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discriminating efficient candidates in voting
systems by considering the priority of voters
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Abstract

There are different ways to allow the voters to express their prefer-
ences on a set of candidates. In the traditional voting systems, it is
assumed that the votes of all voters have the same importance and
there is no preference between them. In this paper, a new approach
is proposed to express the preference of voters on a set of candidates.
In the proposed approach voters are classified into several categories
with different importance levels in which the vote of a higher category
may have a greater importance than that of the lower category. Then
two models are introduced to measure the best preference scores of the
target candidate from the virtual best candidate and the virtual worst
candidate point of view. After that, two obtained preference scores are
aggregated together in order to obtain an overall ranking. Finally, two
numerical examples are provided for illustration the applications of the
proposed approach.
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1. Introduction
There are different ways to allow the voters to express their preferences on a set of

candidates. In some voting systems, each voter selects some candidates and ranks them
from most to least. Among these systems, the well-known procedures to obtain a social
ranking or a winning candidate are scoring rules, where fixed scores are assigned to the
different ranks. In this way, the score obtained by each candidate is the weighted sum of
the scores receives in different places. The plurality rule (the winner candidate is the one
who receives more votes in the first place), the Borda rule (the weight assigned to the first
place equals to number of candidates and to the second place is one less than the first
place and so on) are the best known instances of scoring rules. In spite of the Borda rule
has interesting properties in relation to other scoring rules [5], but the utilization of a fixed
scoring vector has weak point that a candidate that is not the winner with the scoring
vector imposed initially could be so if another scoring is used. To avoid this problem,
Cook and Kress [7] suggested evaluating each candidate with the most favorable scoring
vector for him/her. With this purpose, they introduced Data Envelopment Analysis
(DEA) in this context. DEA determines the most favorable weights for each candidate.
Different candidates utilize different sets of weights to calculate their total scores, which
are referred to as the best relative total scores and are all restricted to be less than or equal
to one. The candidate with the biggest relative total score of unity is said to be efficient
candidate and may be considered as a winner. The principal drawback of this method
is very often leads to more than one candidate to be efficient candidate. We can judge
that the set of efficient candidates is the top group of candidates, but cannot single out
only one winner among them. To avoid this weakness, Cook and Kress [7], proposed to
maximize the gap between consecutive weights of the scoring vector. However, Green et
al. [15] noticed two important drawbacks of the previous procedure. The first one is that
the choice of the intensify functions used in their model is not obvious, and that choice
determines the winner. The second one is that for an important class of discrimination
intensity functions the previous procedure is equivalent to imposing a common set of
scores on all candidates. Therefore, when Cook and Kress’s model is used with this class
of discrimination intensity functions, the aim pursued by these authors (evaluating each
candidate with the most favourable scoring vector for him/her) is not reached.

Due to the drawbacks mentioned above, other procedures to discriminate efficient
candidates have appeared in the literature. Green et al. [15] proposed to use the cross-
evaluation method, introduced by Sexton et al. [32] to discriminate efficient candidates.
Hashimoto [18] used the DEA exclusion method (see Andersen and Petersen [4]) to Cook
and Kress’s model. Hashimoto’s model is useful to discriminate efficient candidates, but
it is unstable with respect to inefficient candidates too. Noguchi et al. [28] criticized the
choice of discrimination intensity functions in Green et al.’s model. In their model, the
weight assigned to a certain rank may be zero and, consequently, the votes granted to that
rank are not considered. Furthermore, the weights corresponding to two different ranks
may be equal and, therefore, the rank votes lose their meaning. To avoid the previous
drawbacks, Noguchi et al. [28] gave a strong ordering constraint condition on weights.
Besides the previous condition on the scoring vectors, Noguchi et al. [28] introduced
two other modifications in the model of Green et al. [15]. On the one hand, in the
cross-evaluation matrix each candidate utilizes the same scoring vector to evaluate each
of the remaining candidates. However, Noguchi et al.’s model maintains the problems
of Green et al.’s model. Obata and Ishii [29] proposed another model that does not
use any information about inefficient candidates. To obtain a fair approach, they used
weight vectors of the same size, by normalizing the most favorable weight vectors. But it
presents other drawbacks. In their model it is necessary to determine the norm and the
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discrimination intensity functions to use. If these functions are zero and the L∞-norm is
used, the winning candidate coincides with the one obtained by means of a scoring rule.
If L∞-norm is replaced by L1-norm, the outcome could be considered unfair by some
candidates. Foroghi and Tamiz [13] and Foroghi et al. [12] extended and simplified their
model with fewer constraints and also used it for ranking inefficient as well as efficient
candidates. Llamazares and Pena [26] analyzed the principal ranking methods proposed
in the literature to discriminate efficient candidates and by solving several examples
showed that none of the previous proposed procedures was fully convincing. In fact,
although all the previous methods do not require predetermine the weights subjectively,
some of them have a serious drawback: the relative order between two candidates may
be altered when the number of first, second, . . ., kth ranks obtained by other candidates
changes, although there is not any variation in the number of first, second, . . . , kth
ranks obtained by both candidates. Thus, Llamazares and Pena [26] proposed a model
that allows each candidate to be evaluated with the most favorable weighting vector for
him/her and avoids the mentioned drawback. Moreover, in some cases, they found a
closed expression for the score assigned with their model to each candidate.

Wang and Chin [39] discriminated efficient candidates by considering their least rela-
tive total scores. But the least relative total scores and the best relative total scores are
not measured within the same range. The obtained conclusion was not persuasive. They
also proposed a model in which the total scores are measured within an interval. The
upper bound of the interval was set to be one, but they failed to determine the value of
the lower bound for the interval. After that, Wang et al. [40] proposed a method to rank
multiple efficient candidates, which often happens in DEA method, by comparing the
least relative total scores for each efficient candidate with the best and the least relative
total scores measured in the same range.

Wang et al. [42] proposed three new models to assess the weights associated with
different ranking places in preference voting and aggregation. Two of them are linear
programming models which determine a common set of weights for all the candidates
considered and the other is a non-linear programming model that determines the most
favorable weights for each candidate. Hadi-Vencheh and Mokhtarian [16] presented three
counter examples to show that the three new models developed by Wang et al. [42] for
preference voting and aggregation may produce a zero weight for the last ranking place
and may sometimes identify two candidates as the winner in some specific situations.
After that, Wang et al. [43] presented two modified linear programming models for pref-
erence voting and aggregation to avoid the zero weight for the last ranking place. In ad-
dition, Hadi-Vencheh [17] proposed two improved DEA models to determine the weights
of ranking places that each of them can lead to a stable full ranking for all the candidates
considered and avoid the mentioned shortcoming. Wu et al. [45] considered a preferential
voting system using DEA game cross efficiency model, in which each candidate is viewed
as a player that seeks to maximize its own efficiency, under the condition that the cross
efficiencies of each of other DMU’s does not deteriorate. Jahanshaloo et al. [22] reviewed
ranked voting data and its analysis with DEA and proposed a model based on the rank-
ing of units using common weights. Their model gives one common set of weights that is
the most favorable for determining the absolute efficiency of all candidates at the same
time. Bystricky [6] investigated different approaches to weighted voting systems based on
preferential positions. In addition, other models have appeared in the literature in order
to deal with this kind of problems [1, 3, 8, 9, 10, 11, 19, 20, 21, 25, 31, 33, 34, 36, 37, 38].

However, all previous models are based on Cook and Kress’s model in which the votes
of all voters have equal importance and there is no preference among them. In this paper
we generalize the existing models to overcome this shortcoming. In fact, in our proposed
model voters are classified into several categories with different importance levels that the



168

vote of a higher category may have a greater importance than that of the lower category.
Our main contribution in this paper will be the simplification of the model of Wu [44]
(first proposed by Wang and Luo [41]) in DEA efficiency assessment for an overall ranking
of candidates. We introduce two models that the first model evaluates candidates from
the viewpoint of the best possible preference score and the second model evaluates them
from the perspective of the worst possible preference score. The two distinctive scores
are combined to form a comprehensive index such that an overall ranking for all the
candidates can be obtained.

The rest of this paper is organized as follows. Section 2 gives the traditional voting
model proposed by Cook and Kress [7] considering all of voters are in one category. Sec-
tion 3 gives our model to determine efficient candidates by classifying voters into several
groups with different importance levels. Section 4 extends the existing ranking method
to discriminate the efficient candidates in terms of our proposed model assumptions. In
Section 5 we illustrate our new methodology with two numerical examples. This paper
is concluded in Section 6.

2. Ranked voting data
In this section we consider ranked voting data such that each voter select m candidate

from n ( n ≥ m ) candidates {A1, A1, . . . , An } and rank them from top to the place m,
each place associated with a relative important weight uri (i = 1, 2, . . . ,m). In this way,

the score obtained by the candidate Ar is zr =
m∑
i=1

uri y
r
i where yri is the number vote of

place i that candidate Ar occupies and (ur1, u
r
2, . . . , u

r
m) is the scoring vector used.

2.1. Remark. In the DEA framework, many voting models are based on that of Cook
and Kress [7], where the input variables uri (i = 1, 2, . . . ,m) are the weights, and these
values are real numbers. Thus, the DEA models applied to find these weights as the
relative importance of each place are not integer models.

Cook and Kress [7] suggested evaluating each candidate with the most favorable scor-
ing vector for him/her based on DEA models. Their DEA/assurance region (DEA/AR)
model is as follows:

(2.1)

z∗p = max
m∑
i=1

upi y
p
i

s.t.
m∑
i=1

upi y
r
i ≤ 1, r = 1, · · · , n,

upi − upi+1 ≥ d(i, ε), i = 1, · · · ,m− 1,
upm ≥ d(m, ε),

In the above model, d(., ε) is called the discrimination intensity function that is non-
negative and monotonically increasing in a non-negative ε and satisfies d(., 0) = 0. The
last constraints in (2.1) are called the assurance region constraints and ensure that the
votes of the higher place has a greater importance that of the lower place. The model
(2.1) is solved for each candidate p (p = 1, . . . , n). The resulting score z∗p is the preference
score of the candidate p. This score is used to rank of all candidates in a voting system
that assumes that the votes of all voters have the same importance and there is no
preference between them.

In this next section, we extend model (2.1) for situations that voters are classified into
several categories with different importance levels in which the vote of a higher category
may have a greater importance than that of the lower category.
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3. An extended model
In this section, we introduce a new approach to allow the voters to express their

preferences on a set of candidates by classifying voters into several groups with different
importance levels. Suppose that in a ranked voting system, voters are classified into k
distinct categories. The voters of each category, select m candidates among n ( n ≥ m )
candidates {A1, A1, . . . , An } and rank them from top to the place m. Let yrij be the
votes of the candidate r being ranked in the place i from the category j. In evaluating
of the candidate r, each place is associated with a relative importance weight uri (i =
1, 2, . . . ,m) and each category is associated with a relative importance weight vrj (j =

1, 2, . . . , k). The preference score of candidate r in the place i is equal to
k∑
j=1

vrj y
r
ij . Thus,

the total preference score of candidate r will be zr =
m∑
i=1

(uri
k∑
j=1

vrj y
r
ij) =

m∑
i=1

k∑
j=1

uri v
r
j y
r
ij .

It should be noted that if all categories have the same relative importance weights,

then the preference score of candidate r in the place i will be
k∑
j=1

yrij , that is exactly the

number of votes in place i received by candidate r. In this case, the preference score
of candidate r is equal to the one which assumes voters are in one category. Thus, this
value indicates the real score of each candidate.

However to obtain a total ranking of candidates, we require the weight vectors ur =
( ur1, . . . , u

r
m) and vr = ( vr1, . . . , v

r
k) satisfy the following conditions:

(3.1) uri − uri+1 ≥ d(i, ε), i = 1, · · · ,m− 1

urm ≥ d(m, ε)

(3.2) vrj − vrj+1 ≥ d(j, ε), j = 1, · · · , k − 1

vrk ≥ d(k, ε)
It needs to point out that the constraints (3.1) are introduced in order that the vote of
the higher place may have a greater importance than that of the lower place. In a similar
way, the constraints (3.2) are introduced in order that the vote of voters in a higher
category has a greater importance than that in a lower category. Hence, the following
non-linear model evaluates candidate p with the most favorable weight vectors:

(3.3)

z∗p = max
m∑
i=1

k∑
j=1

upi v
p
j y

p
ij

s.t.
m∑
i=1

k∑
j=1

upi v
p
j y

r
ij ≤ 1, r = 1, 2, . . . , n,

upi − u
p
i+1 ≥ d(i, ε), i = 1, · · · ,m− 1

upm ≥ d(m, ε)
vpj − v

p
j+1 ≥ d(j, ε), j = 1, · · · , k − 1

vpm ≥ d(m, ε)

To transform the non-linear model (3.3) into an equivalent linear model, let

(3.4) wpij = upi v
p
j , i = 1, 2, . . . ,m , j = 1, 2, . . . , k.

Now, we should change the constraint of (3.1) and (3.2) in terms of new transfor-
mations such that the priority among places and categories preserves. To this end, we
multiply the constraints of (3.1) and (3.2) by vrj (j = 1, 2, . . . , k) and uri (i = 1, 2, . . . ,m),
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from the right and left, respectively. Thus, we have:

uri v
r
j − uri+1v

r
j ≥ d( i, ε), i = 1, · · · ,m− 1, j = 1, 2, · · · , k

urmv
r
j ≥ d(m, ε), j = 1, 2, · · · , k

uri v
r
j − uri vrj+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m

uri v
r
k ≥ d(k, ε), i = 1, · · · ,m

Thus, we have:

(3.5) wrij − wri+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, 2, · · · , k
wrmj ≥ d(m, ε), j = 1, 2, · · · , k

(3.6) wrij − wri,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wrik ≥ d(k, ε), i = 1, · · · ,m

By substituting (3.4)-(3.5) into model (3.3), the following linear model is obtained:

(3.7)

z∗p = max
m∑
i=1

k∑
j=1

wpij y
p
ij

s.t.
m∑
i=1

k∑
j=1

wpij y
r
ij ≤ 1, r = 1, 2, . . . , n,

wpij − w
p
i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k

wpmj ≥ d(m, ε), j = 1, · · · , k
wpij − w

p
i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m

wpik ≥ d(m, ε), i = 1, · · · ,m
In the next section, we introduce two virtual candidates called virtual best candidate

(VBC) and virtual worst candidate (VWC) into voting system. The resultant voting
models are referred to as the voting system with VBC and VWC candidates, respec-
tively. The first system evaluates candidates from the viewpoint of the best possible
preference score and the second system evaluates them from the perspective of the worst
possible preference score. The two distinctive scores are combined to form a comprehen-
sive index called the relative closeness (RC) to the VBC just like the well-known TOPSIS
approach in multiple attribute decision making (MADM). The RC index is then used as
the evidence of overall scores of each candidate, based on which an overall ranking for
all the candidates can be obtained.

4. Voting systems with VBC and VWC
In this section we give some models so that a voting analysis based on TOPSIS idea

can be performed. To do this, we first explore the concepts of virtual best candidate
(VBC) and virtual worst candidate (VWC).

4.1. Definition. The virtual best candidate (VBC) is a virtual candidate that receives
the most votes in each place among all candidates.

It needs to point out that the VBC may not exist in the voting. But he/she receives
the most votes in each place among all n candidates. According to the above definition,
we denote by Y maxi = (ymaxi1 , . . . , ymaxik ) the number votes of VBC in place i, in which
the votes of each category in this place are determined by ymaxij = maxr{yrij} . In fact,
VBC receives the most votes in each place and each category among all candidates and
will be ranked in first place in any condition.

4.2. Definition. The virtual worst candidate (VWC) is a virtual candidate that receives
the least votes in each place among all candidates.
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It is also important to note that the VWC may not exist in the voting. But he/she
receives the least votes in each place among all n candidates. According to the above
definition, we denote by Y mini = (ymini1 , . . . , yminik ) the number votes of VWC in place i,
in which the votes of each category in this place are determined by yminij = minr{yrij} . In
fact, VBC receives the least votes in each place and each category among all candidates
and will be ranked in last place in any condition.

It is obvious that the VBC should be able to achieve the highest/best preference score.
The best preference score of VBC denoted as φ∗ is determined by the following model:

(4.1)

φ∗V BC = max
m∑
i=1

k∑
j=1

wV BCij ymaxij

s.t.
m∑
i=1

k∑
j=1

wV BCij yrij ≤ 1, r = 1, 2, . . . , n,

wV BCij − wV BCi+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k
wV BCmj ≥ d(m, ε), j = 1, · · · , k

wV BCij − wV BCi,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wV BCik ≥ d(m, ε), i = 1, · · · ,m

Since the above linear programming model (4.1) may have multiple optima, we utilize
the following linear programming model to determine the best preference score of candi-
date p under the condition that the best possible preference score of the VBC remains
unchanged:

(4.2)

z∗p = max
m∑
i=1

k∑
j=1

wpij y
p
ij

s.t.
m∑
i=1

k∑
j=1

wV BCij ymaxij = φ∗V BC

m∑
i=1

k∑
j=1

wpij y
r
ij ≤ 1, r = 1, 2, . . . , n,

wpij − w
p
i+1,j ≥ d( i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k

wpmj ≥ d( m, ε), j = 1, · · · , k
wpij − w

p
i,j+1 ≥ d( j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m

wpmj ≥ d( m, ε), i = 1, · · · ,m

Similar to that in Wu [44], the following model is proposed to compute the worst
possible preference score of the VWC:

(4.3)

ϕ∗V BC = min
m∑
i=1

k∑
j=1

wVWC
ij yminij

s.t.
m∑
i=1

k∑
j=1

wV BCij ymaxij ≥ γ, γ ∈ [1, φ∗V BC ]

m∑
i=1

k∑
j=1

wVWC
ij yrij ≤ 1, r = 1, 2, . . . , n,

wVWC
ij − wVWC

i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k
wVWC
mj ≥ d(m, ε), j = 1, · · · , k

wVWC
ij − wVWC

i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wVWC
ik ≥ d(m, ε), i = 1, · · · ,m
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Model (4.3) aims to minimize the preference score of the VWC while at the same time
keeping the preference score of the VBC no less than an appropriate parameter γ, which
might be selected in a range from one and the maximal possible value. Although we note
that the selection of the value of γ is flexible, we will prove by the Theorem 1 in the case
ofγ = 1, the model (4.3) is equivalent to the following model (see also Theorem 1 in [44]):

(4.4)

ϕ∗V BC = min
m∑
i=1

k∑
j=1

wVWC
ij yminij

s.t.
m∑
i=1

k∑
j=1

wV BCij ymaxij = 1

wVWC
ij − wVWC

i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k
wVWC
mj ≥ d(m, ε), j = 1, · · · , k

wVWC
ij − wVWC

i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wVWC
ik ≥ d(m, ε), i = 1, · · · ,m

4.3. Theorem. For γ = 1 model (4.3) and model (4.4) are equivalent.

Proof. Consider the following model in the case of γ = 1:

(4.5)

ϕ∗V BC = min
m∑
i=1

k∑
j=1

wVWC
ij yminij

s.t.
m∑
i=1

k∑
j=1

wV BCij ymaxij ≥ 1

m∑
i=1

k∑
j=1

wVWC
ij yrij ≤ 1, r = 1, 2, . . . , n,

wVWC
ij − wVWC

i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k
wVWC
mj ≥ d(m, ε), j = 1, · · · , k

wVWC
ij − wVWC

i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wVWC
ik ≥ d(m, ε), i = 1, · · · ,m

Assume that w∗,V WC
ij to be optimal weight of model (4.5). We prove that

m∑
i=1

k∑
j=1

w∗,V WC
ij ymaxij = 1. Assume not, i.e.

m∑
i=1

k∑
j=1

w∗,V WC
ij ymaxij = q > 1 and

m∑
i=1

k∑
j=1

w∗,V WC
ij yrij ≤ 1(r = 1, 2, . . . , n). Now set

w∗∗,V WC
ij =

w
∗,V WC
ij

q
.

Thus we have
m∑
i=1

k∑
j=1

w∗∗,V WC
ij yrij <

m∑
i=1

k∑
j=1

w∗,V WC
ij yrij ≤ 1(r = 1, 2, . . . , n) and

m∑
i=1

k∑
j=1

w∗∗,V WC
ij ymaxij = 1. So, we have another feasible solution w∗∗,V WC

ij with which

the obtained value of objective function
∑m
i=1

k∑
j=1

w∗∗,V WC
ij yminij is less than the assumed

optimal value
m∑
i=1

k∑
j=1

w∗,V WC
ij yminij . This is a contradiction and hence the first constraint

is constantly binding in any optimal solution.

Since we have
m∑
i=1

k∑
j=1

w∗,V WC
ij ymaxij = 1 it follows that

m∑
i=1

k∑
j=1

wVWC
ij yrij ≤

m∑
i=1

k∑
j=1

w∗,V WC
ij ymaxij = 1. Hence the constraints

m∑
i=1

k∑
j=1

wVWC
ij yrij ≤
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1 (r = 1, 2, . . . , n) are redundant and can be removed from model (4.5). This completes
the proof. �

Following the same logic as before, given the worst efficiency of the VWC, the following
linear programming model can be used to determine the worst possible preference score
of candidate p under the condition that the worst possible preference score of the VWC
stays unchanged:

(4.6)

ϕ∗p = min
m∑
i=1

k∑
j=1

wpij y
p
ij

s.t.
m∑
i=1

k∑
j=1

wV BCij yminij = ϕ∗VWC

m∑
i=1

k∑
j=1

wpij y
r
ij ≤ 1, r = 1, 2, . . . , n,

wpij − w
p
i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k

wpmj ≥ d(m, ε), j = 1, · · · , k
wpij − w

p
i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m

wpik ≥ d(m, ε), i = 1, · · · ,m

From the above discussion it is known that voting models (4.1) and (4.2) measure
the best possible preference scores of VBC and the n real candidates based on VBC,
while voting models (4.4)and (4.6) measure the worst possible preference scores of VWC
and the n real candidates based on VWC. These two distinctive efficiency assessments
may lead to quite different conclusions. Therefore, there is a need to consider them
together to give an overall assessment of each candidate. In order to do so, we use
the following relative closeness (RC) (Wang and Luo [41]), which is widely used in the
TOPSIS approach, a well-known MADM methodology.

(4.7) RCp =
(ϕ∗p − ϕ

∗
VWC)

(ϕ∗p − ϕ∗VWC) + (φ∗V BC − φ∗p)

It is obvious that the bigger difference between ϕ∗pand ϕ∗VWC and the smaller difference
between φ∗WBC and φ∗p mean the better performance of candidate p. So, the bigger RCp
value, the better the performance of candidate p. Since the RC index integrates both
the best and the worst possible preference scores of each candidate, it thus provides an
overall assessment for each candidate, based on which an overall ranking for the n real
candidates can be easily obtained.

We are in a position to give the following algorithm for overall ranking of candidates:

Step 1. Solve the problems (4.1) for the VBC to obtain the optimal weights W ∗V BC
and preference score φ∗V BC , solve the problem (4.2) to compute the φ∗p, p =
1, 2, . . . , n.

Step 2. Solve the problems (4.4) for the VWC to obtain the optimal weights W ∗VWCand
preference score ϕ∗VWC , solve the problem (4.6) to compute the φ∗p, p = 1, 2, . . . , n.

Step 3. Calculate the relative closeness RCp of candidate p using (4.7).
Step 4. Select the winner candidate q according to RC∗q = max1≤p≤nRCp.

In this paper, it is assumed dj (i, ε) = εdi and di (j, ε) = εdj , in which ε is a sufficiently
small positive value and, di and dj are the preferred values corresponding to gap i of
places and gap j of categories, respectively. Without loss of the generality, throughout
this paper, we assume di = dj = 1. We note that the choice of discriminating function
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Table 1. Votes received by six candidates

Candidates First Place Second Place Third Place Fourth Place
A1 3 3 4 3
A2 4 5 5 2
A3 6 2 3 2
A4 6 2 2 6
A5 0 4 3 4
A6 1 4 3 3
V BC 6 5 5 6
VWC 0 2 2 2

Table 2. The preference scores for the six candidates

The best score The least score RC Rank

Candidates ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001
A1 0.8091875 0.81246687 0.032 0.00032 0.03433845 0.00035543 4 4
A2 1 1 0.043 0.00043 0.07699472 0.00082606 1 1
A3 0.8196875 0.81257188 0.038 0.00038 0.04498756 0.0004621 3 3
A4 0.1 1 0.04 0.0004 0.07006569 0.00074618 2 2
A5 0.6758125 0.68738313 0.022 0.00022 0.01416807 0.00014542 6 6
A6 0.6803125 0.68742813 0.025 0.000025 0.01845772 0.00018904 5 5

and also values of ε may be influences the results of models and it is the decision maker
concern.

5. Numerical examples
In this section, we consider two numerical examples using the proposed method to

illustrate its applications and show its capability in expressing preferences of voters on a
set of candidates.

5.1. Example. We will examine the example taken from Cook and Kress [7], in which
20 voters are asked to rank 4 out of 6 candidates A1 ∼ A6 on a ballot. The votes each
candidate receives are shown in Table 1. Also the virtual candidates VBC and VWC are
defined in the last two rows of Table 1. Using model (4.1), we obtain the best preference
score of VBC as φ∗V BC = 1.371625, and φ∗V BC = 1.37496625 for the values of ε : ε = 0.001
and ε = 0.00001, respectively. In a similar way, using model (4.4) we obtain the worst
preference score of VWC as ϕ∗VWC = 0.012 and ϕ∗VWC = 0.00012 for the values of
ε : ε = 0.001 and ε = 0.00001, respectively. Based upon the optimal weights of models
(4.2) and (4.6) we can calculate the best preference score and the worst preference score
of each candidate as documented in Table 2. In this case, the final overall ranking order
can be achieved using the systematic RC index, whose values for the six candidates are
presented in Table 2 for the values of ε : ε = 0.001 and ε = 0.00001. From Table 2, the
full rank of candidates is as A2 � A4 � A3 � A1 � A6 � A5.

Now, suppose the voters classify into two distinct categories (C1 and C2) that the
vote of the first category has a greater importance than that of the second category. In
this case, the voters of each category are asked to rank 4 out 6 previous candidates on
a ballot. The votes each candidate receives from each category are presented in Table 3.
In addition the virtual candidates VBC and VWC are defined in this table.

Using model (4.1), the best preference scores of VBC are obtained as φ∗V BC =
1.93931579, and φ∗V BC = 1.94728789 for the values of ε : ε = 0.001 and ε = 0.00001,
respectively. In addition, using model (4.4) we obtain the worst preference score of VWC
as ϕ∗VWC = 0.014 and ϕ∗VWC = 0.00014 for the values of ε : ε = 0.001 and ε = 0.00001,
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Table 3. Votes received by six candidates from two categories

First Place Second Place Third Place Fourth Place

Candidates C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2
A1 2 1 1 2 1 3 2 1
A2 1 3 1 4 3 2 2 0
A3 3 3 1 1 1 2 1 1
A4 1 5 1 1 1 1 1 5
A5 0 0 3 1 1 2 1 3
A6 1 0 1 3 1 2 1 2
V BC 3 5 3 4 3 3 2 3
VWC 0 0 1 1 1 2 1 0

Table 4. The preference scores for the six candidates based our approach

The best score The least score RC Rank

Candidates ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001
A1 0.91647368 0.92100684 0.038 0.00038 0.02292609 0.0002338 4 4
A2 1 1 0.05 0.0005 0.03691112 0.00037989 1 1
A3 1 1 0.044 0.00044 0.03094967 0.00031659 2 2
A4 0.994 0.99994 0.044 0.00044 0.03075927 0.00031657 3 3
A5 0.80610526 0.81569263 0.027 0.00027 0.01134172 0.00011487 5 5
A6 0.73057895 0.73677947 0.029 0.00029 0.01225754 0.0001239 6 6

respectively. Based upon the optimal weights of models (4.2) and (4.6) we can determine
the best preference score and the worst preference score of each candidate as documented
in Table 4. Thus, the final overall ranking order can be obtained using the systematic
RC index, whose values for the six candidates are presented in Table 4 for the values
of ε : ε = 0.001 and ε = 0.00001. From Table 4, the full rank of candidates is as
A2 � A3 � A4 � A1 � A6 � A5. As can be seen from Table 4, our model also identifies
the candidate A2 as the first winner when ε = 0.001 and ε = 0.00001. Moreover, by
considering the systematic RC index of candidates A3 and A4, we see the candidate A3

is more efficient than the candidate A4. That is, in our opinion the candidate A3 is the
second winner and the candidate A4 is the third winner. Thus, there is a different in
rank of second and third winner candidate comparing with models that assume all votes
have a same importance. In fact, the ability to identify efficient candidates based on our
approach is stronger than the previous approach.

5.2. Example. We will examine the example taken from Wang et al. [40], in which
155 voters are asked to rank 4 out of 10 candidates A ∼ J on a ballot. The votes each
candidate receives are shown in Table 5. In addition, the virtual candidates VBC and
VWC are defined in the last two rows of Table 5.

The model (4.1) gives the best preference score of VBC as φ∗V BC = 1.28020626,
and φ∗V BC = 1.28314864 under two different values of ε = 0.001 and ε = 0.00001,
respectively. In a similar way, model (4.4) gives the worst preference score of VWC as
ϕ∗VWC = 0.54628571 and ϕ∗VWC = 0.53582 when ε takes 0.001 and 0.00001, respectively.
Based upon the optimal weights of models (4.2) and (4.6) we can calculate the best
preference score and the worst preference score of each candidate as reported in Table 6.
Thus, the total ranking order can be determined using the systematic RC index, whose
values for the ten candidates are given in Table 6 when ε takes 0.001 and 0.00001. From
Table 6, the full rank of candidates is as G � A � E � I � J � C � B � H � D � F .
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Table 5. Votes received by ten candidates

Candidates First Place Second Place Third Place Fourth Place
A 20 14 13 11
B 14 16 16 17
C 14 14 19 21
D 14 13 22 11
E 19 14 12 19
F 14 13 9 11
G 18 17 15 9
H 14 13 20 20
I 14 20 15 20
J 14 21 14 16
V BC 20 21 22 21
VWC 14 13 9 9

Table 6. The preference scores for ten candidates

The best score The least score RC Rank

Candidates ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001
A 0.99414793 0.99408349 0.69328571 0.67479 0.33944619 0.3246696 2 2
B 0.93709298 0.93911734 0.57728571 0.53613 0.0828626 0.00090027 7 7
C 0.97228487 0.97712775 0.58128571 0.53617 0.10206421 0.00114241 6 6
D 0.94033136 0.94668142 0.57428571 0.5361 0.07611283 0.00083148 9 9
E 1 1 0.67957143 0.65501 0.32234172 0.29624299 3 3
F 0.76114455 0.7599445 0.54828571 0.53584 0.00383832 0.00003822 10 10
G 1 1 0.7075102 0.68896286 0.36523167 0.35101041 1 1
H 0.9654328 0.97120124 0.57928571 0.53615 0.09488936 0.00105675 8 8
I 1 1 0.59028571 0.53626 0.13571607 0.00155154 4 4
J 0.97759172 0.97634396 0.58728571 0.53623 0.11931975 0.00133457 5 5

Table 7. Votes received by six candidates from two categories

First Place Second Place Third Place Fourth Place

Candidates C 1 C 2 C 3 C 1 C 2 C 3 C 1 C 2 C 3 C 1 C 2 C 3
A 5 11 4 5 8 1 4 4 5 2 2 7
B 2 9 3 4 9 3 4 8 4 4 11 2
C 2 12 0 3 8 3 11 4 4 5 10 6
D 3 7 4 4 2 7 5 10 7 7 2 2
E 1 13 5 12 1 1 3 1 8 13 2 4
F 1 13 0 3 4 6 2 4 3 2 2 7
G 5 1 12 1 1 15 13 1 1 1 7 1
H 1 4 9 3 1 9 5 11 4 5 5 10
I 1 2 11 5 2 13 3 3 9 16 3 1
J 2 2 10 7 5 9 1 2 11 4 11 1
V BC 5 13 12 12 9 15 13 11 11 16 11 10
VWC 1 1 0 1 1 1 1 1 1 1 2 1

Now we suppose the 155 voters are divided into three categories (C1, C2 and C3)
based on their priorities and proficiencies. The votes each candidate receives from each
category are shown in Table 7. Also the virtual candidates VBC and VWC are defined
in this table.
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Table 8. The preference scores for the ten candidates based on our approach

The best score The least score RC Rank

Candidates ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001
A 1 1 0.327 0.20127 0.19162271 0.11214341 1 1
B 0.96464852 0.96810428 0.26055556 0.09060556 0.143802 0.02125852 8 6
C 1 1 0.28533333 0.13485333 0.1647688 0.06008753 3 3
D 0.94407853 0.95292174 0.27133333 0.13471333 0.14863913 0.05757814 5 4
E 0.9702937 0.06859667 0.25966667 0.96515685 0.14384231 0.0016434 6 8
F 0.71743712 0.06800667 0.20066667 0.71535221 0.08401168 0.00090331 10 10
G 0.99470197 1 0.26766667 0.11817667 0.15218444 0.04604364 4 5
H 0.966497831 0.98307375 0.23566667 0.06835667 0.12680534 0.00144938 9 9
I 1 1 0.25466667 0.06854667 0.14383597 0.00165028 7 7
J 1 1 0.28933333 0.13489333 0.16742395 0.06012072 2 2

Using model (4.1), the best preference scores of VBC are obtained as φ∗V BC =
2.04761608, and φ∗V BC = 2.06472518 for the values of ε : ε = 0.001 and ε = 0.00001,
respectively. In addition, using model (4.4) we obtain the worst preference score of VWC
as ϕ∗VWC = 0.07866667 and ϕ∗VWC = 0.06678667 for the values of ε : ε = 0.001 and
ε = 0.00001, respectively. Based upon the optimal weights of models (4.2) and (4.6) we
can determine the best preference score and the worst preference score of each candidate
as documented in Table 8. Then, the final overall ranking order can be obtained using
the systematic RC index, whose values for the ten candidates are presented in Table 8
for the values of ε : ε = 0.001 and ε = 0.00001. From Table 8, when ε takes 0.001, the
full rank of candidates is obtained as A � J � C � G � D � E � I � B � H � F .

As can be seen from Table 8, there is a different in total rank based on our approach
comparing with that approach which assumes all votes have equal importance. Our
method identifies the candidates A as the first winner and the candidate G as the forth
winner while that approach identifies the candidate A as the second winner and the
candidate G as the first winner. However, different from that approach, our approach
considers the priority of voters and so the votes in a higher category have more importance
than that in a lower category. Thus, the preference scores are measured in a persuasive
way.

It is necessary to notice that as we discussed in the end of Section 4, the value of ε
may be influences the order of candidates. This point has been illustrated in Example
5.2. From Table 8, when ε : ε = 0.001 and ε = 0.00001, candidate B is the eighth winner
and sixth winner, candidate D is the fifth winner and fourth winner, candidate E is the
sixth winner and eighth winner and candidate D is the fourth winner and fifth winner,
respectively. This means that there is a small difference in the rank of candidates B,
D, E and G when ε varies. However, as can be seen from Table 8, candidates A, C, F,
H, I and G should take the first place, the third place, the tenth place, the ninth place,
the seventh place and the second place, respectively under the both values of ε. This
is, based on two different values of ε : ε = 0.001 and ε = 0.00001, candidates A and F
should be the first winner and the last winner, respectively.

6. Conclusion
It is often necessary in decision making framework to rank a group of candidates in

voting systems. In ranked voting systems, each voter selects a subset of candidates and
rank them from most to least preferred and hence the score obtained by each candidate
is the weighted sum of the scores receives in different places. The principal drawback of
such scoring rules is that they assume the votes of all voters have equal importance and
there is no preference among them. In this paper, we generalized the existing scoring
rules to overcome the mentioned drawback. The ability to identify efficient candidates
of our approach is stronger than the existing scoring rules. We also introduced two
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models that the first model evaluated candidates from the viewpoint of the best possible
preference score and the second model evaluated them from the perspective of the worst
possible preference score. The two distinctive scores have been combined to form a
comprehensive index such that an overall ranking for all the candidates can be obtained.
Finally we illustrated our method with two examples. In addition, the extension of some
other ranking methods to rank of decision making units in DEA framework such as the
proposed approach by Golam Abri et al. [14] can be interesting for ranking of efficient
candidates in voting systems as a research work.

In our opinion, we feel that there are many other ranking methods in DEA and should
be considered for voting systems later on. Some of these methods are discussed below.

(1) Ramazani-Tarkhorani et al. [30] obtained a common set of weights (CSW) to
create the best efficiency score of a group composed of efficient units in DEA.
Development of their method for ranking of efficient candidates in voting systems
may also produce interesting results.

(2) Jahanshaloo et al. [23] defined an ideal line determined a CSW for efficient
units in DEA and then a new efficiency score obtained and ranked them with
it. In the second method, they introduced a special line and then compared all
efficient units with it and ranked them. Extending of these two methods can be
effective for ranking of effective candidates in voting systems.

(3) Jahanshaloo et al. [24] presented a new super-efficient method to rank all
decision-making units using the TOPSIS method. Development of this method
for ranking of all candidates in voting systems may also give interesting results.

(4) Amirteimoori and Kordrostami [3] proposed a super-efficiency DEA model to
discriminate the performance of efficient decision making units. How to apply
this model to develop a more general model with sound mathematical properties
in ranking of efficient candidates is a direction for future research.
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