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Abstract
In this paper, we propose a robust variable selection to estimate and se-
lect relevant covariates for the finite mixture of linear regression models
by assuming that the error terms follow a Laplace distribution to the
data after trimming the high leverage points. We introduce a revised
Expectation-maximization (EM) algorithm for numerical computation.
Simulation studies indicate that the proposed method is robust to both
the high leverage points and outliers in the y-direction, and can obtain
a consistent variable selection in the case of outliers or heavy-tail error
distribution. Finally, we apply the proposed methodology to analyze a
real data.
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1. Introduction
Finite mixture of linear regression (FMLR) models provide a very important statistical

tool to fit the unobserved heterogeneous relationships. They are extensively used in many
research fields, e.g., marketing and social sciences [29, 25], machine learning [12, 13]. A
comprehensive review of finite mixture models was given in [20]. It is well-known that
the traditional maximum likelihood estimator (MLE) for mixture linear regression models
works well when the error term follows a normal distribution. However, the normality
based MLE is not robust to outliers in the datasets.

Many robust methodologies were proposed and widely studied for mixture linear re-
gression models in the literature. For instance, [18] and [24] introduced the weighted
MLE. [21] proposed the trimmed likelihood estimator. [1] proposed a modified Expectation-
maximization (EM)-algorithm by replacing the least squares criterion with a robust
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criteria in the M step. [30] and [26] proposed a robust estimation procedure based a
t-distribution and a Laplace distribution, respectively.

In many practical applications, there are many covariates involved in the FMLR mod-
els. Nevertheless, the number of important ones is usually relatively small. In fact, the
problem of variable selection in a FMLR model has received much attention recently.
For example, [28] used Akaike information criterion (AIC) and Bayesian information cri-
terion (BIC) to study model choice issues for a class of Poisson mixture models. [15]
introduced a penalized likelihood approach for variable selection in FMLR models based
on some well-known families such as Gaussian, Poisson, and Binomial distributions, and
developed an EM algorithm for numerical computations. [17] proposed a mixture regres-
sion LASSO (MR-LASSO) method to penalize both regression coefficients and mixture
components simultaneously. [14] gave an overview of the new feature selection methods
in FMLR models. [16] studied the issue of variable selection in FMLR models when the
number of parameters in the model can increase with the sample size. [5] proposed a pe-
nalized likelihood approach to simultaneously select important fixed and random effects
in the finite mixtures of linear mixed-effects models. It is very important to note that
many of those methods are closely related to the traditional MLE method.

To the best of our knowledge, the robust feature selection for FMLR models has
not been well studied. In the linear regression models, the least absolute deviation
(LAD)estimator is very important when the error terms follow a heavy-tailed distribu-
tion, and has the desired robust properties. In fact, the maximum-likelihood estimator of
the regression parameters given a Laplace distributed regression errors is LAD estimator.
[26] applied the LAD estimator to a class of FMLR models. In this article, we propose a
robust variable selection procedure based on the LAD estimator for FMLR models, and
introduce a revised EM-type algorithm for numerical computation. Simulation studies
show that the proposed method is robust and can obtain a consistent variable selection
when there are outliers in the datasets or the error term follows a heavy-tailed distri-
bution. In addition, the proposed robust variable selection approach works comparably
to the traditional penalized likelihood-based method when there are no outliers and the
error is normal.

The rest of this paper is organized as follows. In Section 2, we propose a robust
variable selection for FMLR models, and introduce a revised EM-algorithm for numerical
computation. In Section 3, numerical simulations and a real data analysis are conducted
to compare the performance of the proposed method with the existing method. We
conclude with some remarks in Section 4.

2. Methodology
Let Z be a latent class variable with P (Z = i|X = x) = πi, i = 1, · · · ,m, where x is

a q-dimensional vector. Given Z = i, suppose that the response Y depends on X in a
linear way

Y = XTβi + σiεi,

where βi is an unknown q-dimensional vectors of regression parameters, σi is an unknown
positive scalar, and εi is a random error with density fi(·) and mean 0, and is independent
of X. Then, the density Y given X is

(2.1) g(y|x,θ) =

m∑
i=1

πi
1

σi
fi

(
y − xTβi

σi

)
,

where θ = (π1,β1, σ1, · · · , πm,βm, σm)T .
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Suppose that Dn = {(X1, Y1), · · · , (Xn, Yn)} are random observations from the model
(2.1). The log-likelihood function is

`n(θ) =

n∑
j=1

log

[
m∑
i=1

πi
1

σi
fi

(
Yj −XT

j βi

σi

)]
.

The MLE of θ is obtained by maximizing the log likelihood function `n(θ).
To simultaneously estimate and select relevant covariates, [6] proposed a unified ap-

proach via penalized likelihood. A penalized log-likelihood function is defined as follows:

(2.2) ˜̀
n(θ) = `n(θ)−

m∑
i=1

πi

{
q∑

k=1

pni(βik)

}
,

where pni(βik) is nonnegative and nondecreasing functions in |βik|. Although there are
many methods to deal with the problem of feature selection in finite mixture of linear
regression models in the literature, many of those methods are closely related to the least
squares method. It is well-known that the least squares estimator is very sensitive to
the outliers in the dataset. Next, we will study the robust variable selection for finite
mixture of regression models. Similar to the idea proposed by [26], we consider the
density function fi of error term follows a Laplace density function with mean 0 and
scale parameter 1/

√
2. Then, (2.2) can be written as

(2.3) ˆ̀
n(θ) =

n∑
j=1

log

[
m∑
i=1

πi√
2σi

exp

(
−
√

2|Yj −XT
j βi|

σi

)]
−

m∑
i=1

πi

{
q∑

k=1

pni(βik)

}
.

[26] pointed out that the EM algorithm based on the Laplace distribution is robust
against outliers along the y-direction, but not for the high leverage points. Therefore, in
order to obtain a robust variable selection for both the high leverage points and outliers
in the y-direction, we consider a trimmed version of the new method by fitting the new
model to the data after trimming the high leverage points. Let X = (X1, · · · ,Xn)T . For
each covariate Xj , we first compute a robust Mahalanobis distance

MDj = (Xj −m(X))C(X)T (Xj −m(X)),

where m(X) and C(X) are robust estimates of location and scatter for X, respectively.
In the literature, there are many robust location and scatter estimators. Those estima-

tors include M-estimator [19], Stahel-Donoho (SD) estimators [27, 4], minimum volume
ellipsoid (MVE) [22], S-estimators [3], and minimum covariance determinant (MCD)
estimators [2]. Due to the availability of fast MCD algorithm [23], we employ MCD
estimators to calculate a robust Mahalanobis distance in this paper. Denote

ωj =

{
1, if MDj ≤ χ2

q,0.975,
0, otherwise.

With such a weight function, the high leverage points are discarded. Then, by taking
an adaptive LASSO for the penalty function, the proposed robust variable selection
estimator is defined by maximizing the following objective function

(2.4) ¯̀
n(θ) =

n∑
j=1

ωj log

[
m∑
i=1

πi√
2σi

exp

(
−
√

2|Yj −XT
j βi|

σi

)]
−

m∑
i=1

πi

{
q∑

k=1

λik
|βik|
|β̂ik|

}
,

where β̂ik is the unpenalized estimator for β in (2.4).
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2.1. The revised EM algorithm for robust variable selection. If j-th observation
(Xj , Yj) is from i-th component, we denote Rij = 1, i = 1, · · · ,m, j = 1, · · · , n, otherwise,
Rij = 0. Assume the complete data set {(Xj , Yj , Rij), i = 1, · · · ,m, j = 1, · · · , n} is
observed, then, (2.4) can be written as

¯̀
n(θ)

=

n∑
j=1

ωj

m∑
i=1

Rij log

[
πi√
2σi

exp

(
−
√

2|Yj −XT
j βi|

σi

)]
−

m∑
i=1

πi

{
q∑

k=1

λik
|βik|
|β̂ik|

}

=

n∑
j=1

m∑
i=1

ωjRij log πi −
n∑

j=1

m∑
i=1

ωjRij log(
√

2σi)−
n∑

j=1

m∑
i=1

ωjRij

√
2|Yj −XT

j βi|
σi

−
m∑
i=1

πi

{
q∑

k=1

λik
|βik|
|β̂ik|

}
.

In the following, we introduce the revised EM algorithm to maximize ¯̀
n(θ) iteratively.

(1) Choose an initial value for θ, denote θ(0).
(2) E-Step. Given the data Dn and θ(k), we compute the conditional expectation

of the function ¯̀
n(θ) with respect to Rij . The conditional expectation is given

as follows:

(2.5)

Q(θ;θ(k)) =

n∑
j=1

ωj

m∑
i=1

κ
(k)
ij log πi −

n∑
j=1

ωj

m∑
i=1

κ
(k)
ij log(

√
2σi)

−
n∑

j=1

ωj

m∑
i=1

κ
(k)
ij

√
2|Yj −XT

j βi|
σi

−
m∑
i=1

πi

{
q∑

k=1

λik
|βik|
|β̂ik|

}
.

where

κ
(k)
ij = E[Rij |Dn,θ

(k)] =
π
(k)
i σ

(k)−1
i exp{−|Yj −XT

j β
(k)
i |/σ

(k)
i }∑m

i=1 π
(k)
i σ

(k)−1
i exp{−|Yj −XT

j β
(k)
i |/σ

(k)
i }

.

(3) M-step. The M step on the (k+1)-th iteration maximizes Q(θ;θ(k)) with respect
to θ. In the usual EM algorithm, the mixing proportions are updated by

π
(k+1)
i =

∑n
j=1 ωjκ

(k)
ij∑n

j=1 ωj
, i = 1, · · · ,m,

which maximize the leading term of Q(θ;θ(k)). This works well in our simula-
tions.

In the following, we consider that the πk are constant in Q(θ;θ(k)), and
maximize Q(θ;θ(k)) with respect to the other parameters. Since the objective
function Q(θ;θ(k)) is not smooth, we maximize the following objective function
by the local quadratic approximation [6, 10],

(2.6)

n∑
j=1

ωj

m∑
i=1

κ
(k)
ij log πi −

1

2

n∑
j=1

ωj

m∑
i=1

κ
(k)
ij log(2σ2

i )

−
n∑

j=1

ωj

m∑
i=1

κ
(k)
ij

√
2(Yj −XT

j βi)
2

σ2
i

σ
(k)
i

|Yj −XT
j β

(k)
i |

−
m∑
i=1

πi

{
q∑

k=1

λik
β2
ik

|β̂ik||β(k)
ik |

}
.
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Then, the regression coefficients are updated by solving the following equa-
tions

(2.7)

n∑
j=1

ωjκ
(k)
ij

∂

∂βit

[√
2(Yj −XT

j βi)
2

(σ
(k)
i )2

σ
(k)
i

|Yj −XT
j β

(k)
i |

]

+
∂

∂βit

[
πi

{
λit

β2
it

|β̂it||β(k)
it |

}]
= 0,

where i = 1, · · · ,m, and t = 1, · · · , q.
The dispersion parameters are updated by the following expression

(2.8) σ
2(k+1)
i =

2∑n
j=1 ωjκ

(k)
ij

n∑
j=1

ωjκ
(k)
ij

√
2(Yj −XT

j β
(k+1)
i )2σ

(k)
i

|Yj −XT
j β

(k)
i |

, i = 1, · · · ,m.

(4) Repeat steps 2, 3 until convergence.
Remark 2.1 The above proposed revised EM-algorithm involves in an initial estimator,
we select a robust estimation proposed by [26] for the unpenalized FMLR models as an
initial estimator, that is, by maximizing the following objective function,

n∑
j=1

log

[
m∑
i=1

πi√
2σi

exp

(
−
√

2|Yj −XT
j βi|

σi

)]
.

Remark 2.2 To avoid numerical instability of the proposed algorithm due to very small
values in the denominator of (2.7) and (2.8), as suggested by [10], we replace |β(k)

it | and
|Yj −XT

j β
(k)
i | by |β

(k)
it | + ε and |Yj −XT

j β
(k)
i | + ε for a given small value ε > 0. In this

paper, we take ε = 10−6.

3. Simulation and Application
3.1. Simulation study. In this section, we will evaluate the finite sample performance
of proposed method via simulation studies. To compare the proposed approach with some
existing methods, we generate the sample data (X1, Y1), · · · , (Xn, Yn) from the following
two-component mixture regression models,

Yi =

{
XT

i β1 + ε1, if Z = 1,
XT

i β2 + ε2, if Z = 2,
i = 1, · · · , n(3.1)

with P (Z = 1) = α, P (Z = 2) = 1 − α, α = 0.4. We also simulate α = 0.25; the
outcomes are similar, and thus we do not report the corresponding results here. The
sparse regression parameters are

β1 = (0, · · · , 0,−2.5,−1.5)T ,

β2 = (0, · · · , 0,−2.5, 1.5)T ,

where β1 and β2 have eight zero elements. Covariate Xi follows a multi-normal distribu-
tion N(0,Σ), where the (i, j)-th element of Σ is ρ|i−j|, ρ = 0.5. The error terms ε1 and ε2
are independent and identically distributed random variables. To study the robustness
of proposed method, we consider the following four settings:
(1) The error terms follow a standard normal distribution, N(0, 1);
(2) The error terms follow a Student’s t-distribution with 2 degrees of freedom, t2;
(3) The error terms follow a 5% contaminated normal distribution, CN0.05 = 0.95N(0, 1)+
0.05N(10, 202);
(4) The error terms follow a standard normal distribution with 5% high leverage outliers
being X1 = (50, · · · , 50)T , and Y = 100.
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For each setting, we simulate 200 data sets from model (3.1) with sample sizes
of n = 200, 400, and compare the performance of proposed method (MixregL-MCD)
with the penalized likelihood approach (MixregL-ALASSO) [15] and the oracle estima-
tor based on the Laplace error to the data after trimming the high leverage points
based on a robust Mahalanobis distance with the MCD estimators. To measure the
finite sample performance, we report the proportions of correctly estimated zero coef-
ficients (specificity: S1) and correctly estimated non-zero coefficients (sensitivity: S2),
and the component-wise median empirical mean squared errors (MEMSE) of the es-
timators β̂k, k = 1, 2. According to [15] and [17], we consider the tuning parameter
λik = log(n) × {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. In simulation studies, the finite sample
performance of λik = log(n) × 0.2 is slightly better than that of others. Therefore, we
take λik = log(n)× 0.2 in all simulation studies and real data applications. Clearly, the
choice of tuning parameter is a very important issue, however, we shall not address the
problem of how to find the optimal tuning parameter, and will consider the choice of
tuning parameter as future work. The simulation results are given in Table 1-4.

From Table 1, we find that when the true distribution of error term is normal and there
are no outliers in the dataset, both S1 and S2 are around 1 for all three methods. The
MEMSE of both methods is close to that of oracle estimator. When there are outliers in
the datasets or the error term follows a heavy-tailed distribution, the simulation results
clearly show from Table 2 to Table 4 that the proposed method works much better than
the MixregL-ALASSO. S1 and S2 of the proposed method are higher than those of the
MixregL-ALASSO, and our proposed approach has smaller MEMSE than the MixregL-
ALASSO. In addition, the performance of proposed method is closer to that of the oracle
estimator as the sample size n increases.

Based on the above findings, the proposed method is not sensitive to outliers in the
dataset, and has the overall best performance. Thus, we recommend the use of proposed
method in practical applications.

In the above simulations, we assume that the number of mixture components is
known. However, the order m needs to be estimated based on the dataset in some
applications. There are many methods to choose the order m in the literature, e.g.,
cross-validation (CV), generalized cross-validation (GCV), Akaike information criterion
(AIC), and bayesian information criterion (BIC). In this paper, we select the order m by
minimizing a following BIC-score

BIC(m) = −2ln(θ̄m) + S log(n),

where θ̄m is the maximizer of the proposed objective function for a mixture regression
model with the order m, and S is the number of nonzero of the estimator θ̄m.

In the following, we will use simulation studies to illustrate how to select the order.
A total of 300 data sets with sample sizes n = 400 are generated according to the second
setting with true m = 2. The simulation result is shown in Figure 1. We can see from
Figure 1 that the BIC performs well to select the true order.

3.2. Real data application. In this section, we will apply the proposed methodology
to analyze the baseball salaries dataset, which can be downloaded from

www.amstat.org/publications/jse.
This dataset contains 337 observations. Of interest are to study the relationships between
the salary (measured in thousands of dollars) and the following 16 covariates: batting
average (X1), on-base percentage (X2), runs (X3), hits (X4), doubles (X5), triples (X6),
home runs (X7), runs batted in (X8), walks (X9), strikeouts (X10), stolen bases(X11) , er-
rors (X12), free agency eligibility (X13), free agent in 1991/2 (X14), arbitration eligibility
(X15), and arbitration in 1991/2 (X16). X13, X14, X15, X16 are indicators.
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Table 1. Simulation results for the first setting
n Method S1 S2 MEMSE

β1 MixregL-ALASSO 0.9850 1.0000 0.0087
MixregL-MCD 1.0000 0.9950 0.0054

200 Oracle 1.0000 1.0000 0.0052
β2 MixregL-ALASSO 0.9863 1.0000 0.0027

MixregL-MCD 1.0000 1.0000 0.0043
Oracle 1.0000 1.0000 0.0038

β1 MixregL-ALASSO 0.9950 1.0000 0.0047
MixregL-MCD 1.0000 1.0000 0.0038

400 Oracle 1.0000 1.0000 0.0033
β2 MixregL-ALASSO 1.0000 1.0000 0.0016

MixregL-MCD 1.0000 1.0000 0.0021
Oracle 1.0000 1.0000 0.0016

Table 2. Simulation results for the second setting
n Method S1 S2 MEMSE

β1 MixregL-ALASSO 0.6925 0.7750 0.2260
MixregL-MCD 1.0000 0.9850 0.0096

200 Oracle 1.0000 1.0000 0.0075
β2 MixregL-ALASSO 0.6775 0.9450 0.0398

MixregL-MCD 1.0000 0.9900 0.0043
Oracle 1.0000 1.0000 0.0038

β1 MixregL-ALASSO 0.8288 0.7100 0.2317
MixregL-MCD 1.0000 1.0000 0.0055

400 Oracle 1.0000 1.0000 0.0039
β2 MixregL-ALASSO 0.8363 0.9500 0.1001

MixregL-MCD 1.0000 1.0000 0.0026
Oracle 1.0000 1.0000 0.0019

Table 3. Simulation results for the third setting
n Method S1 S2 MEMSE

β1 MixregL-ALASSO 0.8550 0.7600 0.3095
MixregL-MCD 1.0000 0.9200 0.0097

200 Oracle 1.0000 1.0000 0.0065
β2 MixregL-ALASSO 0.8838 0.8750 0.1749

MixregL-MCD 1.0000 0.9750 0.0064
Oracle 1.0000 1.0000 0.0039

β1 MixregL-ALASSO 0.7512 0.7850 0.3382
MixregL-MCD 1.0000 0.9450 0.0051

400 Oracle 1.0000 1.0000 0.0048
β2 MixregL-ALASSO 0.8275 0.9300 0.1486

MixregL-MCD 1.0000 0.9750 0.0052
Oracle 1.0000 1.0000 0.0048

We plot a histogram of home runs and stolen bases in Figure 2. Figure 2 indicates that
there are unusual points in the dataset. According to the suggestion proposed by [15], we
apply the MixregL-ALASSO and MixregL-MCD with m = 2 to deal with this dataset.
The results are summarized in Table 5. From Table 5, we find that the MixregL-ALASSO
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Table 4. Simulation results for the fourth setting
n Method S1 S2 MEMSE

β1 MixregL-ALASSO 0.2350 0.9450 0.7180
MixregL-MCD 1.0000 0.9900 0.0055

200 Oracle 1.0000 1.0000 0.0041
β2 MixregL-ALASSO 0.3188 1.0000 0.1766

MixregL-MCD 1.0000 1.0000 0.0030
Oracle 1.0000 1.0000 0.0021

β1 MixregL-ALASSO 0.1075 0.9750 0.6932
MixregL-MCD 1.0000 1.0000 0.0033

400 Oracle 1.0000 1.0000 0.0031
β2 MixregL-ALASSO 0.1862 1.0000 0.1420

MixregL-MCD 1.0000 1.0000 0.0014
Oracle 1.0000 1.0000 0.0011

obtains more significant explanatory variables than the MixregL-MCD. However, our
proposed method should give the more reasonable model when there are outliers in the
dataset.

Table 5. Estimated regression coefficients from the baseball salaries dataset

Method
MixregL-ALASSO MixregL-MCD

Variable Component 1 Component 2 Component 1 Component 2
X1 6.5864 0.0011 0 0
X2 10.677 15.388 16.742 19.816
X3 0 0 0 0
X4 0 0.0026 0 0
X5 0 0 0 0
X6 0 0 0 0
X7 0 -0.0005 0 0
X8 0.0063 0.0058 0 0
X9 -0.0067 -0.0104 0 0
X10 0.0053 0.0066 0 0
X11 0 0 0 0
X12 0 0.0002 0 0
X13 1.7160 1.6827 2.1480 0
X14 -0.0084 -0.0012 0 0
X15 1.4961 1.4833 1.6340 0
X16 0 -0.0001 0 0

4. Discussion
In this article, we proposed a robust variable selection by assuming that the error terms

follow a Laplace distribution for FMLR models. We used the revised EM-algorithm to
solve the proposed optimization problem. The merits of proposed methodology were
illustrated via the simulation studies. According to our simulation studies, the proposed
method was robust and possessed a consistent variable selection when there were outliers
or the error distribution was heavy-tail.
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Figure 1. Order selection results based on BIC for the FMLR models
with true order m = 2

As a variable selection procedure, it is very desirable to enjoy the oracle proper-
ties. Therefore, it warrants further effort to investigate the asymptotic properties for
the proposed method. Meanwhile, it is very interesting to extent our methodology to
nonparametric mixture of regression models [8], a class of semiparametric mixtures of
regression models [11, 9], and mixture of gaussian processes [7].
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Figure 2. Histogram of home runs (a) and stolen bases (b).
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