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Generalized multi-phase regression-type estimators

under the effect of measuemnent error to estimate
the population variance

Saadia Masood*T, Javid Shabbirt

Abstract

In this article, we suggest some regression-type estimators for the esti-
mation of finite population variance using multi-variate auxiliary infor-
mation under multi-phase sampling schemes when measurement error
(ME) contaminates the study variable. An empirical study is also car-
ried out to judge the merits of proposed estimators.
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1. Introduction

In sample surveys, it is customary to exploit the auxiliary information to enhance the
precision of estimators. Ratio and regression estimators provide one type of example.
Sometimes the sample units are chosen with probability proportionate to some measure
of size based on the auxiliary variate. In all these cases it is information on just one
auxiliary variate that is used for reasons of sample selection or estimation. Pretty often
we take information on several variates and it may be considered important to make use
of the whole of the available material to improve the precision of at least some of the key
items in the survey (see Raj [10]). Isaki [7] has discussed multi-variate ratio estimators
to estimate finite population variance S;. Singh and Solanki ([16], [17]) and Solanki and
Singh [19] proposed the procedure for variance estimation using auxiliary information
under simple random sampling.

Two-phase sampling of a finite population occurs when a sample from the population
is itself sampled, with the goal of determining variates in the sub-sample not already
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available in the sample. An important example is the regression estimator for means
or totals, which uses values of an auxiliary variable from the full sample to estimate
the mean of a variable of interest that is available only on the subsample. Multi-phase
sampling is not widely discussed in literature. Mukerjee et al. [9] considered mainly
three phases. Singh [18] proposed a class of estimators for population variance under two-
phase sampling, whose composition was partially defined for the single auxiliary variable.
Dorfman [5] proposed regression estimator for estimation of population variance under
two-phase sampling scheme. Allen et al. [1] proposed a family of estimators of population
mean using multi-auxiliary information in presence of measurement errors.

In most of the statistical studies, it is one of the common believes that the data are
error-free but usually in realistic circumstances this statement is not absolutely met and
the data are infected by errors. The consequences made for the error free data become
invalid for the measurement error situation. Some important sources of measurement
error are discussed in Cochran [3]. In sampling theory, the use of suitable auxiliary infor-
mation results in considerable reduction in mean square error. Shukla et al. ([11],[12])
contributed by suggesting a mean estimator as well as class(es) of factor-type estima-
tor(s) in the presence of measurement error. Singh and Karpe [13] have paid attention
towards the estimation of population mean of the study variable y using the auxiliary
information in presence of measurement error. Singh and Karpe [14] considered the
problem of estimation of population variance S, under the assumptions: (i) when the
study variable y is measured without error and auxiliary variable z is affected by error
with known error variance SZ, (ii) when the study variable y is affected by error with
known error variance S2 and the auxiliary variable x is free from error. Furthermore, un-
der the assumption of measurement error in study variabley, Singh and Karpe [15] paid
attention towards the estimation of finite population variance Si. Bhushan et al. [2]
proposed two-phase generalized class of regression-type estimators using auxiliary infor-
mation. Diana and Giordan [4] have proposed a family of estimators for the population
variance Sg by assuming error in both variables yand x under the regression approach. In
practical application, let a psychiatrist wants to estimate the population variance of level
of pathology in certain class of patients which depends upon the thinking disturbance ,
aggressive attitude, number of major miss-haps in life, ect.

In literature, the work on estimation of finite population variance using multi-auxiliary
variables under multi-phase sampling is lacking especially when the study variable y is
assumed to be contaminated with measurement error, so the present article is one of the
steps to the solution of such situation.

Proposed Set-up: In the present study, we consider the following set-up:

(1) Complete Information Case (CIC): When information on all ¢ auxiliary variables
is known (we use single phase sampling).

(2) Incomplete Information Case (IIC): When information on some auxiliary vari-
ables is known.

(3) No Information Case (NIC): When information on all ¢ auxiliary variables is
unknown.

In Section 2, the symbols and notations used in this article are discussed. Section 3
presents the generalized regression-type variance estimator based on complete informa-
tion of the multi-auxiliary variables about population variance, when the study variable
is contaminated with measurement error. Section 4 present the generalized regression-
type variance estimator when population variance of few auxiliary variables is known. In
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Section 5, the generalized regression-type variance estimator is proposed when the pop-
ulation variance of all multi-auxiliary variable is unknown. Sections 6, 7 and 8 present
the efficiency comparison, numerical analysis and concluding remarks respectively.

2. Symbols and notations

Let U = {1,2,....., 4, ..., N} be a finite population of N distinct and identifiable units.
Let y and z; (i=1,2,...,7,7+1,...,q), be the study and the ¢ auxiliary variables re-
spectively, taking values y; and z;; for the j-th population unit. We are interested
in estimating the finite population variance (S;) under multi-phase sampling schemes.
Specifically we assume that a preliminary large sample n;) is drawn with simple random
sampling without replacement (SRSWOR) from a population and information on the
auxiliary variable z1 is taken. In second phase, a relatively small sample of size n() is
drawn from nq) (n(g) < n(1>) and information on both auxiliary variables z1 and x5 is
taken. This procedure goes up to the last phase when the smallest sample of size n(,,1)
(n(q_H) <N < ... < n(l)) is drawn. At this phase, all the ¢ auxiliary variables as well
as the variable of interest y are also observed. According to assumption, the measure-
ment error is present in the variable of interest y denoted by y® with known variance S2.
Moreover, let Sgi and sgi(l)denote the known population variance and sample variance
of the i-th auxiliary variable (i = 1,2,...,7,7 + 1,...,q) at [-th phase (I =1,...,q,q + 1),
respectively. We limit our numerical study to two-phase sampling using three auxiliary
variables.

The observational or measurement errors are defined as
Ujay = y]%l) — Y and Vi) = LL‘?}(Z) — Tij(1) (Z = 1, 2, T+ 1, vy q) 5
where ;) and v;;(;yare assumed to be stochastic with zero mean and constant variances
52 and Sf,i. As gy and Z,(;) are unbiased estimators but sz(l)and sii(” are biased esti-
mators.

Let (17, X’i) and (S;, Sil) be the population means and population variances of the true
values of y;y and x;;(;) respectively with corresponding sample means (g(l) i’i(l)) and

sample variances sz(l) ) siim) at [-th phase. We know that gjf% = Tln Z] ) yz(l)ls un-
2
_ () - TP :
biased estimator but sy(l) = n<,)—1 D= ( Y5 ?i(l)) is biased estimator of Sy due
to measurement error. Similarly :EZN) = n(ll) > (l{ x”(” is unbiased estimator but
2
n — - . . .
s$? = n(l)—l > @ ( zE ) m?{l) (i=1,2,..,r,r+1,...,q) is biased estimator of S,

due to measurement error at [-th phase.
The expected values of sgﬁ) and sf?fare given by

E(s52) = 83+ 52 and B (22, ) = 82, + 52,
where S2 and 52 are known, then the unbiased estimators of 52 and S2 ,are
52 52 and 52 - 82 (i=12,..,mr+1,..,q).

vy Sy(z) Ty — =32

i)

To obtain the properties of proposed estimators, we use the following approximations.
For I-th and (I + 1)-th phase, we define the notations as
®2 _ Q2 (2] ®2 Q2 Q 2 Q2
Let Syay = Sy (1+ey(l)) , Syen) = Sy (l—i—ey(lﬂ)) , Sy =5, (1—|—ey(l)),

_ Q2 2 _ o2 2 a2
$92 0 = 5z, (1 +e2 (l)) Szi0) = 5z, (1 —l—ezb(l)) Sy = 5z, (1 + ezi(l“))

i(l41)
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such that & (ey(z)) = W(l)sgAZﬂw E (61?54-1)) = 90(1"'1)52‘4;% E (ei(z)) = SO(Z)SE)‘;;y?
2 * 2 4 ok
E (61’1(1)) =P SacLAxa:a K (eacl(lJrl)) E (ezl(l) z(l+1)) = (p(lJrl)SxL)‘xL;LLv
* 2 *
E ey(”e%u)> ‘p(l)S Szz)‘yz , B (ey(z>emq(z+1)) = ‘P(H-l)syszq Ayai»

« 242, (1—6
where A = Yoy + = gz y) ay = S2+52, Y2y = BZ(y) — 3 and 2, = ﬁZ(u) -3,

here ﬁz(y> and B3, are the population co-efficients of kurtosis for the variable y and u.

Let )‘;1’171 = Azjz; — 1, )‘Zm = Aya; — 1, :uzmi = Myz; — Myl Hy = ng Ha; = Sgi and

_ 1
P = ey’
_ H22(t,s) _ s _ _ .
Also )\ts = m = ﬁ ort= Y, T; and s = Y, x; (Z = 1,2, e, T + 1,....,q)7
SN (4T (5:-5)"

where fiap(t,s) = NoT

For a = 2 and b = 2= piag(s,s) =
For a =0 and b = 2= poa@,s) = Zi=1\%i72)
For a =2 and b = 0= MZO(t,s) = Zei=1\"i 77 )

3. Generalized Regression-Type Estimators Using Multi- Auxiliary
Variables

In this section, the estimators are formulated under the proposed setup.

3.1. Generalized regression-type estimators using multi-auxiliary variables
under multi-phase sampling in the presence of ME under CIC. Let sy(z) and

Z(”be the sample variances of the study variable y under measurement error and the
i-th auxiliary variable (i = 1,2,...,7,7 + 1,...,q) respectively. The population variance
S2 (i=1,2,..,m,7+1,...,q) of all multi-auxiliary variables is known. We consider the
following generalized multi-phase regression-type estimator for population variance S;

using a; (1 =1,2,...,7,7 4+ 1,...,q) as unknown constants.

(3-1) Syl - Sy(z) + Za’ (Si 1(1))

In terms of e’s, we have
a®2 2
(3.2) Syl =8y = y y(z) Zalsmtell(z)

Squaring (3.2) and then taking expectation, we get M SE (SZ‘%) as

2
(33) MSE (SS@E) = E( 6U(l) Z%Sﬁzezz(l)> :

i1 Poeil e, (1=1,2,..

For optimum value of a; = (—1) 0

o ,q), the resulting minimum
zx(gxq

MSE (3512), to first order of approximation, is given by
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q

: el
(34) MSE (sﬁ")mm St [ A, =S (1) (v74) P Ny

‘Azz(qxq)| oy

L i=1
Let %2 =39 (-1t M@ then (3.4) can be written as
502, = 2= Famanwl 13 then G

(85)  MSE(S57)

1

af s
n:‘P(l)Sy Ayy_%ig s2 :|

<2,
Remark 3.1.1: Single-phase sampling using ¢ auxiliary variables

For full information case using ¢ multi-auxiliary variables, we replace [ by 1, which is the
case of simple random sampling. The estimator given in (3.1) becomes

q
a®2t _  ®2 2 2
(36) Syl - 89(1) + Zai (Sml - Swi(l)) :
=1

i1 |Aym7 |<yiq) (Z

0 =1,2,...,q), the resulting mini-

For the optimum values of a; = (—1) )]
xx(gXq

mum MSE (S’;eff), to first order of approximation, is given by
(3.7) MSE (gng)min = 1)Sy {A;y - %ig,s%q] :

Here \AWL|( is the determinant of matrix of population variances of the variables

yiq)
Yy T1, e, Tg a0 [Agggxq)| is the determinant of matrix of population variances of the

variables 1, ...., xq.

Remark 3.1.2: Single-phase sampling using ¢ auxiliary variables in the
absence of measurement error

Let the observations of variable of interest y be recorded without an error. Substituting
Sz =0in (3.5), we get Ay, = Ay,

(3.8) MSE (551) =emS, {/\Zy *%35.32 } -
min Tq

3.2. Generalized regression-type estimators using multi-auxiliary information
under multi-phase sampling in the presence of ME under IIC. Let Siiﬂ) and

sii(Hl) be sample variances of the auxiliary variables z; (1 = 1,2,...,r,7r+1,...,q) at I-
th and (I 4 1)-th phases respectively with the sample size n(;) and n(41) having the pop-
ulation variance Sﬁi. Also s?ﬁ ) be the sample variances of the study variable y of size
na41) selected at (I + 1)-th phase. The population variance S, (i = 1,2, ...,r,7r +1,...,q)
on some auxiliary variables is known. We formulate the generalized regression-type
estimator for the estimation of unknown finite population variance Sﬁ using «;, 0;

(i=1,2,..,r)and v; (i =r+ 1,7+ 2,...,q) as unknown constants.

s s

oR2 _  ®2 . 2 _ 2 . 2 _ 2

SyQ Sy + ZO” (Szi Szz‘(l)) + Zél (sz‘ szi(l+1>)
i=1 i=1

q
2 2
(3.9) + Z i (sz‘(l) N Szi<l+1>) ’

i=r+1
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In terms of e’s, we have

(3.10)

&R2 a2 _
Sys =Sy, =

SH Z‘“S Ty ~ Z‘S SeiCaisn + Z i, (ezz‘u) ezz‘<z+1>)} .

i=r+1

Squaring (3.10) and then taking expectation, we get

™
2
ey<z+1) Za Saflezz(z) Zdis@fiezi(l+l)
i—1

2
q
(3~11) + Z 'Yisii (ezi(l) _ezi(l+1)>:| .

i=r+1

MSE ($57) =

it+1 |,

For the optimum values of o; = (—1) otane)] Lo T o

ya; |(yz ) |Ay$i|(yg':r)> 5 = (71)1'4,-1 |Aywi|(yir)
)

(i=1,2,..,r) and v = (—1)""" M (i=r+1,r+2,...,q), the resulting mini-
zx(gxq

mum MSE (5'3%2), to first order of approximation, is given by

~ r . A eilius *
MSE (sg@;) =5 o AL, — oo 3 (-1 Muy;l
min i=1 Azo(gxa| K3
a |Aya; . - *
i il(yzq) Wyo,
(3.12) +(Pw = pa) Y () Ai(q) vl
i=1 | M(qxq)| My

i A Tq Z s .
Let R2, , =37 (1) MM"% then (3.12) can be written as
548 =1 Naz@xa)| b3

Y TTp
(813) MSE(S7) =5, {so(m)A;y — PRz + (Po) = earn) Wigﬁgq] :

Remark 3.2.1: Two-phase sampling using ¢ auxiliary variables

For the case of two-phase sampling using ¢ multi-auxiliary variables, we replace [ by
1. The estimator given in (3.9) becomes

(3.14)
T T q
GO2T _ B2 (q2 _ 2 (g2 _ 2 (.2 2
Sy2’ = Syg +Z Qi (Slqv Szi(l))+z di (S%‘ Szi(2>)+ Z i (Sziu) Sl‘uz))
i=1 i=1 imrt1
For optimum values of o; = (—1)"*" [Aeilyzy Pl 6 = (—1)"*! M
v [Aga(gxq)l Azzrxml |7 7° [Azz(gxq)l

; Ayasi|yz
(i=1,2,...,r) and »; = (—1)"** M (i=r+1,7+2,...,q), the minimum

ew(gxq)l

MSE (S{%QT), to first order of approximation, is given by

(3.15)

&2 4 * 2 2 2
MSE (552 T)min =5y |:<p(2) (Ayy - %%S§T> + (4,0(1) - 90(2)) <§R§%s§q %@). m)} :
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Remark 3.2.2: Two-phase sampling using ¢ auxiliary variables in the ab-
sence of measurement error

Let the observations of variable of interest y be recorded without an error. Substituting
S2 =01in (3.13), we get A5, = A}

vy

(3.16) MSE(S}) = [wz —eRe .2+ () —ve) R
3.3. Generalized regression-type estimators using multi-auxiliary information

under multi-phase sampling in the presence of ME under NIC. Let Sy<z+1) and

2

Sz be the sample variances of the study variable y under measurement error and the

(141
i- tl(l J:n;xlliary variable (¢ = 1,2,...,7,7 + 1, ..., q) respectively at (I + 1)-th phase, whereas
siimbe the sample variance of ¢-th auxiliary variable at [-th phase. The population
variance Sii (i=1,2,...,7,7+1,...,q) of all multi-auxiliary variables is unknown. We
consider the following generalized regression-type estimator for population variance S;
under no information case using o; (i =1,2,...,r,7+ 1,...,q) as unknown constant.

2
(3.17) S5 =sigp, + ZO“ (sf W 3w7<z+1>)

To the first order of approximation, we write (3.17) as

§®2
(3.18) Sy — Sy =5, y<z+1> + Zszial (611(1) ezi(l+1>) :

Squaring (3.18) and then taking expectation, we get MSE as

q 2
§®2 4 ®
(3.19) MSE (Sy3 ) =5S,E {ey““) + Z o (exm) - ex,i(l+1)>:| .

it+1 |Ayz; |(yzq)( =1,2,.

For optimum value of a; = (—1) 0 ,q) ,the resulting minimum

sa(axq)l

MSE (3'5932), to first order of approximation, is given by

) |Ayw‘ Y@ *
G * i o Zq) Hyx;
MSE (S;%Q)min :S;L |:90(l+1) (Ayy - Z (-1) i 7((1) y2

) |Azagxa)| 1y
Avsil(uzy) e
(3.20) o ”17 vai |
(>Z |Aca(axal H3

We can write (3.20) in compact form as

(3.21) MSE (5552)

min

=5, {%H)Azy +(p0) —Pain) R 2 } :
Tq
Remark 3.3.1: Two-phase sampling using ¢ auxiliary variables

For no information case using ¢ auxiliary variables, we replace [ by 1, which is the case
of two-phase sampling. The estimator given in (3.17) becomes

G®2t _ 2
(3.22) Sy; y(Q) —&—Zaz (Sz W S z,(2)) .
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i1 |Ayiﬂi|<y5sq) (Z —1.2

For optimum value of o; = (—1) Kon e
xx(gXq

,q), the resulting minimum

MSE (§;®32T), to first order of approximation, is given by

(323) MSE (S5 =5, [@(Q)A;er(sou)* 2) R 2 ]

Remark 3.3.2: Two-phase sampling using g auxiliary variables in the absence
of measurement error

Let the observations of variable of interest y be recorded without an error. Substituting
S2 =01in (3.21), we get A}, = A}

vy

(3.24) MSE (S§3)min =5, [@(2)/\21; + (P — ¢@) %ig.sgq] :

4. Efficiency Comparison

To obtain the efficiency of proposed estimators, we compare the mean square errors of
proposed multi-phase regression-type variance estimators under measurement error with
the estimators assumed to be free of error.

By (3.7) and (3.8), (3.15) and (3.16), (3.23) and (3.24), it is evident that

(@), <4,

Note: The Condition (4.1) is always true.

Remark: The numerical comparison is made under the efficiency conditions given above.

5. Data Description

Population 1: (Source: Mukherjee et al. [8])

The fertility data is based on 64 countries. Let y =Total fertility rate, 1980-1985, the
average number of children born to a woman, using age specific fertility rates for a given
year, 1 = Child mortality, the number of deaths of children under age 5 in a year per
1000 live births, z2 =Female literacy rate, (percent) and x3 =Per capita GNP (in billions)
in 1980.

N = 64, S = 2.277, Sng = 5772.670, S = 676.409, 52 = 7429417.00,

Y =5.549, X, = 141.500, X, = 51.188, X3 = 1401.250, S2 = 1.255,
Ayy = 2.773, Apyoy = 2.341, Mgy = 1.631, Ay = 34.046,

Ay, = 1.458, Ay = 1.069, Aoy = 0.540, Ayy 0y = 1.415,

,\mg = 1.921, Apyay = 0.372, A, = 1.234.

Population 2:(Source: Gujarati [6])

The data is baesd on the demand for chicken in USA, 1960-1982. Let y = Per capita
consumption of chickens in pounds, z; = Real disposable income per capita in dollars,
22 = Real retail price of chicken per pound (in cents) and x3 = Real retail price of pork
per pound (in cents).

N = 23,5, =54.360, S2, = 381735.00, S2, = 123.592, S, = 1240.710,
¥ = 39.669, X1 = 1035.065, X5 = 47.995, X3 = 90.400, S; = 3.987,

Ayy = 2.03, Xoyoy = 2.696, Xopay = 1.756, Aagay = 1.951, Ayary = 2.094,
Ayas = 1541, Ay = 1.758, Aaywy = 1.997, Aoy = 2.145, Agyuy = 1.755,
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A,y = 1.033.

Population 3:(Source: Vandaele [20])

The data is based on the crime rate data of USA in 1960. Let y =Number of offenses
reported to police per million population, 1 =Number of males of age 14-24 per 1000
population, zo =Indicator variable for southern states and x3 =Mean number of years of
schooling times 10 for persons age 25 or older.

N =47,S; = 1495.853, S3, = 151.516, 52, = 0.229, S7., = 124.076,

Y =90.508, X1 = 137.511, X> = 0.340, X5 = 105.406, 52 = 1428.881,
Ayy = 3.859, Apyoy = 3.684, Appay = 1.423, Apgzy = 1.896, Ay, = 0.456,
Ayzs = 0.743, Ayzg = 1.041, Ay oy = 1.354, Agywy = 1.356, Appg = 1.220,
Ayy = 2.703.

Table 1. MSE of proposed ratio-type estimators S‘f’lﬁ, 352% and S‘S%QT

Estimators Pop.1  Pop.2 Pop.3

Sl 0.408 119.840 17.957

0.112 2.05 42.106

§e2t 0.709 453.212 62.581

y2

0.134 14.781 1.408

Sl 0.554 280.270 19.282

0.379 2.050 42.106

*The results written in Table 1 in bold format are the absolute values of measurement
error.

6. Conclusion

In general, the presence of measurement error in the survey data invalidates the results.
The goal of this study was to show how measurement error is to be seperated in case of
multi-phase sampling using multi-auxiliary variables for estimation of population vari-
ance S;. The values of absolute measurement error are shown in Table 1. It is also evident
that the condition (4.1) holds for all the populations. Hence, the use of proposed esti-
mators are highly preferred in the cases of multi-phase sampling under CIC, IIC and NIC.
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