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Strong uniform consistency of a kernel conditional
quantile estimator for censored and associated data

Wafaa Djelladj∗ and Abdelkader Tatachak†‡

Abstract

In survival or reliability studies, it is common to deal with data which
are not only incomplete but weakly dependent too. Random right-
censoring and random left-truncation are two common forms of such
data when they are neither independent nor strongly mixing but rather
associated. In this paper, we focus on kernel estimation of the con-
ditional quantile function of a strictly stationary associated random
variable T given a d-dimensional vector of covariates X, under random
right-censoring. As main results, we establish a strong uniform consis-
tency rate for the estimator. Then the �nite sample performance of the
estimator is illustrated on a simulation study.
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1. Introduction

Let {Tn, n ≥ 1} be a strictly stationary sequence of associated random variables (rv's)
of interest having an unknown absolutely continuous distribution function (df) FT . This
variable can be considered as a lifetime under biomedical studies. The major character-
istic of survival time is the incompleteness.
In survival analysis especially in medical studies, we meet random censorship models
which are one of the fundamental assumptions in the theory of survival analysis. Ran-
dom right censoring is a well-known phenomenon which may be present when observing
lifetime data. The lifetime variable may not be completely observable if the patient is
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still alive at the end of study or is dead for another reason or because of some depar-
tures of patients from the testing experimentation. Hence, the available data provide
partial information. In this case, the variable of interest T is subject to right censoring
by another non-negative rv C. In the sequel, we assume that the censoring lifetimes are
independent and identically distributed (iid) and possess an unknown Lipschitz df G. We
take in consideration the presence of a strictly stationary and associated covariate X tak-
ing values in Rd. Under this model, the observable sequence is {(Yi, δi,Xi), 1 ≤ i ≤ n},
with Yi = min(Ti, Ci), δi = 1{Ti≤Ci} and where 1A denotes the indicator function of the
event A.
As usual with random censoring, we assume that the censoring times {Ci, 1 ≤ i ≤ n} are
independent of {(Xi, Ti), 1 ≤ i ≤ n}. This means that the censoring mechanism does not
depend on the occurring event. Such a condition ensures the identi�ability of the model.
It is well known that the conditional df F (·|x) of (T |X = x) is de�ned by

F (t|x) =
1

l(x)

∫ t

−∞
f(x, z)dz =:

F1(x, t)

l(x)
,

where f(., .) is the joint probability density function (pdf) of (X, T ), l(.) is the marginal
pdf of X and F1(x, .) is the �rst derivative of the joint df F (x, .) with respect to x.
The conditional pdf will be denoted by f(.|x). Then, for all �xed p ∈ (0, 1), the p-th
conditional quantile of T given X = x is de�ned by

(1.1) ξp(x) := inf{t, F (t|x) ≥ p}.

Hence, to get a nonparametric conditional quantile estimator, we clearly have to estimate
F1(x, t) by the mean of an unbiased kernel estimator and l(x) is estimated by the famous
kernel type estimator.
There has been various researches relating to the quantile estimator in view of its inter-
esting properties. The estimator under consideration is renowned for its good description
of the data (see Chaudhuri et al. [6]) and attracted interest of several authors.
In the complete framework, Samanta [25] established the strong convergence and the
asymptotic normality of the kernel conditional quantile in the iid case. Bhattacharya
and Gangopadhyay [2] gave a Bahadur-type representation of the conditional quantile
and asymptotic models. Moreover, Mehra et al. [16] and Xiang [27] gave the almost
sure convergence of a kernel type conditional quantile estimator and its asymptotic nor-
mality. Honda [12] treated the uniform convergence and asymptotic normality of the
conditional quantile using local polynomial �tting approach while Abberger [1] studied
quantile smoothing in �nancial time series.
On the same subject matter and under censoring, Dabrowska [7] established a Bahadur
type representation of the quantile regression estimator. Besides, Qin and Wu [24] stated
the asymptotic normality of an estimator for a conditional quantile when some auxiliary
information is available using the empirical likelihood method and a linear �tting.
The strong representation of the conditional quantile estimator under right censoring
and strong mixing condition was stated by Ould Saïd and Sadki [22] while Ould Saïd
[20] established its strong uniform convergence rate in the iid case. Recently, Liang and
de Uña-Álvarez [15] assessed its strong uniform consistency and asymptotic normality in
the α-mixing setting.
Two kinds of dependency are widely used in the literature: mixing (Doukhan [8]) and
association (Esary et al. [8]). These two concepts are not completely dissociated (see
Doukhan and Louhichi [9]). In fact, we can �nd sequences that are associated but not
mixing, associated and mixing, and mixing but not associated. The main advantage of
the concept of association compared to mixing is that the conditions of limit theorems are
easier to verify: indeed, a covariance is much easier to compute than a mixing coe�cient.
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Recall that a set of �nite family of rv's (T1, . . . , Tn) are said to be associated if for all
non-decreasing functions Ψ1, Ψ2

Cov(Ψ1(T1, . . . , Tn),Ψ2(T1, . . . , Tn)) ≥ 0,

whenever the covariance exists. An in�nite family of rv's is associated if any �nite
sub-family is a set of associated rv's and any independent sequence is associated. In
classical statistical inference, the observed rv's of interest are generally assumed to be
iid. However, it is more common to have dependent variables in some real life situations.
Dependent variables are present in several backgrounds such as medicine, biology and
social sciences. Associated rv's are of considerable interest when dealing with reliability
problems, percolation theory and some models in statistical mechanics.
The notion of association was �rstly introduced by Esary et al. [11] mainly for an
application in reliability. For more details on the subject we refer the reader to the
monographs by Bulinski and Shashkin [3], Oliveira [19] and Prakasa Rao [23].
As far as we know, the problem of drawing nonparametric inference about the conditional
quantile function under associated-censored model is not available and this motivates
the study we consider here. So, the present paper deals with the almost sure uniform
convergence with a rate of the estimator de�ned in (2.4). The paper is structured as
follows: the expression of the studied estimator is presented in Section 2. Section 3
gathers the needed assumptions with some comments. A Simulation study is given in
Section 4 while the last section includes the proofs of the main and some auxiliary results.

2. Notations and estimators

Recall that in the complete data case (no censoring), the traditional kernel estimator
of F (t|x) is given by

(2.1) Fn(t|x) =

n∑
i=1

ωin(x)1{Yi≤t},

where ωin(.) are measurable functions. These functions called weights were introduced
by Nadaraya-Watson in the context of the kernel regression and de�ned by

ωin(x) =

Kd

(
x−Xi

hn,1

)
n∑
j=1

Kd

(
x−Xj

hn,1

) =

1

nhdn,1
Kd

(
x−Xi

hn,1

)
ln(x)

,

with the convention 0|0 = 0. Here Kd is a kernel function on Rd whereas hn,1 is a positive
sequence of bandwidths tending to 0 along with n and ln(.) is the Parzen-Rosenblatt
kernel estimator of l(.).
In the sequel, we will make use of the Inverse-Probability-of-Censoring Weighted (IPCW)
idea of Koul et al. [14] to de�ne the weights we will use after, that is

(2.2) ωin(x) =
1

nhdn,1

δi

G(Yi)ln(x)
Kd

(
x−Xi

hn,1

)
.

It is well known that under right censoring model, the classical empirical distribution
does not estimate consistently the df's FT and G. Therefore, Kaplan and Meier [13]
proposed consistent estimators FT,n and Gn for FT and G, respectively, de�ned by

FT,n(t) = 1−
n∏
i=1

[
1−

δ(i)
n− i+ 1

]1{Y(i)≤t}
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and

Gn(t) = 1−
n∏
i=1

[
1−

1− δ(i)
n− i+ 1

]1{Y(i)≤t}
,

where Y(1), Y(2), . . . , Y(n) are the order statistics of Y1, Y2, . . . , Yn and δ(i) is the concomi-
tant of Y(i).
The Kaplan-Meier estimator was studied in depth by many authors. For more details we
refer to Stute and Wang [26] for the iid case, Cai [4] under α-mixing condition and Cai
and Roussas [5] in the association setting.
Recall that, using the weights de�ned in (2.2), Ould Saïd [20] established a strong uni-
form consistency rate for the estimator in (2.1) in the iid case and d=1. The smoothed
version of Fn(·|·), namely

(2.3) Fn(t|x) =:
F1,n(x, t)

ln(x)
=

1

nhdn,1

n∑
i=1

δi

Gn(Yi)
Kd

(
x−Xi

hn,1

)
H

(
t− Yi
hn,2

)
1

nhdn,1

n∑
i=1

Kd

(
x−Xi

hn,1

) ,

was also considered and studied (strong consistency and asymptotic normality) in the iid
case by Ould Saïd and Sadki [21]. Here, the bandwidth hn,2 is not necessarily equal to
hn,1 and they will be denoted by h1 := hn,1 and h2 := hn,2.
Note that the estimator in (2.3) is an adapted version of that of Yu and Jones [28] to the
censoring case. Originally, this smooth estimate for complete data (without the IPCW

δi
Gn(Yi)

), was proposed and discussed by the last authors mainly to avoid the crossing
problem which occurs when using an indicator function instead of a continuous df.
It follows that, in view of (2.3), a natural estimator of (1.1) can be computed by

(2.4) ξp,n(x) = inf{t, Fn(t|x) ≥ p}.

To argue our main results, the following auxiliary pseudo-estimator will be of a great
bene�t in proving our results

(2.5) F̃n(t|x) =:
F̃1,n(x, t)

ln(x)
=

1

nhd1

n∑
i=1

δi

G(Yi)
Kd

(
x−Xi

h1

)
H

(
t− Yi
h2

)
1

nhd1

n∑
i=1

Kd

(
x−Xi

h1

) .

Note that (2.5) can not be computed since G(·) is assumed to be unknown.

3. Assumptions and main results

In the sequel, c stands for a positive constant taking di�erent values and τ will denote
a positive real number satisfying τ < τF < τG where, for any dfW , τW := sup{y;W (y) <
1}. De�ne Ω0 = {x ∈ Rd/l(x) ≥ m0 := infx l(x) > 0} and let Ω and C be compact sets
included in Ω0 and [0, τ ], respectively. The main results will be stated using the following
assumptions:

A1. The bandwidths h1 and h2 satisfy
(i) h1 → 0, nh2α+d(1−α)

1 → +∞ and log5 n

nhd1
→ 0 as n→ +∞,

(ii) h2 → 0 and nhd1h2 → +∞ as n→ +∞;
A2. The kernel Kd is a bounded pdf, compactly supported and satis�es:

(i) Kd is Hölder continuous of order α ∈ (0, 1),
(ii)

∫
Rd ujKd(u)du = 0, for all j = 1, ..., d, where u = (u1, ..., ud)

>;
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A3. The functionH in (2.3) is of class C1. Furthermore, its derivativeH(1) is assumed
to be compactly supported and satis�es the properties of a second order kernel;

A4. The marginal density l(.) is bounded and twice di�erentiable with:

sup
x∈Ω

∣∣∣∣∣ ∂kl(x)

∂xi∂x
k−1
j

(x)

∣∣∣∣∣ <∞ for i, j = 1, . . . , d and k = 1, 2 ;

A5. The joint pdf f(., .) is bounded and twice continuously di�erentiable;
A6. The joint pdf li,j(., .) of (Xi,Xj) is bounded;
A7. The joint pdf f(., ., ., .) of (Xi, Yi,Xj , Yj) is bounded;
A8. Let us de�ne Λij as follows:

Λij :=

d∑
k=1

d∑
l=1

Cov(Xk
i , X

l
j) + 2

d∑
k=1

Cov(Xk
i , Yj) + Cov(Yi, Yj),

with Xk
i the k-th component of Xi, such that for all j ≥ 1 and r > 0

sup
i:|j−i|≥r

Λij =: ρ(r) ≤ γ0e
−γr, for all γ0, γ > 0;

A9. The function ς(x) =
∫
R

1

G(v)
f(x, v)dv is bounded, continuously di�erentiable

and sup
x∈Ω

∣∣∣∣ ∂ς∂xi (x)

∣∣∣∣ <∞ for i = 1, ..., d.

3.1. Remark. Assumption A1 gives a classical choice of the bandwidths in functional
estimation. For the sake of simplicity, many authors consider that h1 = h2 which is not
justi�ed in general. Note that the condition A1 (ii) implies the �rst condition in A1 (i)
if d ≥ 2. For d = 1, the comparison is not straightforward and depends upon the order of
magnitude of h2 with respect to hα1 . Assumption A2 is quite usual in kernel estimation.
Assumptions A3-A7 are classical in nonparametric estimation under dependency while
A8 is used for covariance calculation under association structure. Furthermore, this
assumption gives a progressive trend to asymptotic independence of "past" and "future".
Finally, Assumption A9 is mainly technical.

The �rst result establishes the rate of convergence of the �uctuation term, that is∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣. This will be done by applying a Bernstein-type inequal-

ity stated by Doukhan and Neumann [10] for weakly dependent rv's. The next result
in Theorem 3.3 states a uniform almost sure convergence rate of Fn(t|x) toward F (t|x),
which will be stated with the help of Theorem 3.2. Then, as an immediate result, the
asymptotic behaviour of the kernel conditional quantile estimator will be deduced as
presented in Corollary 3.4.

3.2. Theorem. Suppose that assumptions A1-A5 and A7-A9 hold and for n large

enough, we have

(3.1) sup
x∈Ω

sup
t∈C

∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣ = O

(√
logn

nhd1

)
, a.s.

3.3. Theorem. Under the assumptions of Theorem 3.2 and A6, for n large enough we

have

sup
x∈Ω

sup
t∈C
|Fn(t|x)− F (t|x)| = O

{
(h2

1 + h2
2) + n−θ +

√
logn

nhd1

}
, a.s.

with 0 < θ < γ/(2γ + 9 + 3/2κ) for any κ > 0.



295

3.4. Corollary. Under the assumptions of Theorem 3.3, and for each �xed p ∈ (0, 1)
and x ∈ Ω, if inf

x∈Ω
f(ξp(x)|x) > 0, then for n large enough, we have

sup
x∈Ω
|ξp,n(x)− ξp(x)| = O

{
(h2

1 + h2
2) + n−θ +

√
logn

nhd1

}
, a.s.

3.5. Remark. The uniform positiveness condition on the conditional density in Corol-
lary 3.4 ensures the uniform uniqueness of the conditional quantile. Hence ∀ε > 0, ∃β >
0, ∀ηp : Ω→ R,

sup
x∈Ω
|ξp(x)− ηp(x)| ≥ ε⇒ sup

x∈Ω
|F (ξp(x)|x)− F (ηp(x)|x)| ≥ β.

3.6. Remark. We point out that the rate in Corollary 3.4 depends upon the parameter
θ pertaining to the association dependence. In addition, remark that for γ large enough,
the parameter θ approaches its upper bound (θ=1/2) and then, the covariances become
negligible which in turn permits to compare our rate with those stated in the iid and
strong mixing cases.

4. Simulation study

4.1. Description of the models. This part is established with the intention of giving
the behaviour of the conditional quantile estimator. For this purpose, we only consider
the cases of the conditional mean (p = 1/2) and the one dimensional covariate (d = 1)
. The simulation is conducted for di�erent sample sizes and censoring rates (CR). The
performance of our estimator is quanti�ed via the Global Mean Square Error (GMSE).
The simulated data are obtained as follows:

• Generate (n+ 1) iid rv's Zi from gamma distribution (Zi ∼ Γ(5, 0.5));

• Generate n iid rv's εi from normal distribution (εi ∼ N(0, 0.01));

• Given Zi, generate an n associated sequence (Xi, Ti) as follows:
a) Linear case{
Xi = exp(Zi−1 + Zi−2)/2;

Ti = 3Xi/2 + 0.45 εi.

b) Nonlinear case{
Xi = exp(Zi−1 + Zi−2)/2,

Ti = log(3Xi/2) + 0.45 εi,

• Generate n iid rv's Ci from exponential distribution (Ci ∼ exp(λ)). The param-
eter λ is adjusted according to the CR′s values;

• Keep the observed data
{

(Yi := min{Ti, Ci}), Xi, (δi := 1{Ti≤Ci})
}
.

4.1. Remark. In computing the estimators, we use the standardized normal df and a
Gaussian kernel for H and K, respectively.

In order to attenuate the boundary e�ect, we will use optimal local bandwidths. To do
so, we �rst assume that h1 = h2 =: h, and this bandwidth sweeps the interval [0.05, 0.8].
For each model, the process above is repeated B = 300 times with �xed values of n
and CR. Thus, we compute the conditional quantile estimator along a grid of points in
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[1.5, 4]. At the end of the process, we keep the optimal local bandwidth which minimizes
the estimating errors by means of the MSE (Mean Square Error) criterion, and then we
quantify the GMSE. The formula calculating the GMSE is

GMSE =
1

uB

u∑
`=1

B∑
k=1

[ξp,n,k(x`)− ξp(x`)]2 ,

where ξp,n,k(x`) is the value of ξp,n(x`) at iteration k and u is the number of equidistant
points x` belonging to [1.5, 4].
To illustrate visually the quality of �t, we will plot the conditional quantile estimator
ξp,n(x`) versus ξp(x`).

4.2. Simulation results.

4.2.1. Linear case: Note that under this model, the rv X follows Γ(10, 0.5) and the
conditional rv (T |X = x) follows N(3x/2, 0.0045).
To show how is the in�uence of the censoring rate and the sample size on the quality of
�t, we draw curves for di�erent sample sizes n = 50, 100 and 300 and CR = 40%, 25%
and 10% as illustrated by Figures 1, 2 and 3. The corresponding errors with respect to
the GMSE are summarized in Table 1.

Table 1. Values of GMSE for ξp,n with p = 0.5

Linear case n = 50 n = 100 n = 300

CR = 10% 0.0637 0.0245 0.0069
CR = 25% 0.1591 0.0586 0.0113
CR = 40% 0.2465 0.1059 0.0128

4.2. Remark. From Table 1 and the graphs plotted for the linear case, we remark that
the quality of �t seems to increase when the CR decreases. The curves reveal also that
boundary e�ects on the right side tend to diminish for large values of n. Of course, the
performance is quite acceptable when n = 50 and becomes more visible for n = 300.
It means that the in�uence of the CR on the quality of �t becomes more and more
insigni�cant along with n.
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Figure 1. Linear case: n = 50 and CR = 40, 25 and 10, respectively
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Figure 2. Linear case: n = 100 and CR = 40, 25 and 10, respectively
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Figure 3. Linear case: n = 300 and CR = 40, 25 and 10, respectively

4.2.2. Non-linear case: Note that the rv (T |X = x) follows N(log(3x/2), 0.0045) and
the choice of the log function permits to preserve the association property by monotonic-
ity.
For the rest we proceed as for the linear case. The GMSE′s are summarized in Table 2
and the quality of �t is illustrated through Figures 4,5 and 6.

Table 2. Values of GMSE for ξp,n(.) with p = 0.5

Non-linear case n = 50 n = 100 n = 300

CR = 10% 24× 10−3 15× 10−3 5.54× 10−4

CR = 25% 69× 10−3 25× 10−3 8.23× 10−4

CR = 40% 11× 10−2 51× 10−3 16× 10−3

4.3. Remark. From Table 2 and the graphs, we observe that the estimator behaves
similarly as for the linear case. The quality of �t becomes better along with the sample
size which means that the behavior of the estimator remains correct even for large values
of CR.
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Figure 4. Non linear case: n = 50 and CR = 40, 25 and 10, respectively
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Figure 5. Non linear case: n = 100 and CR = 40, 25 and 10, respectively
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Figure 6. Non linear case: n = 300 and CR = 40, 25 and 10, respectively

5. Auxiliary results and proofs

For notational convenience, let us de�ne

∆i(x, t) =
δi

G(Yi)
Kd

(
x−Xi

h1

)
H

(
t− Yi
h2

)
− E

[
δ1

G(Y1)
Kd

(
x−X1

h1

)
H

(
t− Y1

h2

)]
,

for all i = 1, ..., n. It is easily seen that

(5.1) F̃1,n(x, t)− E
[
F̃1,n(x, t)

]
=

1

nhd1

n∑
i=1

∆i(x, t).

The items of the following proposition are similar to the conditions of Theorem 1 in
Doukhan and Neumann [10]. Once the conditions are met, it becomes possible to use an
exponential inequality to prove Theorem 3.2 related to the �uctuation term.

5.1. Proposition. Let ∆1(x, t), ∆2(x, t),..., ∆n(x, t) be de�ned as above. Then, there

exist constantsM , L1, L2, µ ≥ 0, λ ≥ 0 and a non-decreasing sequence of real coe�cients

(Υ(n))n≥0 so that for all p-tuples (s1, ..., sp) and all q-tuples (v1, ..., vq) with 1 ≤ s1 ≤
... ≤ sp ≤ v1 ≤ ... ≤ vq ≤ n, we have

a) Cov

( sp∏
i=s1

∆i(x, t),

vq∏
j=v1

∆j(x, t)

)
≤ cp+qhd1h

2
d+1
2 pqΥ(v1 − sp),

b)
∞∑
s=0

(s+ 1)k0Υ(s) ≤ L1L
k0
2 (k0!)µ,∀k0 ≥ 0,



301

c) E
[
|∆i(x, t)|k0

]
≤ (k0!)λMk0 .

Proof. Proof of Proposition 5.1 To prove the �rst item of Proposition 5.1, we need
the following lemma:

5.2. Lemma. Under assumptions A2, A5, A7 and A8, we have

i) Cov

( sp∏
i=s1

∆i(x, t),

vq∏
j=v1

∆j(x, t)

)
=: C1 ≤ cp+qh−2

1 h−2
2 pqρ(v1 − sp),

ii) Cov

( sp∏
i=s1

∆i(x, t),

vq∏
j=v1

∆j(x, t)

)
=: C2 ≤ cp+qh2d

1 h
2
2.

Proof. Exploiting the de�nition 5.1, p.88 in Bulinski & Shashkin [3], we recall that the
partial Lipschitz constants are de�ned as follows

(5.2) Lipi(Φm) =

sup
z1,...,zm
zi 6=z

′
i
,z
′
i
∈R

|Φm(z1, ..., zi−1, zi, zi+1, ..., zm)− Φm(z1, ..., zi−1, z
′
i, zi+1, ..., zm)|

|zi − z′i|
,

where Φm : Rm → R and Lip(Φm) denotes the Lipschitz continuity modulus of Φm, viz

Lip(Φm) = sup
x6=y

|Φm(x)− Φm(y)|
‖x− y‖1

,

with ‖(z1, ..., zn)‖1 = |z1|+ ...+ |zn|.
To prove part (i) in Lemma 5.2, we use Theorem 5.3, p.89 in (Bulinski and Shashkin [3]).
Firstly, we set

Φp =:

sp∏
i=s1

∆i and Φq =:

vq∏
j=v1

∆j .

Then, using the fact that Kd, H and G are Lipschitz functions, we have

Cov(Φp,Φq) ≤
sp∑
i=s1

vq∑
j=v1

Lipi(Φp)Lipj(Φq)Λij ,

The de�nition in (5.2) leads to

Lipi(Φp) ≤
M0

h1h2

(
2

G(τ)

)p
‖Kd‖p−1

∞

and

Lipj(Φq) ≤
M0

h1h2

(
2

G(τ)

)q
‖Kd‖q−1

∞ ,

where M0 = max

{
h2Lip(K) ‖K‖d−1

∞ , h1

(
Lip(H) + h2

Lip(G)

G(τ)

)
‖Kd‖∞

}
.

Note that the partial Lipschitz constants are obtained as follows

Lipi(Φp) ≤ M0

h1h2

(
2

G(τ)

)p−1

‖Kd‖p−1
∞

1

G(τ)

≤ M0

h1h2

(
2

G(τ)

)p
‖Kd‖p−1

∞ .
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If Assumption A8 holds, by stationarity we get

Cov(Φp,Φq) ≤ M2
0

h2
1h

2
2

(
2

G(τ)

)p+q
‖Kd‖p+q−2

∞

sp∑
i=s1

vq∑
j=v1

Λij

≤ cp+q

h2
1h

2
2

pq ρ(v1 − sp).

This achieves the proof of (i). In order to prove the second part of Lemma 5.2, we need
to calculate the covariance term as shown hereafter by using the fact that

E [δiδj |Ti, Tj ] = E
[
1{Ti≤Ci}1{Tj≤Cj}|Ti, Tj

]
= G(Ti)G(Tj).

We also use the following simpli�ed notations

Kd,x,i := Kd

(
x−Xi

h1

)
and Ht,i := H

(
t− Yi
h2

)
.

Indeed, we have

Cov(∆i(x, t),∆j(x, t))

= E
[

δiδj

G(Yi)G(Yj)
Kd,x,iHt,iKd,x,jHt,j

]
−E

[
δi

G(Yi)
Kd,x,iHt,i

]
× E

[
δj

G(Yj)
Kd,x,jHt,j

]
= E

[
Kd,x,iKd,x,j E

(
δiδj

G(Yi)G(Yj)
Ht,iHt,j |Xi,Xj

)]
− E

[
Kd,x,i E

(
δi

G(Yi)
Ht,i|Xi

)]
× E

[
Kd,x,j E

(
δj

G(Yj)
Ht,j |Xj

)]
= E

[
Kd,x,iKd,x,j E

(
Ht,iHt,j

E [δiδj |Ti, Tj ]
G(Ti)G(Tj)

|Xi,Xj

)]
− E

[
Kd,x,i E

(
Ht,i

E [δi|Ti] |Xi

G(Ti)

)]
E
[
Kd,x,j E

(
Ht,j

E [δj |Tj ]
G(Tj)

|Xj

)]
.

Then, we get

|Cov(∆i(x, t),∆j(x, t))|

≤
∣∣∣∣∫

R2d×R2

Kd

(
x− u
h1

)
H

(
t− s
h2

)
Kd

(
x− r
h1

)
H

(
t− v
h2

)
× f(u, s, r, v)dudsdrdv|

+

∣∣∣∣∫
Rd+1

Kd

(
x− u
h1

)
H

(
t− s
h2

)
f(u, s)duds

×
∫
Rd+1

Kd

(
x− r
h1

)
H

(
t− v
h2

)
f(r, v)drdv

∣∣∣∣ .
Moreover, under assumptions A2, A5 and A7, using a change of variables we get

|Cov(∆i(x, t),∆j(x, t))| = O(h2d
1 h

2
2).(5.3)

Finally, the second part of Lemma 5.2 follows by simple algebra. �
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We need some auxiliary notations to set up the proof of Proposition 5.1. Impose

Υ(.) = ρ
d

2d+2 (.) and use the upper bounds of Lemma 5.2, namely

C
d

2d+2
1 ≤ c

(p+q)d
2d+2 h

−2d
2d+2
1 h

−2d
2d+2
2 (pq)

d
2d+2 ρ

d
2d+2 (v1 − sp),(5.4)

C
d+2
2d+2
2 ≤ c(p+q)

d+2
2d+2 h

2d(d+2)
2d+2

1 h
2(d+2)
2d+2

2 .(5.5)

Combining (5.4) and (5.5), we get

C
d

2d+2
1 C

d+2
2d+2
2 ≤ cp+qhd1h

2
d+1
2 (pq)

d
2d+2 ρ

d
2d+2 (v1 − sp)

≤ cp+qhd1h
2
d+1
2 pq Υ(v1 − sp).

This inequality concludes the proof of part (a) of Proposition 5.1. Next, under Assump-
tion A8 and choosing λ = 0, µ = 1, L1 = L2 = 1

1−e
−γd
2d+2

, the proofs of the results in (b)

and (c) are similar to those used in proving Proposition 8 in (Doukhan and Neumann
[10]), then we omit them. The proof of Proposition 5.1 is complete. �

Proof. Proof of Theorem 3.2 In order to set up the uniform asymptotic expression

of the �uctuation term
∣∣∣F̃1,n(x, t)− E

[
F̃1,n(x, t)

]∣∣∣, we apply the triangular inequality

and classical techniques to cover compacts. So, Ω can be covered by a �nite number dx,n
of balls Bk(xk, a

d
n) centred at xk = (xk,1, ..., xk,d) and C is split into dt,n subintervals

J1, ..., Jdt,n of lengths bn, centred at t`. In other words, for all x ∈ Ω, t ∈ C, there exist
integers k ∈ {1, ..., dx,n} and ` ∈ {1, ..., dt,n} such that ‖x− xk‖ ≤ adn and |t− t`| ≤ bn,

with adn =
(
n−1h2α+d

1

)1/2α
and bn =

(
nhd1

)−1/2
h2. Then, as Ω and C are bounded, let

m1 and m2 be positive constants satisfying dx,nadn ≤ m1 and dt,nbn ≤ m2.

5.3. Remark. In proving our results we will use Lemma 5.4 stated in Menni and Tat-
achak [17] (see their Lemma 3 ) which governs a strong uniform consistency rate of the
kernel estimator ln(.). We recall it hereinafter without proof.

5.4. Lemma. Under assumptions A1, A2, A4, A6 and A8, for n large enough we

have

sup
x∈Ω
|ln(x)− l(x)| = O

(
max

{√
logn

nhd1
, h2

1

})
a.s.

Next, using basic arguments, the left hand side in (3.1) is upper bounded as follows

sup
x∈Ω

sup
t∈C

∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣ ≤ I1n + I ′1n + I2n + I ′2n + I3n,

with

I1n = max
1≤k≤dx,n

sup
x∈Bk

sup
t∈C

∣∣∣F̃1,n(x, t)− F̃1,n(xk, t)
∣∣∣ ,

I ′1n = max
1≤k≤dx,n

sup
x∈Bk

sup
t∈C

∣∣∣ E [F̃1,n(xk, t)
]
− E

[
F̃1,n(x, t)

]∣∣∣ ,
I2n = max

1≤k≤dx,n
max

1≤`≤dt,n
sup
t∈J`

∣∣∣F̃1,n(xk, t)− F̃1,n(xk, t`)
∣∣∣ ,

I ′2n = max
1≤k≤dx,n

max
1≤`≤dt,n

sup
t∈J`

∣∣∣ E [F̃1,n(xk, t`)
]
− E

[
F̃1,n(xk, t)

]∣∣∣ ,
I3n = max

1≤k≤dx,n
max

1≤`≤dt,n

∣∣∣F̃1,n(xk, t`)− E
[
F̃1,n(xk, t`)

]
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Concerning I1n and I ′1n, we apply the SLLN for associated sequences (see Newman [18])
and Assumption A2(i). We obtain

∣∣∣F̃1,n(x, t)− F̃1,n(xk, t)
∣∣∣

=

∣∣∣∣∣ 1

nhd1

n∑
i=1

δi

G(Yi)
H

(
t− Yi
h2

)[
Kd

(
x−Xi

h1

)
−Kd

(
xk −Xi

h1

)]∣∣∣∣∣
≤ c

hd1 G(τ)

‖x− xk‖α

hα1

1

n

n∑
i=1

δi

≤ c

G(τ)

adαn

hd+α1

1

n

n∑
i=1

δi

= O

(
1√
nhd1

)
.(5.6)

To treat the terms I2n and I ′2n, we use Assumption A3 and Lemma 5.4. We get

∣∣∣F̃1,n(xk, t)− F̃1,n(xk, t`)
∣∣∣

=

∣∣∣∣∣ 1

nhd1

n∑
i=1

δi

G(Yi)
Kd

(
xk −Xi

h1

)[
H

(
t− Yi
h2

)
−H

(
t` − Yi
h2

)]∣∣∣∣∣
≤ c

G(τ)

|t− t`|
h2

1

nhd1

n∑
i=1

Kd

(
xk −Xi

h1

)
≤ c

G(τ)

bn
h2
ln(xk)

= O

(
1√
nhd1

)
.(5.7)

We can focus now on upper bounding the term I3n. To do so, we apply an exponen-
tial inequality adapted to associated sequences (see, Theorem 1, p.19 in Doukhan and
Neumann [10]). Indeed, for all ε > 0, we have

(5.8) P

(
n∑
i=1

∆i(xk, t`) ≥ ε

)
≤ exp

(
− ε2/2

An +B
1/(µ+λ+2)
n ε(2µ+2λ+3)/(µ+λ+2)

)
,

where An is any number greater than σ2
n and

σ2
n :=

(
n∑
i=1

∆i(xk, t`)

)
,

(5.9) Bn = 2cL2 max

24+µ+λcnhd1h
2
d+1
2 L1

An
, 1

 .
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Firstly, we have to calculate σ2
n. Indeed σ

2
n = (nhd1)2Var

(
F̃1,n(xk, t`)

)
.

On the other hand, we have

(nhd1)2Var
(
F̃1,n(xk, t`)

)
= nVar

(
δ1

G(Y1)
Kd,xk,1Htl,1

(
t` − Y1

h2

))
+

n∑
i=1

n∑
j=1
j 6=i

Cov

(
δi

G(Yi)
Kd,xk,iHtl,i,

δj

G(Yj)
Kd,xk,jHtl,j

)
=: V + S.

Firstly, let us focus on V .

V = nE
[

δ1

G(Y1)2
K2
d

(
xk −X1

h1

)
H2

(
t` − Y1

h2

)]
− nE2

[
δ1

G(Y1)
Kd

(
xk −X1

h1

)
H

(
t` − Y1

h2

)]
=: n(D1 −D2).

Concerning D1, we use classical conditional expectation techniques. So, under assump-
tions A1(i), A2 and A9, a change of variable and a Taylor expansion around xk, we
get

D1 = E
[
K2
d

(
xk −X1

h1

)
E
[
E
[

δ1

G(Y1)2
H2

(
t` − Y1

h2

)
|T1

]
|X1

]]
=

∫
Rd
K2
d

(
xk − u
h1

)
E
[
H2

(
t` − T1

h2

)
1

G(T1)
|X1 = u

]
l(u)du

≤
∫
Rd
K2
d

(
xk − u
h1

)∫
R

1

G(v)
f(u, v)dvdu, because H(.) is a df;

= hd1

∫
Rd
K2
d(z)ς(xk − zh1)dz

= hd1

∫
Rd
ς(xk)K2

d(z)dz− hd+1
1

∫
Rd
K2
d(z)

[
z1
∂ς(x∗k)

∂xk,1
+ · · ·+ zd

∂ς(x∗k)

∂xk,d

]
dz

= O(hd1).

Here x∗k is between xk − zh1 and xk. Again, to upper bound D2 we work similarly as
before. Indeed, using a change of variable, Taylor expansion and assumptions A1(i), A2
and A4, we get

D2 = E2

[
Kd

(
xk −X1

h1

)
E
[
E
[

δ1

G(Y1)
H

(
t` − Y1

h2

)
|T1

]
|X1

]]
= O(h2d

1 ).

Consequently, we get

V = O(nhd1).

Secondly, to evaluate S, we �rst de�ne

B1 = {(i, j); 1 ≤ |i− j| ≤ ηn} and B2 = {(i, j); ηn + 1 ≤ |i− j| ≤ n− 1},
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where ηn = o(n). Then, we have

S =

n∑
i=1

∑
B1

Cov

(
δi

G(Yi)
Kd,xk,iHtl,i,

δj

G(Yj)
Kd,xk,jHtl,j

)

+

n∑
i=1

∑
B2

Cov

(
δi

G(Yi)
Kd,xk,iHtl,i,

δj

G(Yj)
Kd,xk,jHtl,j

)
= : S1 + S2.

From (5.3), it is clear that

S1 = nηnO(h2d
1 h

2
2) = O(nηnh

2d
1 h

2
2).(5.10)

Next, the term S2 will be upper bounded by remaking that result a) in Proposition 5.1
and Assumption A8 permit to write

S2 ≤
n∑
i=1

∑
B2

c2hd1h
2
d+1
2 ρ

d
2d+2 (|i− j|)

≤ nc2hd1h
2
d+1
2

∑
B2

γ
d

2d+2
0 e−

γ|i−j|d
2d+2

≤ nc2hd1h
2
d+1
2

∫ n

ηn

e−
γud
2d+2 du

= O

(
nhd1h

2
d+1
2 e−

γηnd
2d+2

)
.(5.11)

So, under Assumption A1 and taking ηn = O(hν1−d1 hν2−1
2 ) with 0 < ν1 < d and 0 <

ν2 < 1, the bounds in (5.10) and (5.11) become of order o(nhd1h2) and o(nhd1h
2
d+1
2 ),

respectively. Consequently

σ2
n = V + S = O(nhd1) + o(nhd1h

2
d+1
2 ) = O(nhd1).

Thereby, we get An = O(nhd1). Next, from (5.9) and choosing µ, λ, L1 and L2 as those
in the proof of Proposition 5.1, we get Bn = O(1).
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Regarding I3n, in view of (5.1), (5.8) and letting ε = ε0

√
logn

nhd1
, we have

P
(

max
1≤k≤dx,n

max
1≤`≤dt,n

∣∣∣F̃1,n(xk, t`)− E
[
F̃1,n(xk, t`)

]∣∣∣ ≥ ε)
= P

(
max

1≤k≤dx,n
max

1≤`≤dt,n

∣∣∣∣∣
n∑
i=1

∆i(xk, t`)

∣∣∣∣∣ ≥ nhd1ε
)

≤
dx,n∑
k=1

dt,n∑
`=1

P

(∣∣∣∣∣
n∑
i=1

∆i(xk, t`)

∣∣∣∣∣ ≥ nhd1ε
)

≤ 2dx,ndt,n exp

 −(nhd1)2 ε
2
0
2

logn

nhd1

cnhd1 + ε
5/3
0 (nhd1)5/3

(
logn

nhd1

)5/6


≤ 2

m1

adn

m2

bn
exp

 − ε
2
0
2

logn

c+ ε
5/3
0

(
logn5

nhd1

)1/6


≤ c

(
n−1h2α+d

1

)−1/2α (
nhd1

)1/2

h−1
2 n−cε

2
0

= c
(
nh

2α+d(1−α)
1

)−1/2α

(nh2)−1n−cε
2
0+ 1

α
+ 3

2 .(5.12)

So, under Assumption A1 and taking ε2
0 >

1
c

(
1
α

+ 5
2

)
, the term in (5.12) is the general

term of a convergent series. Then, we have

∑
n≥1

P

(
max

1≤k≤dx,n
max

1≤`≤dt,n

∣∣∣F̃1,n(xk, t`)− E
[
F̃1,n(xk, t`)

]∣∣∣ ≥ ε0

√
logn

nhd1

)
<∞.

Applying the lemma of Borel-Cantelli, we obtain that

(5.13) I3n = O

(√
logn

nhd1

)
.

Involving (5.6), (5.7) and (5.13), we deduce that

sup
x∈Ω

sup
t∈C

∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣ = O

(√
logn

nhd1

)
.

The proof of Theorem 3.2 is achieved. �

Proof. Proof of Theorem 3.3 First, observe that

sup
x∈Ω

sup
t∈C
|Fn(t|x)− F (t|x)| ≤ 1

inf
x∈Ω

(ln(x))

{
sup
x∈Ω

sup
t∈C

∣∣∣ E [F̃1,n(x, t)
]
− F1(x, t)

∣∣∣
+ sup
x∈Ω

sup
t∈C

∣∣∣F1,n(x, t)− F̃1,n(x, t)
∣∣∣

+ sup
x∈Ω

sup
t∈C

∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣
+m−1

0 sup
x∈Ω

sup
t∈C

F1(x, t) sup
x∈Ω
|ln(x)− l(x)|

}
.
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As m0 := infx l(x), it is easily seen that

1

ln(x)
≤ 1

l(x)− |ln(x)− l(x)|

≤ 1

m0 − sup
x∈Ω
|ln(x)− l(x)| .

This allows to write

sup
x∈Ω

sup
t∈C
|Fn(t|x)− F (t|x)|

≤ 1

m0 − sup
x∈Ω
|ln(x)− l(x)|

{
ϑ1 + ϑ2 + ϑ3 + ϑ4m

−1
0 sup

x∈Ω
sup
t∈C

F1(x, t)

}
.

As for the term ϑ3, it has been bounded in Theorem 3.2. The following lemmas establish
respectively the result of ϑ1, ϑ2. Then we apply Lemma 5.4 for ϑ4.
The bias term ϑ1 will be stated in Lemma 5.5 by using conditional expectation techniques
and a Taylor expansion up to order 2 while Lemma 5.6 deals with bounding ϑ2.

5.5. Lemma. Under assumptions A1, A2, A3 and A5, for n large enough we have

sup
x∈Ω

sup
t∈C

∣∣∣ E [F̃1,n(x, t)
]
− F1(x, t)

∣∣∣ = O(h2
1 + h2

2), a.s.

Proof. The following proof does not depend on the dependence structure.

E
[
F̃1,n(x, t)

]
=

1

hd1
E
[

δ1

G(Y1)
Kd

(
x−X1

h1

)
H

(
t− Y1

h2

)]
=

1

hd1
E
[
Kd

(
x−X1

h1

)
E
[

δ1

G(Y1)
H

(
t− Y1

h2

)
|X1

]]
.

We use integration by parts, a change of variable and Assumption A3, then we have

E
[

δ1

G(Y1)
H

(
t− Y1

h2

)
|X1

]
= E

[
E
[

δ1

G(Y1)
H

(
t− Y1

h2

)
|T1

]
|X1

]
= E

[
1

G(T1)
H

(
t− T1

h2

)
E
[
1{C1≥T1}

]
|X1

]
= E

[
H

(
t− T1

h2

)
|X1

]
=

∫
R
H

(
t− y
h2

)
f(y|X1)dy

=

∫
R
H(1)(z)F (t− zh2|X1)dz.

Again, by a change of variable we get

E
[
F̃1,n(x, t)

]
=

1

hd1
E
[
Kd

(
x−X1

h1

)∫
R
H(1)(z)F (t− zh2|X1)dz

]
=

∫
Rd

1

hd1
Kd

(
x− u
h1

)∫
R
H(1)(z)F (t− zh2|X1 = u)l(u)dudz

=

∫
Rd

∫
R

1

hd1
Kd

(
x− u
h1

)
H(1)(z)F1(u, t− zh2)dudz

=

∫
Rd

∫
R
Kd(r)H

(1)(z)F1(x− rh1, t− zh2)drdz.
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Then, expanding F1(x− rh1, t− zh2) up to order 2 around (x, t) gives

F1(x− rh1, t− zh2) = F1(x, t)

−h1

[
r1
∂F1(x, t)

∂x1
+ · · ·+ rd

∂F1(x, t)

∂xd

]
− h2

[
z
∂F1(x, t)

∂t

]

+
h2

1

2

r2
1
∂2F1(x∗, t∗)

∂x2
1

+ · · ·+ r2
d
∂2F1(x∗, t∗)

∂x2
d

+ 2
∑
i,j;i 6=j

rirj
∂2F1(x∗, t∗)

∂xi∂xj


+
h2

2

2

[
z2 ∂

2F1(x∗, t∗)

∂t2

]
+ h1h2

[
r1z

∂2F1(x∗, t∗)

∂x1∂t
+ · · ·+ rdz

∂2F1(x∗, t∗)

∂xd∂t

]
.

Here, (x∗, t∗) lies between (x − rh1, t − zh2) and (x, t). Finally, assumptions A1, A2,
A3 and A5 entail

sup
x∈Ω

sup
t∈C

∣∣∣ E [F̃1,n(x, t)
]
− F1(x, t)

∣∣∣ ≤ c(h2
1 + h2

2).

This provides the desired result. �

5.6. Lemma. Under assumptions A2, A4 and A8, for n large enough, we have

sup
x∈Ω

sup
t∈C

∣∣∣F1,n(x, t)− F̃1,n(x, t)
∣∣∣ = o

(
n−θ

)
, a.s.

Proof. Firstly, we have

|F1,n(x, t)− F̃1,n(x, t)|

=

∣∣∣∣∣ 1

nhd1

n∑
i=1

δiKd

(
x−Xi

h1

)
H

(
t− Yi
h2

)(
1

Gn(Yi)
− 1

G(Yi)

)∣∣∣∣∣
≤ 1

nhd1

n∑
i=1

Kd

(
x−Xi

h1

)
H

(
t− Yi
h2

) ∣∣∣∣ 1

Gn(Yi)
− 1

G(Yi)

∣∣∣∣
≤ ln(x)

Gn(τ)G(τ)
sup
t∈C

∣∣Gn(t)−G(t)
∣∣ .

Then, following Theorem 1.4 in Cai and Roussas [5] and for n large enough, we easily
get

(5.14) sup
t∈C

∣∣Gn(t)−G(t)
∣∣ = o

(
n−θ

)
, a.s.

Recall that 0 < θ < γ/(2γ+ 9 + 3/2κ) for any real κ > 0 and γ is referred in Assumption
A8. Hence, Lemma 5.4 and (5.14) end the proof of Lemma 5.6. �

To end the proof of Theorem 3.3, it su�ces to apply Lemma 5.4 for ϑ4. �

The last step consists in proving the result on the behavior of the conditional quantile
estimator ξp,n(x), stated in Corollary 3.4.

Proof. Proof of Corollary 3.4 It su�ces to use the following triangular inequality
jointly with basic arguments. Let x ∈ Ω, then we have

|F (ξp,n(x)|x)− F (ξp(x)|x)| ≤ |Fn(ξp,n(x)|x)− F (ξp,n(x)|x)|
+ |Fn(ξp,n(x)|x)− F (ξp(x)|x)|
≤ 2 sup

t∈C
|Fn(t|x)− F (t|x)|.(5.15)
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So, the �rst part of Corollary 3.4 is straightforwardly deduced from Theorem 3.3. And,
a Taylor expansion of F (ξp,n|x) in the neighborhood of ξp(x) permits to get

F (ξp,n(x)|x)− F (ξp(x)|x) = (ξp,n(x)− ξp(x))f(ξ∗p(x)|x),

where ξ∗p(·) is between ξp(·) and ξp,n(·). Thus from (5.15), we obtain

sup
x∈Ω
|ξp,n(x)− ξp(x)|f(ξ∗p(x)|x) ≤ 2 sup

x∈Ω
sup
t∈C
|Fn(t|x)− F (t|x)|.

Note that if the condition in Corollary 3.4 is not checked, one has to consider a higher
order-Taylor expansion. Finally, the desired result follows immediately from Assumption
A5 and Theorem 3.3. �
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