained as,

σ̂1 =

∑r
i=1(X(i) − Z) + (m− r)(X(r) − Z)

r
,

σ̂2 =

∑s
j=1(Y(j) − Z) + (n− s)(Y(s) − Z)

s
.

Let us introduce the new random variables

U1 =

∑r
i=1 X(i) + (m− r)X(r)

m
, and U2 =

∑s
j=1 Y(j) + (n− s)Y(s)

n
.

For our model, a su�cient statistic is (U1, U2, Z) (see Chiou and Cohen [5]). Further,
the joint probability density function of (U1, U2, Z) is given by,

fU1,U2,Z(u1, u2, z) = K
[ (u1 − z)r−2(u2 − z)s−1

ΓsΓ(r − 1)
+

(u1 − z)r−1(u2 − z)s−2

ΓrΓ(s− 1)

]
exp

{
− m(u1 − µ)

σ1
− n(u2 − µ)

σ2

}
, u1 > x(1), u2 > y(1), z > µ(2.2)
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where

K =
mrns

σr1σ
s
2

.

It should be noted that the details of derivation of the joint probability density function
of (U1, U2, Z) has been omitted here for brevity, however for equal sample sizes one may
refer to Chiou and Cohen [5].

The probability density function of Z is given by

fZ(z) = p exp{−p(z − µ)}, z > µ,(2.3)

where p = m
σ1

+ n
σ2
. It can be noted that, E(Z) = µ + 1

p
. Motivated by Ghosh and

Razmpour [7], we propose a modi�cation to the MLE dML as,

dMM = Z − 1

p̂
,(2.4)

where, we have the MLE for p as p̂ = m
σ̂1

+ n
σ̂2
. It can be further noticed that the

statistics (U1 − Z,U2 − Z) and Z are independent. Using the complete and su�cient
statistic (U1 − Z,U2 − Z,Z), it is easy to observe that the UMVUE of µ is given by,

dMV = Z − (U1 − Z)(U2 − Z)

(r − 1)(U2 − Z) + (s− 1)(U1 − Z)
,(2.5)

(see Chiou and Cohen [5] for m = n and r = s).
In the next section, we prove a general inadmissibility result for a�ne equivariant

class of estimators and as a consequence, estimators dominating the MLE dML and the
UMVUE dMV in terms of risk values have been obtained.

3. A Su�cient Condition for Improving Equivariant Estimators

In this section, we introduce the concept of invariance to our problem and obtain some
inadmissibility conditions for estimators belonging to the a�ne equivariant class.

Let G = {ga,b : ga,b(x) = ax+ b, a > 0,−∞ < b <∞} be an a�ne group of transfor-
mations. Let us use the notation V1 = U1 − Z, V2 = U2 − Z. Under the transformation
ga,b, the su�cient statistics, V1 → aV1, V2 → aV2 and Z → aZ+b. The set of parameters
being transformed as µ→ aµ+ b, σi → aσi, i = 1, 2. In order that, the loss function (2.1)
to be invariant, the decision rule d must satisfy the equation,

d(aZ + b, aV1, aV2) = ad(Z, V1, V2) + b.

Taking choice for b = −aZ, where a = 1
V1
, and rearranging the terms, we obtain the form

of an a�ne equivariant estimator based on (Z, V1, V2) for estimating µ as,

d(Z, V1, V2) = Z + V1Ψ(V ),

= dΨ, (say),(3.1)

where Ψ(V ) is any function of V = V2
V1
.

Further, de�ne a function Ψ0, for the a�ne equivariant estimator dΨ (as given in
(3.1)) as,

(3.2) Ψ0(v) =


− 1
r+s

max(v, 1), if Ψ(v) < − 1
r+s

max(v, 1)

Ψ(v), if − 1
r+s

max(v, 1) ≤ Ψ(v) ≤ − 1
r+s

min(v, 1),

− 1
r+s

min(v, 1), if Ψ(v) > − 1
r+s

min(v, 1)

Next, we present the main result of this section which helps in obtaining the improved
estimators for µ.
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3.1. Theorem. For the a�ne equivariant estimator dΨ given in (3.1), de�ne the function
Ψ0 as given in (3.2) and the loss function be the a�ne invariant loss (1.2). The estimator
dΨ is inadmissible and is improved by dΨ0 , if there exist some values of parameters
(µ, σ1, σ2) such that, P (dΨ 6= dΨ0) > 0.

Proof. The proof of this theorem can be done by using a result of Brewster and Zidek
[3]. So, consider the conditional risk function of dΨ given V = v.

R((dΨ, α)|V = v) =
1

σ2
1

E[(dΨ − µ)2|V = v],

=
1

σ2
1

E[(Z + V1Ψ(V )− µ)2|V = v].(3.3)

The above risk function (3.3) is a convex function in Ψ. Hence, the minimizing value of
Ψ(V ) for �xed values of V is obtained as,

Ψ̂(v, σ1, σ2) = −1

p

E(V1|V = v)

E(V 2
1 |V = v)

.(3.4)

To evaluate the above expression in (3.4), we have the joint probability density function
of (U1, U2, Z) as given in (2.2). Let us use the transformation V1 = U1 −Z, V2 = U2 −Z
and Z = Z. The inverse transformation is given by U1 = V1 + Z, U2 = V2 + Z, and
Z = Z. The jacobian is obtained as J = 1. Hence, the joint probability density function
of (Z, V1, V2) is obtained as,

fV1,V2,Z(v1, v2, z) =
mrns

σr1σ
s
2

[ vr−1
1 vs−2

2

ΓrΓ(s− 1)
+

vr−2
1 vs−1

2

ΓsΓ(r − 1)

]
exp{−m

σ1
(v1 + z − µ)−

n

σ2
(v2 + z − µ)},

v1 > 0, v2 > 0, z > µ.

Using the independence of (V1, V2) and Z one can easily write the joint probability density
function of (V1, V2) and is given by,

fV1,V2(v1, v2) =
mrnsp−1

σr1σ
s
2

[ vr−1
1 vs−2

2

ΓrΓ(s− 1)
+

vr−2
1 vs−1

2

ΓsΓ(r − 1)

]
exp

{
− m

σ1
v1 −

n

σ2
v2

}
,

v1 > 0, v2 > 0.

We need to calculate the conditional density of V1 given V. Let us use the transfor-
mation, V = V2

V1
, V1 = V1. The inverse transformation is given by V2 = V V1, V1 = V1.

The jacobian of this transformation is obtained as V1. Hence the joint probability density
function of (V1, V ) is obtained as,

fV1,V (v1, v) =
mrnsp−1

σr1σ
s
2

[vr+s−2
1 vs−2

ΓrΓ(s− 1)
+
vr+s−2

1 vs−1

ΓsΓ(r − 1)

]
exp

{
− m

σ1
v1 −

n

σ2
vv1

}
,

v1 > 0, v > 0.

The marginal density function of V is given by

fV (v) =
mrnsp−1Γ(r + s− 1)

σr1σ
s
2

(m
σ1

+
n

σ2
v
)1−r−s[ vs−2

ΓrΓ(s− 1)
+

vs−1

ΓsΓ(r − 1)

]
,

v > 0.

It is easy to observe that, the conditional probability density function of V1 given V = v,
is a gamma distribution with shape parameter r + s− 1 and scale parameter σ1σ2

mσ2+nσ1v
.
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Here the gamma probability density function with a shape parameter α and a scale
parameter β is de�ned as,

g(x, α, β) =
1

Γ(α)βα
xα−1e

− x
β , x > 0, α > 0, β > 0.

So, the conditional expectations are calculated and obtained as

E(V1|V = v) =
(r + s− 1)σ1σ2

mσ2 + nσ1v
,(3.5)

and

E(V 2
1 |V = v) = (r + s− 1)(r + s)

( σ1σ2

mσ2 + nσ1v

)2

.(3.6)

Substituting these conditional expectations from (3.5) and (3.6) in (3.4), and simplifying,

we have the minimizing choice of Ψ̂(τ, v) for �xed v as,

Ψ̂(τ, v) = − m+ nτv

(r + s)(m+ nτ)
,(3.7)

where τ = σ1
σ2
> 0, and v > 0.

In order to apply the Brewster Zidek orbit-by-orbit improvement technique (see Brew-

ster and Zidek [3]), we need to �nd the supremum and in�mum of Ψ̂(τ, v) with respect
to τ for �xed v. Let h(τ) = −m+nτv

m+nτ
. It can be easily seen that, h(τ) is an increasing

function in τ if and only if v < 1 and decreasing if and only if v ≥ 1. We consider two
separate cases for obtaining the supremum and in�mum of Ψ̂(v), depending upon v < 1
or v ≥ 1.
Case-I: v < 1. In this case, the supremum and in�mum of the function Ψ(τ, v) for �xed
values of v, are obtained as,

sup
τ>0

Ψ̂(v, τ) = − v

r + s
, and inf

τ>0
Ψ̂(v, τ) = − 1

r + s
.

Case-II: v ≥ 1. For this case we have the supremum and in�mum of Ψ(τ, v) as,

sup
τ>0

Ψ̂(v, τ) = − 1

r + s
, and inf

τ>0
Ψ̂(v, τ) = − v

r + s
.

Utilizing the results from Case-I and II, we can easily de�ne the function Ψ0(v) as in
(3.2). Now applying the orbit by orbit improvement technique of [3] (see Theorem 3.1.1
in Brewster and Zidek [3]), the proof follows. �

Next, our target is to apply the results of Theorem 3.1, and provide improved estima-
tors for µ which will perform better than the MLE dML and the UMVUE dMV in terms
of risk values. The class considered above contains the MLE dML, the modi�ed MLE
dMM and the UMVUE dMV . Hence, expressing dML and dMV in the form (3.1), we have

dML = Z + V1ΨML(V ),where ΨML(V ) = 0,

dMV = Z + V1ΨMV (V ),where ΨMV (V ) = − V

(r − 1)V + (s− 1)
.

Let us de�ne the new estimators for µ as,

(3.8) dMLI =

{
Z − V2

r+s
, if V1 > V2,

Z − V1
r+s

, if V1 ≤ V2

and

(3.9) dMV I =

{
Z − V1

r+s
max(V, 1), if ΨMV (V ) < − 1

r+s
max(V, 1),

dMV , otherwise.
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Next, we present the result in the form of a theorem, regarding improvement over the
MLE dML and the UMVUE dMV , for estimating µ.

3.2. Theorem. Let the loss function be the quadratic loss as in (1.2).

• The estimator dML (MLE) is inadmissible and is improved by dMLI .
• The estimator dMV I improves upon dMV (UMVUE), if there exists some values
of parameters (µ, σ1, σ2) such that, P (dMV 6= dMV I) > 0.

Proof. The proof follows by an application of Theorem 3.1. The choice of ΨML = 0 >
− v
r+s

(when v < 1) and also ΨML = 0 > − 1
r+s

(when v ≥ 1). Hence, replacing

these choices by their respective supremum values, we get the estimator de�ned in (3.8),
which has smaller risk values than dML by an application of Theorem 3.1. Also we
note that, for estimator dMV , the choice P (ΨMV (V ) < − 1

r+s
) > 0 (when v < 1) and

P (ΨMV (V ) < − v
r+s

) > 0 (when v ≥ 1). Replacing ΨMV (V ) by these extreme values in

dMV we get the required estimator dMV I as given in (3.9), which has smaller risk values
than dMV . �

Let us de�ne Ψ1 = − 1
r+s

max(v, 1) and Ψ2 = − 1
r+s

min(v, 1).

3.1. Remark. Though the estimator dMM is a member of the class considered in (3.1)
(we can write dMM = Z+V1ΨMM (V ), where ΨMM (V ) = − V

rV+s
), it can not be improved

by using our result in Theorem 3.1, as it can be seen that, P (ΨMM (V ) ∈ [Ψ1,Ψ2]) = 1.

3.2. Remark. The class of estimators DΨ = {dΨ : Ψ1 ≤ Ψ ≤ Ψ2} form a complete class
for estimating common location parameter µ when the loss is (1.2).

Next, we present an example where our model �ts well and compute the estimates for
the minimum guarantee time.

3.1. Example. (Simulated Data) Suppose two brands of electronic devices each having
30 units are placed for a life testing experiment. It is known that, the lifetimes (in hours)
of each unit follows an exponential distribution with same minimum guarantee time. The
experimenter could able to observe only 15 failures (in hours) from each brands of devices
because of some constraints. The data for both the brands are obtained as,

Brand 1: 1417.70, 1458.49, 2963.76, 3969.39, 5995.44, 6939.76, 7048.85, 7768.59, 7844.87,
8824.96, 9190.34, 9321.34, 9434.04, 10793.03, 12881.22.

Brand 2: 462.71, 659.86, 1187.35, 1295.99, 1370.69, 2050.36, 2305.46, 2633.27, 3176.41,
3297.63, 3413.95, 3806.01, 4571.04, 4639.71, 6059.09.

On the basis of above data, we have computed the statistic values as Z = 462.7199,
T1 = 9506.285, and T2 = 3931.15. The various estimates for µ have been computed as
dML = 462.7199, dMLI = 331.6816, dMM = 277.3143, dMV = 264.0711 and dMV I =
264.0711. It can be noted that the condition for improvement over dMV (that is ΨMV <
− 1
r+s

max(w, 1)) is not satis�ed. So, in this case we will not get improved estimator for
dMV . In this situation, we recommend to use dMM .

4. Numerical Comparisons

In this section, we compare numerically the simulated risk values of all the estimators
proposed in previous sections for estimating µ. For this purpose, we have generated
20,000 type-II censored random samples each from two exponential populations (1.1)
with a common location parameter µ and di�erent scale parameters σ1, σ2. The loss
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function is taken as (1.2). We use Monte-Carlo simulation method to compute the risk
values of each estimator. The accuracy of simulation has been checked and the error is
of the order of 10−3. It can be easily seen that with respect to the loss (1.2), the risk
functions of all the estimators are function of τ (> 0) for �xed sample sizes. Though the
values of τ can lie in the interval (0,∞) theoretically, to avoid simulation error we present
the risk values for τ up to 4. Let us de�ne the percentage of relative risk improvements
(RRI) of all estimators with respect to the MLE as,

R(MLI) =
dML − dMLI

dML
× 100, R(MM) =

dML − dMM

dML
× 100

R(MV ) =
dML − dMV

dML
× 100, R(MV I) =

dML − dMV I

dML
× 100.

Further we de�ne the censoring factors (CF1, CF2) for both the populations as the ratio
of number of observed samples to total number of samples. That is for �rst population
CF1 = r/m and for second population CF2 = s/n. It can be noticed that the censoring
factors CF1 and CF2 always lie between 0 and 1. A massive simulation study has been
carried out by considering various combinations of sample sizes. However, for illustration
purpose, we present (in Table 4.1-4.3) the percentage of relative risk performances of
dMLI , dMM , dMV and dMV I over dML for equal and unequal sample sizes. Speci�cally in
Table 4.1 we present the percentage of relative risk performances for sample sizes (16, 16)
and (24, 24). The �rst column gives the values of τ. Corresponding to one value of τ,
there corresponds three values of relative risk performances for an estimators. These
three values are obtained for CF1 = CF2 = 0.25, 0.50, 0.75 respectively. Similarly in
Tables 4.2-4.3 the relative risk performances have been presented for unequal sample
sizes. We have also plotted the graph of the RRI values of the improved estimators with
respect to MLE in Figures 1 and 2 for CF1 = CF2 = 0.25 and CF1 = CF2 = 0.5
respectively. It can be seen that, as the values of CF1 and CF2 become close to 1, the
amount of improvements for dMV I over dMV is marginal.

The following conclusions can be made from our simulation study and Table 4.1-4.3.

(i) The risk values of all the estimators are decreasing as τ increases, with respect
to the loss function (1.2). Further, as τ becomes large the risk values of all
the estimators converge to some constant value. The percentage of relative
risk performances of each estimator with respect to MLE increases as censoring
factors (CF1 and CF2) increase for �xed sample sizes.

(ii) When the sample sizes are small, and for small values of τ, the percentage of
relative risk improvement for dMM is maximum (near about 46%). For moderate
values of τ the estimator dMV I has the best percentage of relative risk perfor-
mance (near about 46.5%). For large values of τ the estimator dMM performs
the best (near about 45%).

(iii) For moderate sample sizes, and for small values of τ the estimator dMM performs
the best(about 47%). When τ values are moderate the estimators dMM and
dMV I are good competitors of each other. For large values of τ the estimator
dMM performs the best (about 48.5%).

(iv) For large sample sizes, and for small values of τ the estimator dMV I has the best
performance (48%). For moderate values of τ the estimators dMM and dMV I

are competing each other. For large values of τ the estimator dMM has the best
percentage of relative risk performance (48%).

(vi) As the sample sizes increase for �xed censoring factors (CF1 and CF2) the
amount of percentage of improvements of dMLI over dML increases. Also the
amount of improvement of dMV I over dMV increases as sample sizes increase.
The percentage of risk improvement of dMV I over dMV is near about 2.5% and
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this value decreases as CF1 and CF2 become close to 1. The percentage of
improvement for dMLI over dML has been seen near about 45.5%. This validates
the �ndings of theoretical results in Section 3.

(vii) It has been also noticed that for small and large values of τ (that is when the
standard deviations vary signi�cantly) the percentage of relative risk improve-
ments for dMV I is very marginal. A similar type of observations were made for
other combinations of m,n and r, s and we omit the tables here.

(viii) Combining the facts (ii)-(iv), we recommend using dMM for all sample sizes.
Though the estimator performs better theoretically (around 2.5% improvement
from simulation study) than dMM , we do not recommend using it as it is not a
smooth estimator.

5. Conclusions

In this article, we have considered the model that was earlier considered by Chiou and
Cohen [5] for exponential populations. Speci�cally, we have considered the estimation
of common location parameter µ of two exponential populations when the samples are
type-II right censored in a decision theoretic approach. First we propose a broad class of
estimators (which are equivariant under an a�ne group of transformations) for the com-
mon location parameter µ. Interestingly, this class contains the MLE and the UMVUE
for µ. Then we provide a su�cient condition which may be useful for improving certain
estimators in this class. Using our results of Theorem 3.1, we have obtained an estimator
which dominates the MLE signi�cantly (the percentage of relative risk improvement is
between 28% to 46%). However, the improved estimator obtained for the UMVUE has
marginal percentage of risk improvements. The theoretical results are well supported by
a simulation study. It should be noted that, a very little attention has been given by the
researchers in the recent past for the problem considered in this article. Our work revisits
the problem and will de�nitely help the researchers to search new estimators which may
work better than the usual one.
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Table 4.1: Relative risk performances of di�erent estimators for µ
with CF1=CF2=0.25,0.50,0.75

τ ↓ m=n=16 and r=s=4,8,12 m=n=24 and r=s=6,12,18
R(MLI) R(MM) R(MV ) R(MV I) R(MLI) R(MM) R(MV ) R(MV I)

33.53 40.45 37.89 38.28 36.95 44.43 43.73 43.78
0.25 38.07 45.33 44.88 44.90 39.62 47.01 46.90 46.90

39.74 47.04 46.92 46.92 40.54 47.75 47.70 47.70

36.14 41.51 40.22 41.34 40.33 44.93 44.38 44.63
0.50 42.32 46.77 46.60 46.70 43.48 47.42 47.29 47.30

42.81 47.06 47.03 47.07 44.71 48.30 48.21 48.22

36.95 41.19 39.84 41.28 41.06 44.75 44.71 45.08
0.75 43.37 46.40 46.38 46.58 44.76 47.12 47.21 47.25

45.40 47.66 47.56 47.64 46.91 48.74 48.73 48.76

36.91 41.13 40.54 41.84 41.36 44.61 44.24 44.80
1.00 43.05 45.57 45.32 45.61 45.68 47.54 47.62 47.67

46.24 48.07 48.03 48.11 47.17 48.40 48.37 48.41

37.04 41.11 39.91 41.40 41.69 45.15 44.95 45.35
1.25 43.31 46.07 46.08 46.22 45.66 47.69 47.67 47.71

45.66 47.77 47.74 47.81 47.00 48.60 48.62 48.63

36.94 41.47 40.52 41.78 40.81 44.64 44.51 44.84
1.50 43.30 46.55 46.41 46.56 45.85 48.58 48.57 48.61

44.08 46.73 46.71 46.76 45.93 48.43 48.48 48.49

36.55 41.29 40.00 41.09 40.19 44.35 43.84 44.23
1.75 42.78 46.62 46.38 46.54 44.19 47.39 47.29 47.31

44.06 47.46 47.43 47.46 45.06 48.22 48.24 48.25

36.31 41.67 40.28 41.48 39.85 44.55 44.17 44.45
2.00 41.34 45.79 45.66 45.80 43.58 47.44 47.35 47.36

43.12 47.04 46.94 46.96 43.79 47.76 47.84 47.84

35.56 41.56 40.84 41.65 39.05 44.24 43.88 44.10
2.25 41.15 46.22 46.08 46.13 42.34 46.86 46.76 46.77

42.19 47.11 47.14 47.14 44.53 48.81 48.74 48.74

35.49 41.43 40.01 40.72 38.77 44.60 44.42 44.56
2.50 40.18 45.91 45.92 45.95 42.26 47.50 47.42 47.42

42.22 47.26 47.12 47.12 43.32 48.38 48.35 48.35

34.69 40.89 39.52 40.17 38.29 44.12 43.57 43.66
2.75 40.42 46.30 46.05 46.08 41.04 46.71 46.64 46.64

41.84 47.48 47.33 47.34 42.76 48.28 48.24 48.24

34.69 41.25 39.37 40.01 37.65 44.02 43.49 43.61
3.00 39.39 45.78 45.62 45.65 41.31 47.33 47.19 47.19

41.43 47.70 47.66 47.66 42.30 47.90 47.78 47.78

33.76 40.31 38.73 39.18 37.41 43.81 43.07 43.16
3.25 39.01 45.49 45.08 45.12 41.10 47.42 47.30 47.30

40.58 46.69 46.46 46.46 41.26 47.63 47.62 47.62

33.60 40.59 39.24 39.73 36.49 43.66 43.39 43.46
3.50 38.88 45.76 45.45 45.46 40.77 47.60 47.44 47.45

39.85 46.48 46.35 46.35 41.16 47.74 47.70 47.70

33.37 40.29 38.57 38.95 36.26 43.28 42.58 42.65
3.75 38.39 45.22 44.71 44.72 40.13 47.33 47.26 47.26

40.37 47.54 47.41 47.41 41.13 47.95 47.88 47.88

33.25 40.55 38.77 39.17 36.25 43.72 43.12 43.17
4.00 38.84 45.89 45.35 45.36 39.91 47.02 46.82 46.82

40.19 47.51 47.35 47.35 40.77 47.89 47.82 47.82
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Table 4.2: Relative risk performances of di�erent estimators for µ
with CF1=CF2=0.25,0.50,0.75

τ ↓ m=12, n=16 and r=3,6,9;s=4,8,12 m=16,n=24 and r=4,8,12;s=6,12,18
R(MLI) R(MM) R(MV ) R(MV I) R(MLI) R(MM) R(MV ) R(MV I)

29.25 37.89 34.50 35.38 31.45 41.49 40.45 40.63
0.25 35.04 44.60 44.27 44.29 36.23 46.53 46.27 46.28

36.97 46.18 45.94 45.94 37.14 47.65 47.62 47.62

32.74 39.09 37.52 39.11 36.07 42.83 42.52 43.10
0.50 39.42 44.97 44.80 44.89 40.79 46.90 46.94 47.00

41.94 47.14 46.96 47.01 42.25 47.81 47.79 47.80

34.76 39.84 38.18 40.33 39.25 43.96 43.31 44.16
0.75 42.23 45.88 45.60 45.91 43.45 46.94 47.04 47.11

44.05 47.15 47.23 47.29 45.70 48.37 48.32 48.36

35.28 39.89 38.37 40.58 39.79 43.63 43.20 44.07
1.00 42.72 45.92 45.90 46.24 44.68 46.95 46.86 47.01

45.23 47.48 47.53 47.61 46.89 48.56 48.58 48.63

36.23 40.66 39.31 41.34 39.76 43.25 42.80 43.49
1.25 42.67 45.58 45.63 45.82 45.22 47.16 46.95 47.06

45.66 47.63 47.45 47.57 46.41 47.99 47.99 48.04

35.91 40.14 38.42 40.25 40.43 44.05 43.65 44.32
1.50 42.88 45.88 45.75 45.98 44.96 47.30 47.34 47.42

45.20 47.53 47.47 47.52 46.86 48.62 48.57 48.58

35.92 40.24 38.61 40.13 40.30 43.92 43.42 43.95
1.75 42.04 45.31 45.13 45.32 43.86 46.20 46.00 46.11

44.36 47.13 47.06 47.10 46.41 47.99 47.99 48.04

35.56 40.27 38.44 40.20 39.64 43.22 42.43 42.85
2.00 41.86 45.49 45.20 45.32 44.45 47.31 47.22 47.24

43.84 47.06 47.01 47.04 44.86 47.42 47.37 47.37

35.96 40.75 38.80 40.09 40.18 44.16 43.59 43.89
2.25 41.39 45.43 45.25 45.35 43.16 46.47 46.39 46.42

43.64 47.33 47.26 47.28 45.15 48.31 48.35 48.35

35.56 40.52 38.81 39.93 39.32 43.34 42.48 42.83
2.50 41.00 45.26 44.94 45.03 42.95 46.28 46.01 46.02

43.34 47.24 47.08 47.10 44.75 47.94 47.84 47.84

34.77 39.67 37.73 38.64 38.48 42.70 41.93 42.24
2.75 41.15 45.70 45.34 45.41 42.86 46.61 46.39 46.40

42.67 46.74 46.49 46.49 44.14 47.98 47.98 47.98

35.79 41.03 39.09 39.89 38.51 43.07 42.41 42.64
3.00 40.39 45.18 44.86 44.90 42.14 46.35 46.29 46.31

42.31 46.84 46.68 46.69 44.36 48.21 48.15 48.15

34.58 39.71 37.22 38.10 38.88 43.40 42.37 42.59
3.25 40.11 45.23 44.88 44.95 42.37 46.53 46.30 46.31

42.24 47.07 46.86 46.87 43.46 47.78 47.77 47.77

34.35 39.71 37.56 38.19 38.68 43.24 42.33 42.46
3.50 39.99 44.93 44.35 44.37 42.19 46.74 46.56 46.56

42.06 47.33 47.23 47.24 43.44 47.60 47.47 47.47

34.03 39.71 37.80 38.46 38.35 43.18 42.32 42.45
3.75 39.45 44.74 44.28 44.29 41.49 46.00 45.80 45.80

40.85 46.03 45.86 45.86 42.85 47.12 46.96 46.96

33.97 39.39 36.59 37.23 38.19 43.11 42.12 42.27
4.00 39.61 45.10 44.54 44.57 41.79 46.23 45.85 45.85

40.81 46.32 46.20 46.20 43.13 47.75 47.63 47.63
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Table 4.3: Relative risk performances of di�erent estimators for µ
with CF1=CF2=0.25,0.50,0.75

τ ↓ m=16, n=12 and r=4,8,12;s=3,6,9 m=24,n=16 and r=6,12,18;s=4,8,12
R(MLI) R(MM) R(MV ) R(MV I) R(MLI) R(MM) R(MV ) R(MV I)

34.11 39.83 37.83 38.35 38.28 43.11 42.09 42.21
0.25 39.67 45.15 44.67 44.67 42.23 46.88 46.57 46.58

41.39 46.83 46.62 46.63 43.01 47.51 47.36 47.36

35.57 40.03 38.08 39.47 40.31 43.99 43.14 43.66
0.50 41.87 45.42 45.15 45.32 44.64 47.61 47.54 47.59

43.98 47.17 47.14 47.14 45.64 48.10 47.99 48.00

36.05 40.50 39.30 41.18 40.32 43.70 43.15 43.80
0.75 43.15 46.10 46.11 46.31 45.22 47.34 47.20 47.33

45.30 47.41 47.40 47.47 46.67 48.21 48.16 48.19

35.94 40.60 38.90 41.29 40.17 44.11 43.82 44.59
1.00 43.05 46.17 46.18 46.51 44.81 47.11 47.00 47.16

44.87 47.09 47.08 47.21 46.24 47.89 47.90 47.94

35.13 40.18 38.90 41.13 38.67 43.17 42.73 43.59
1.25 41.50 45.10 45.03 45.38 43.57 46.53 46.40 46.55

45.11 47.91 47.81 47.98 46.13 48.47 48.41 48.46

34.86 40.35 38.80 40.80 38.29 43.47 43.09 43.73
1.50 41.50 45.10 45.03 45.38 42.46 46.55 46.57 46.66

43.66 47.15 47.14 47.21 44.54 47.79 47.79 47.80

32.93 38.83 37.01 39.12 36.77 42.72 42.33 42.98
1.75 40.78 45.89 45.80 46.06 40.84 45.61 45.53 45.60

42.76 47.15 47.06 47.13 43.34 47.87 47.82 47.85

32.43 38.96 37.52 39.24 36.54 43.45 43.26 43.82
2.00 39.94 45.70 45.42 45.57 40.41 46.29 46.25 46.30

41.20 46.73 46.72 46.77 42.46 48.01 48.02 48.04

32.32 39.25 37.39 39.06 35.80 43.27 42.83 43.30
2.25 38.61 45.06 44.98 45.06 40.29 47.02 46.98 47.01

40.91 46.86 46.69 46.73 41.55 48.12 48.15 48.16

31.72 38.94 37.08 38.51 35.01 42.83 41.95 42.47
2.50 38.31 45.50 45.25 45.36 39.40 46.87 46.76 46.79

40.09 46.68 46.59 46.60 40.80 48.27 48.31 48.32

31.51 38.91 36.52 37.72 34.06 42.22 41.42 41.78
2.75 37.16 44.36 44.06 44.10 38.19 46.03 45.84 45.86

39.62 47.24 47.22 47.23 40.20 48.16 48.11 48.11

30.73 38.31 35.25 36.63 33.13 41.87 41.10 41.40
3.00 35.56 43.53 43.24 43.33 37.67 46.34 46.24 46.25

38.97 46.56 46.28 46.29 39.28 47.99 48.01 48.01

29.81 37.87 35.43 36.51 32.66 41.73 40.70 41.01
3.25 36.33 44.46 43.97 44.00 37.27 46.28 46.04 46.04

37.90 46.33 46.25 46.25 38.66 47.66 47.58 47.58

30.06 38.35 35.35 36.40 32.39 41.80 40.94 41.11
3.50 35.70 44.30 43.80 43.83 36.51 46.21 46.17 46.18

37.02 45.54 45.39 45.39 37.52 47.06 47.03 47.03

29.39 37.91 34.99 35.90 31.94 41.65 40.53 40.73
3.75 35.29 44.30 43.79 43.80 36.09 45.99 45.77 45.78

37.56 46.46 46.20 46.20 37.51 47.30 47.19 47.19

29.17 38.14 35.76 36.55 31.38 41.08 39.80 39.91
4.00 35.16 44.41 43.83 43.85 35.89 46.07 45.74 45.75

36.46 45.71 45.53 45.53 37.51 47.38 47.18 47.18
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Figure 1. Comparison of RRI in % of improved estimators for µ when
m = n = 16 and r = s = 4.
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