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Abstract

In this study, biased estimators for the shape parameter of a classical
Pareto distribution are proposed using two di�erent shrinkage tech-
niques which give a smaller mean square error than an unbiased esti-
mator. Then these obtained biased estimators are compared with the
unbiased estimator by the means of their mean square error.
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1. Introduction

Primarily descriptive parameters of the population are used to make a statistical in-
ference about any population. Unbiased estimators are widely used for this purpose. It
can be mentioned that using biased estimators have a smaller mean square error (MSE)
if the unbiased estimator has a high MSE.

There have been some studies on biased but smaller MSE estimators of an unknown
population parameter. Thompson [1, 2] considered a technique of shrinking best linear
unbiased estimator (BLUE) by multiplying it by a shrinking factor to obtain an estimator
which has a smaller MSE than that of BLUE. Other important studies about this issue
are made by Metha and Srinivasan [3], Govindarajulu and Sahai [4], Das [5], Srivastava
et. al. [6], Rao and Singh [7], Bhatnagar [8], Singh and Katyar [9], Singh [10], Jani [11],
Kourouklis [12], Singh et. al. [13], Singh and Singh [14], Singh and Shukla [15], Singh
and Saxena [16], Prakash et. al. [17], Prakash [18].
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Pareto distribution was �rst used by Pareto [19] to describe an income distribution.
Rytgaard [20] studied on the maximum likelihood estimator (MLE) and the moment
estimator for the shape parameter of the Pareto distribution. Furthermore, he found
a minimum variance unbiased (MVU) estimator for the shape parameter of the Pareto
distribution using the obtained MLE. Sing et. al. [13] proposed new shrinkage estimators
for scale parameter of the Pareto distribution using the MLE and the unbiased estimator.
Then they compared the proposed estimators with the MLE and the unbiased estimator
by the means of their MSE. Prakash et. al. [17] obtained that some test estimators for
the scale parameter of a classical Pareto distribution are considered when a prior point
guess value of the shape parameter is available. Then they showed that their proposed
biased test estimators were better than other estimators through a squared error loss
function. Prakash [18] derived some shrinkage test estimators and the Bayes estimators
for the shape parameter of the Pareto distribution under the general entropy loss function.

In this study, two di�erent estimator classes are obtained for the shape parameter
of the Pareto distribution. These estimator classes are compared with the unbiased
estimator by the means of their MSE. After that, it is tried to �nd out in which case
obtained estimator classes are better than the unbiased estimator.

2. Shrinkage Estimators Classes

Jani [11] and Singh and Singh [14] proposed two di�erent shrinkage estimator classes
for scale parameters of exponential and normal distribution.

First, Jani [11] proposed a shrinkage estimator class for the scale parameter of the
exponential distribution is given as

(2.1) T(p) = θ0[1 + k(θ0/θ̂)
p]

where θ0 is a priori value of θ parameter, k is a shrinking factor minimizing MSE value,

p is a nonzero real number and θ̂ is the unbiased estimator of θ parameter.

Second, Singh and Singh [14] studied on the estimation problem of population variance
σ2 by adapting the estimation class de�ned equation (2.1) to a normal population. This
estimation class is given as the following:

(2.2) σ̃2
(p) = σ2

0

[
1 + w

(
s2

σ2
0

)p]
where σ2

0 is a prior value of σ2 parameter, w is a shrinking factor minimizing MSE value,
p is a nonzero real number and s2 is the unbiased estimator of σ2 parameter.

The biased estimators, which have a smaller MSE than the unbiased estimator for the
shape parameter of Pareto distribution, are obtained using the estimator classes de�ned
in equation (2.1) and equation (2.2).

3. The Obtained Estimators for the Shape Parameter of the Pareto

Distribution and Their Properties

In this section, the shape parameter of the Pareto distribution's MVU estimator,
which is proposed by Rytgaard [20], is introduced. Then the biased estimator classes,
which have smaller MSE than the unbiased estimator, is obtained using various shrinking
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factors and MSE values of these estimators are calculated.

Let's consider, X is a Pareto distributed random variable. The probability density
function (pdf) is as in equation (3.1)

(3.1) fX(x) =

{
(βαβ)/x(β+1) ;x > α

0 ;x ≤ α
where α is the scale parameter, β is the shape parameter.

If X random variable has the pdf de�ned in equation (3.1), the MLE for the shape
parameter of the Pareto distribution is

(3.2) β̂ =
n∑n

i=1 ln
xi
α

.

Using equation (3.2) estimator, Rytgaard [20] obtained an unbiased estimator which
is de�ned as

(3.3) β̃ =
n− 1

n
β̂.

It can be found that the expected value of this estimator is

E[β̃] = β.

Variance of β̃ estimator is

V ar(β̃) = 1
(n−2)

β2 where E[β̃2] = (n−1)
(n−2)

β2.

3.1. Corollary. The shrinkage estimator class for the shape parameter of Pareto distri-
bution, which is obtained by help of equation(2.1), given as

(3.4) β?(p) = β0 + (β̃ − β0)k(p)
where

(3.5) k(p) = (n− 1)p
(n+ p− 1)!

(n+ 2p− 1)!

and p is a nonzero real number. MSE of β?(p) estimator class is

(3.6) MSE(β?(p)) = β2

[
k2(p)

(n− 2)
+ (k(p) − 1)2(1− λ)2

]
where λ = β0/β. Furthermore bias of β?(p) estimators class given by

(3.7) Bias(β?(p)) = (1− k(p))(β0 − β).

Proof. The shrinkage estimator class for the shape parameter of Pareto distribution is
described as

(3.8) β?(p) = β0

[
1 + k

(
β0

β̃

)p]
which is obtained by means of equation (2.1).
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E

[(
1

β̃

)jp]
= K1(jp)(1/β)

jp , (j = 1, 2)

and

K1(jp) = (n− 1)−jp
(n+ jp− 1)!

(n− 1)!
functions are used to calculate the MSE of β?(p) estimator class. As it is known the value

of MSE
(
β?(p)

)
is

(3.9) MSE
(
β?(p)

)
= E

[
β?(p) − β

]2
.

If required information is written in equation (3.9) where λ = β0/β, the MSE value is
obtained as

MSE(β?(p)) = β2
[
k2(λ)2(1+p)K1(2p) + 2k(λ)(1+p) (λ− 1)K1(p) + (λ− 1)2

]
.

Di�erentiating this equation with respect to k and setting the derivative equal to zero,
we �nd

(3.10) k = (λ)−p
(
1

λ
− 1

)
K1(p)/K1(2p)

which minimizes the MSE value. If the required values are inserted into equation (3.10),
the k value is obtained as given in equation (3.11);

(3.11) k =

(
β − β0
β0

)(
β

β0

)p
(n− 1)p

(n+ p− 1)!

(n+ 2p− 1)!

The shrinking parameter k is obtained as a function of β parameter. In practice, it is
impossible to attain parameter β. Therefore the unknown parameters in equation (3.11)
are replaced by their unbiased estimators. So an estimator for k is obtained as

k̂ =

(
β̃ − β0
β0

)(
β

β0

)p
(n− 1)p

(n+ p− 1)!

(n+ 2p− 1)!
.

On conclusion, when necessary adjustment is made, the estimator class for the shape
parameter of Pareto distribution is obtained as

β?(p) = β0 +
(
β̃ − β0

)
k(p)

where k(p) = (n− 1)p
(n+ p− 1)!

(n+ 2p− 1)!
.Thus, the MSE value of β?(p) is obtained as

(3.12) MSE
(
β?(p)

)
=

k2(p)β
2

(n− 2)
+
(
k(p) − 1

)2
(β − β0)2

by making necessary adjustment in equation (3.9). If λ = β0/β is written on its place,
equation (3.12) is written as

(3.13) MSE
(
β?(p)

)
= β2

[
k2(p)

(n− 2)
+
(
k(p) − 1

)2
(1− λ)2

]
.

The bias of β?(p) estimators class is obtained as
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Bias
(
β?(p)

)
= E

(
β?(p)

)
− β =

(
1− k(p)

)
(β0 − β) .

Thus the proof is completed. �

The relative e�ciency of β?(p) estimator class with respect to β̃ estimator is calculated
by means of

(3.14)
MSE

(
β?(p)

)
V ar

(
β̃
) = k2(p) + (n− 2)

(
k(p) − 1

)2
(1− λ)2 .

If equation (3.14) is smaller than 1, it is clear that MSE(β?(p)) < V ar(β̃).

Case Study 1: Consider that p=1. By using equation(3.4) and equation(3.5) an esti-
mator is obtain as

β?(1) = β0 +
(
β̃ − β0

) (n− 1)

(n+ 1)
.

The MSE value of this estimator is

MSE
(
β?(1)

)
= β2

[
(n− 1)2

(n− 2) (n+ 1)2
+

(
(n− 1)

(n+ 1)
− 1

)2

(1− λ)2
]
.

The relative e�ciency of β?(1) estimator with respect to β̃ estimator is

MSE(β?(1))

V ar(β̃)
=

(n− 1)2

(n+ 1)2
+ (n− 2)

(
(n− 1)

(n+ 1)
− 1

)2

(1− λ)2

=
(n− 1)2

(n+ 1)2
+

4 (n− 2)

(n+ 1)2
(1− λ)2.

It is clear that β?(1) estimator is better than β̃ estimator if
MSE

(
β?
(1)

)
V ar(β̃)

< 1 inequality

is true. Thus

(3.15)
(n− 1)2

(n+ 1)2
+

4 (n− 2)

(n+ 1)2
(1− λ)2 < 1

inequality can be written. If the necessary adjustment is made in equation (3.15), it is
obtained that

0 < λ < 1 +

(
n

n− 2

)1/2

.

In case this inequality is true, it can be said that β?(1) estimator is better than β̃ esti-

mator. Further, when n is very large (i.e. n→∞ )

(1− λ)2 < n

n− 2

inequality reduces to 0 < λ < 2.

Case Study 2: Consider that p = 2. By using equation(3.4) and equation(3.5) an
estimator is obtained as
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β?(2) = β0 +
(
β̃ − β0

) (n− 1)2

(n+ 1) (n+ 2)
.

The MSE value of this estimator is

MSE
(
β?(2)

)
= β2

[
(n−1)4

(n+1)2(n+2)2(n−2)
+
(

(n−1)2

(n+1)(n+2)
− 1
)2

(1− λ)2
]
.

The relative e�ciency of β?(2) estimator with respect to β̃ estimator is

MSE(β?(2))

V ar(β̃)
=

[
(n− 1)2

(n+ 1) (n+ 2)

]2
+ (n− 2)

[
(n− 1)2

(n+ 1) (n+ 2)
− 1

]2
(1− λ)2

=
(n− 1)4

(n+ 1)2(n+ 2)2
+

(n− 2) (5n+ 1)2

(n+ 1)2(n+ 2)2
(1− λ)2.

It is clear that β?(2) estimator is better than β̃ estimator if
MSE

(
β?
(2)

)
V ar(β̃)

< 1 inequality

is true. Thus

(3.16)
(n− 1)4

(n+ 1)2(n+ 2)2
+

(n− 2) (5n+ 1)2

(n+ 1)2(n+ 2)2
(1− λ)2 < 1

inequality can be written. If the necessary adjustment is made in equation (3.16), it is
obtained that

1−
(

2n2 + n+ 3

(n− 2 ) (5n+ 1)

)1/2

< λ < 1 +

(
2n2 + n+ 3

(n− 2 ) (5n+ 1)

)1/2

.

In case this inequality is true, it can be said that β?(2) estimator is better than β̃

estimator. Furthermore, when n is very large (i.e. n→∞ )

(1− λ)2 < 2n2 + n+ 3

(n− 2 ) (5n+ 1)

inequality reduces to 0.37 < λ < 1.63.

3.2. Corollary. The shrinkage estimator class for the shape parameter of Pareto distri-
bution, which is obtained by means of equation(2.2), is given as

(3.17) β∗
(p) = β0 +

(
β̃ − β0

)
w(p)

where

(3.18) w(p) = (n− 1)−p
(n− p− 1)!

(n− 2p− 1)!
.

of β∗
(p) estimator class is

MSE
(
β∗
(p)

)
= β2

[
w2

(p)

(n−2)
+
(
w(p) − 1

)2
(1− λ)2

]
where λ = β0/β.Furthermore bias of β∗

(p)estimator class is given by

(3.19) Bias
(
β∗
(p)

)
=
(
1− w(p)

)
(β0 − β) .
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Proof. The shrinkage estimator class for the shape parameter of Pareto distribution is
described as

β∗
(p) = β0

[
1 + w

(
β̃

β0

)p]
which is obtained by means of equation(2.2).

E
(
β̃jp
)
= K2(jp)(β)

jp , (j = 1, 2)

and

K2(jp) = (n− 1)jp
(n− jp− 1)!

(n− 1)!

functions are used to calculate the MSE of β∗
(p) estimator class. The value ofMSE

(
β∗
(p)

)
is

(3.20) MSE(β∗
(p) = E

[
β∗
(p) − β

]2
If necessary information is written in equation (3.20) where λ = β0

β
, the MSE value is

obtained as

MSE
(
β∗
(p)

)
= β2

[
w2(λ)2(1−p)K2(2p) + 2w(λ)1−p (λ− 1)K2(p) + (λ− 1)2

]
.

Di�erentiating this equation with respect to w and setting the derivate equal to zero, we
�nd

(3.21) w =

(
1

λ
− 1

)
(λ)p

(
K2(p)

K2(2p)

)
which is a constant minimizing the MSE value. If necessary information is written in
equality which is introduced equation (3.21) w is obtained as follows:

(3.22) w =

(
β − β0
β0

)(
β0
β

)p
(n− 1)−p

(n− p− 1)!

(n− 2p− 1)!
.

The shrinking parameter k is obtained as a function of βparameter. In practice, it is
impossible to attain parameter β. Therefore the unknown parameter in equation (3.22)
is replaced by its unbiased estimator. So an estimator for w is obtained as

ŵ =

(
β̃ − β0
β0

)(
β0

β̃

)p
(n− 1)−p

(n− p− 1)!

(n− 2p− 1)!
.

On conclusion, when necessary adjustment is made, the estimator class for the shape
parameter of Pareto distribution is obtained as

β∗
(p) = β0 +

(
β̃ − β0

)
w(p)

where w(p) = (n− 1)−p (n−p−1)!
(n−2p−1)!

.Thus, the MSE value of β∗
(p) is obtained as

(3.23) MSE
(
β∗
(p)

)
=
w2

(p)β
2

(n− 2)
+
(
w(p) − 1

)2
(β − β0)2
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by making necessary adjustment in equation (3.20). If λ = β0/β is written on its place,
equation (3.23) is written as

MSE
(
β∗
(p)

)
= β2

[
w2

(p)

(n− 2)
+
(
w(p) − 1

)2
(1− λ)2

]
.

Furthermore the bias of β?(p)estimator class can be obtained as

Bias
(
β∗
(p)

)
= E

(
β∗
(p)

)
− β =

(
1− w(p)

)
(β0 − β) .

Thus the proof is completed. �

The relative e�ciency of β∗
(p) estimator class with respect to β̃ estimator is calculated

by means of

(3.24)
MSE

(
β∗
(p)

)
V ar

(
β̃
) = w2

(p) + (n− 2)
(
w(p) − 1

)2
(1− λ)2.

If equation (3.24) is smaller than 1, it is clear that MSE
(
β∗
(p)

)
< V ar

(
β̃
)
.

Case Study 3: Consider that p=1. An estimator is obtained as

β∗
(1) = β0 +

(
β̃ − β0

) (n− 2)

(n− 1)

by using equation (3.17) and equation (3.18). The MSE value of this estimator is

MSE
(
β∗
(1)

)
= β2

[
(n− 2)2

(n− 2) (n− 1)2
+

(
(n− 2)

(n− 1)
− 1

)2

(1− λ)2
]
.

The relative e�ciency of β∗
(1) estimator with respect to β̃ estimator is

MSE(β∗
(1))

V ar(β̃)
=

(n− 2)2

(n− 1)2
+ (n− 2)

[
(n− 2)

(n− 1)
− 1

]2
(1− λ)2

=
(n− 2)2

(n− 1)2
+

(n− 2)

(n− 1)2
(1− λ)2.

It is clear that β∗
(1) estimator is better than β̃ estimator if

MSE
(
β∗
(1)

)
V ar(β̃)

< 1 inequality is

true. Thus
(n− 2)2

(n− 1)2
+

(n− 2)

(n− 1)2
(1− λ)2 < 1

inequality can be written. If the necessary adjustment is made in above inequality, it is
obtained that

0 < λ < 1 +

(
2n− 3

n− 2

)1/2

.

In case this inequality is true, it can be said that β∗
(1)estimator is better than β̃ estimator.

Further, when n is very large (i.e. n→∞ )

(1− λ)2 < 2n− 3

n− 2

inequality reduces to 0 < λ < 2.41.
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Case Study 4: Consider that p = 2. By using equation (3.17) and equation (3.18) an
estimator is obtained as

β∗
(2) = β0 +

(
β̃ − β0

) (n− 3) (n− 4)

(n− 1)2
.

The MSE value of this estimator is

MSE
(
β∗
(2)

)
= β2

[
(n−3)2(n−4)2

(n−2)(n−1)4
+
(

(n−3)(n−4)

(n−1)2
− 1
)2

(1− λ)2
]
.

The relative e�ciency of β∗
(2) estimator with respect to β̃ estimator is

MSE(β∗
(2))

V ar(β̃)
=

(n− 3)2(n− 4)2

(n− 1)4
+ (n− 2)

(
(n− 3) (n− 4)

(n− 1)2
− 1

)2

(1− λ)2

=
(n− 3)2(n− 4)2

(n− 1)4
+

(n− 2) (5n− 11)2

(n− 1)2
.

It is

clear that β∗
(2) estimator is better than β̃ estimator if

MSE
(
β∗
(2)

)
V ar(β̃)

< 1 inequality is true.

Thus

(n− 3)2(n− 4)2

(n− 1)4
+

(n− 2) (5n− 11)2

(n− 1)2
(1− λ)2 < 1

inequality can be written. If the necessary adjustment is made in above inequality, it is
obtained that

1−
(

2n2 − 9n+ 13

(n− 2 ) (5n− 11)

) 1
2

< λ < 1 +

(
2n2 − 9n+ 13

(n− 2 ) (5n− 11)

) 1
2

.

In case this inequality is true, it can be said that β∗
(2)estimator is better than β̃ estimator.

Further, when n is very large (i.e. n→∞ )

(1− λ)2 < 2n2 − 9n+ 13

(n− 2 ) (5n− 11)

inequality reduces to 0.37 < λ < 1.63.

Note: It can be seen that the estimator class proposed by Jani [11] is directly related
with that of Singh and Singh [14] for the shape parameter of the Pareto distribution.
This relationship is expressed as k(p) = w(−p).

4. Comparisons of the estimators

Here, the relative e�ciency of the obtained estimator classes with respect to the un-
biased estimator for the shape parameter of the Pareto distribution is calculated using
di�erent values of n, p and λ. The handled λ values are selected by considering the
e�ciency range for large n values in case studies.

The relative e�ciency of the estimator class introduced in equation (3.4) with respect
to the estimator given in equation (3.3) is calculated for the di�erent value of n, p and λ
by the help of equation (3.14). These calculated values are summarized in Table 1.
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Table 1. The relative e�ciency of the estimator class proposed equa-
tion (3.4) with respect to estimator given by equation (3.3)

Sample Size n

λ Estimator 5 10 15 25 50

0.125

β?(−1) 0.8657 0.9130 0.9357 0.9490 0.9749

β?(−1/2) 0.9738 0.9831 0.9875 0.9901 0.9951

β?(1/2) 0.9022 0.9354 0.9518 0.9615 0.9809

β?(1) 0.8719 0.9211 0.9436 0.9563 0.9796

β?(3/2) 1.1139 1.1369 1.1304 1.1190 1.0761

β?(2) 1.6853 1.6965 1.6407 1.5788 1.3687

β?(5/2) 2.4890 2.5955 2.5228 2.4111 1.9533

0.50

β?(−1) 0.8148 0.8788 0.9100 0.9284 0.9646

β?(−1/2) 0.9730 0.9826 0.9871 0.9898 0.9950

β?(1/2) 0.8858 0.9236 0.9426 0.9541 0.9770

β?(1) 0.7355 0.8164 0.8594 0.8861 0.9416

β?(3/2) 0.6667 0.7647 0.8182 0.8519 0.9231

β?(2) 0.7319 0.8302 0.8785 0.9065 0.9581

β?(5/2) 0.9107 1.0270 1.0697 1.0858 1.0823

1.00

β?(−1) 0.7901 0.8622 0.8975 0.9184 0.9596

β?(−1/2) 0.9726 0.9823 0.9869 0.9896 0.9949

β?(1/2) 0.8778 0.9179 0.9382 0.9504 0.9751

β?(1) 0.6694 0.7656 0.8186 0.8521 0.9231

β?(3/2) 0.4499 0.5842 0.6668 0.7224 0.8490

β?(2) 0.2696 0.4103 0.5090 0.5805 0.7590

β?(5/2) 0.1455 0.2665 0.3652 0.4432 0.6600

1.50

β?(−1) 0.8148 0.8788 0.9100 0.9284 0.9646

β?(−1/2) 0.9730 0.9826 0.9871 0.9898 0.9950

β?(1/2) 0.8858 0.9236 0.9426 0.9541 0.9770

β?(1) 0.7355 0.8164 0.8594 0.8861 0.9416

β?(3/2) 0.6667 0.7647 0.8182 0.8519 0.9231

β?(2) 0.7319 0.8302 0.8785 0.9065 0.9581

β?(5/2) 0.9107 1.0270 1.0697 1.0858 1.0823

2.50

β?(−1) 1.0123 1.0115 1.0097 1.0082 1.0046

β?(−1/2) 0.9760 0.9846 0.9887 0.9910 0.9956

β?(1/2) 0.9494 0.9693 0.9781 0.9830 0.9920

β?(1) 1.2645 1.2227 1.1859 1.1583 1.0892

β?(3/2) 2.4013 2.2085 2.0290 1.8880 1.5164

β?(2) 4.4301 4.1901 3.8347 3.5142 2.5509

β?(5/2) 7.0327 7.1109 6.7060 6.2265 4.4606

Table 1 shows that β?(−1/2) and β
?
(1/2) estimators are better than the unbiased estima-

tors for all values of λ. Further when 0.50 ≤ λ ≤ 1.50, the all proposed biased estimators
are better than the unbiased estimators. Hence the e�ciency of the proposed biased es-
timator class with respect to the unbiased estimator decreases as λ values di�er from 1.
Besides increased p values cause a decrease in e�ciency of the proposed biased estimator
class with respect to the unbiased estimator.
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Table 2. The relative e�ciency of the estimator class proposed equa-
tion (3.17) with respect to estimator given by equation (3.3)

Sample Size n

λ Estimator 5 10 15 25 50

0.125

β∗
(−1) 0.8719 0.9211 0.9436 0.9563 0.9796

β∗
(−1/2) 0.9022 0.9354 0.9518 0.9615 0.9809

β∗
(1/2) 0.9738 0.9831 0.9875 0.9901 0.9951

β∗
(1) 0.8657 0.9130 0.9357 0.9490 0.9749

β∗
(3/2) 0.9948 0.9987 0.9997 1.0000 1.0003

β∗
(2) 1.6888 1.5148 1.4053 1.3331 1.1750

β∗
(5/2) 2.9280 2.6133 2.3354 2.1289 1.6252

0.50

β∗
(−1) 0.7355 0.8164 0.8594 0.8861 0.9416

β∗
(−1/2) 0.8858 0.9236 0.9426 0.9541 0.9770

β∗
(1/2) 0.9730 0.9826 0.9871 0.9898 0.9950

β∗
(1) 0.8148 0.8788 0.9100 0.9284 0.9646

β∗
(3/2) 0.6758 0.7768 0.8302 0.8630 0.9304

β∗
(2) 0.7325 0.8001 0.8412 0.8686 0.9297

β∗
(5/2) 1.0254 1.0314 1.0250 1.0197 1.0083

1.00

β∗
(−1) 0.6694 0.7656 0.8186 0.8521 0.9231

β∗
(−1/2) 0.8778 0.9179 0.9382 0.9504 0.9751

β∗
(1/2) 0.9726 0.9823 0.9869 0.9896 0.9949

β∗
(1) 0.7901 0.8622 0.8975 0.9184 0.9596

β∗
(3/2) 0.5212 0.6692 0.7480 0.7966 0.8966

β∗
(2) 0.2689 0.4536 0.5677 0.6433 0.8108

β∗
(5/2) 0.1030 0.2644 0.3897 0.4819 0.7092

1.50

β∗
(−1) 0.7355 0.8164 0.8594 0.8861 0.9416

β∗
(−1/2) 0.8858 0.9236 0.9426 0.9541 0.9770

β∗
(1/2) 0.9730 0.9826 0.9871 0.9898 0.9950

β∗
(1) 0.8148 0.8788 0.9100 0.9284 0.9646

β∗
(3/2) 0.6758 0.7768 0.8302 0.8630 0.9304

β∗
(2) 0.7325 0.8001 0.8412 0.8686 0.9297

β∗
(5/2) 1.0254 1.0314 1.0250 1.0197 1.0083

2.50

β∗
(−1) 1.2645 1.2227 1.1859 1.1583 1.0892

β∗
(−1/2) 0.9494 0.9693 0.9781 0.9830 0.9920

β∗
(1/2) 0.9760 0.9846 0.9887 0.9910 0.9956

β∗
(1) 1.0123 1.0115 1.0097 1.0082 1.0046

β∗
(3/2) 1.9130 1.6374 1.4877 1.3946 1.2014

β∗
(2) 4.4417 3.5723 3.0293 2.6704 1.8810

β∗
(5/2) 8.4051 7.1672 6.1078 5.3222 3.4012

Similarly, the relative e�ciency of the estimator class proposed in equation (3.17) with
respect to estimator given in equation (3.3) is calculated for di�erent values of n, p and
λ with the help of equation (3.24). These calculated values are given in Table 2.

Table 2 shows that β∗
(−1/2) and β∗

(1/2) estimators are better than the unbiased esti-
mators for all λ values. Furthermore, when 0.50 ≤ λ ≤ 1.50, the all proposed biased
estimators better than the unbiased estimators. But the e�ciency of the proposed bi-
ased estimator class with respect to the unbiased estimator decrease as λ values di�er
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Table 3. The relative biases of equation (3.4) and equation (3.17)
estimators for di�erent n and p values

p Sample Size n

10 15 20 25 50

-1 0.6111 0.5714 0.5526 0.5417 0.5204

-1/2 0.2185 0.2120 0.2089 0.2070 0.2035

1/2 4.5769 4.7175 4.7880 4.8303 4.9151

1 1.6364 1.7500 1.8095 1.8462 1.9216

3/2 1.1841 1.2952 1.3569 1.3961 1.4799

2 0.9985 1.1009 1.1623 1.2030 1.2940

5/2 0.9108 0.9958 1.0530 1.0931 1.1882

from 1. In addition increased p values cause a decreased e�ciency of the proposed biased
estimator class with respect to the unbiased estimator. Moreover, when the estimators
given in Table 1 are compared to the estimators given in Table 2, it is observed that the
e�ciency range of the estimator class introduced in equation (3.17) with respect to the
estimator given in equation (3.3) is larger than that of the estimator class introduced in
equation (3.4) with respect to estimator given in equation (3.3).

In addition to the MSE criteria, bias has an important role in comparison of estimators.
A relative bias can be calculated by dividing equation (3.7) to equation (3.19). The
relative bias is given in equation (4.1).

(4.1)
Bias(β?(p))

Bias(β∗
(p))

=
1− k(p)
1− w(p)

.

The relative bias values are calculated by means of equation (4.1) for di�erent n and
p values and given in Table 3.

In Table 3, it is seen that the biases of β?(p) estimators are smaller than those of

β∗
(p) estimators when p has a negative value. Furthermore, it can be mentioned that

Bias(β?(p))/Bias(β
∗
(p)) values decrease when there is an increase on positive values of p.

However, it can be noted thatβ∗
(p) estimators have smaller bias than β?(p)estimators if p

is near 1.

5. Simulation Study

In this section, we generated a data set for the Pareto distribution with the shape
parameter β = 5 and the scale parameter α = 1. The scale parameter α was taken as
1 because the same results were obtained from experiments for α = 1, 1.5, 2, . . . . The
shape parameter should be greater than 2 so that the variance of a data set from the
Pareto distribution could be calculated. Also Thompson [1,2] used the proportion 1/5
between two descriptive parameters of the normal distribution in his study. The relative
e�ciency of the obtained estimator classes with respect to the unbiased estimator for the
shape parameter of the Pareto distribution is calculated using di�erent values of n, p and
λ. First we calculated the MSE values to obtain the relative e�ciency. These MSE val-
ues were calculated by the means of Monte Carlo Simulation study where the number of
iterations was 25000. We obtained relative e�ciencies similar to that of previous section.
The simulation study results which are given in Table 4 support to the theoretical results.



1243

Table 4. The relative e�ciency of the estimator class proposed equa-
tion(3.4) and equation(3.17) with respect to estimator given by equa-
tion (3.3)

Sample Size n

λ Estimator 5 15 50

0.50

β?(−1) 0.7797 0.9339 0.9808

β∗
(−1) 0.7124 0.8857 0.9633

β?(−1/2) 0.9715 0.9916 0.9976

β∗
(−1/2) 0.8841 0.9609 0.9882

β?(1) 0.7123 0.8857 0.9633

β∗
(1) 0.7796 0.9339 0.9808

1.00

β?(−1) 0.5625 0.7901 0.9596

β∗
(−1) 0.4444 0.6694 0.9231

β?(−1/2) 0.9396 0.9726 0.9949

β∗
(−1/2) 0.7610 0.8778 0.9751

β?(1) 0.4444 0.6694 0.9231

β∗
(1) 0.5625 0.7901 0.9596

2.50

β?(−1) 0.1242 0.6646 0.8973

β∗
(−1) 0.0195 0.4575 0.8075

β?(−1/2) 0.8471 0.9545 0.9869

β∗
(−1/2) 0.4475 0.7948 0.9363

β?(1) 0.0195 0.4575 0.8075

β∗
(1) 0.1242 0.6646 0.8973

6. Conclusion and Suggestions

When the biased estimators give smaller MSE than unbiased estimators, the biased
estimators can be preferred to the unbiased estimators. In this study, considering this
case, two di�erent biased estimator classes are proposed. These estimators are generated
by minimizing MSE.

In section 4, the cases in which the biased estimators have smaller MSE than the
unbiased estimator are assessed. When 0.50 ≤ λ ≤ 1.50, the biased estimator class which
is given in equation(3.4) is better than the unbiased estimator. However the e�ciency
of the proposed biased estimator class with respect to the unbiased estimator decreases
as the λ values di�er from 1. Increased p values cause a decrease in e�ciency of the
proposed biased estimator class with respect to the unbiased estimator. Similarly, when
0.50 ≤ λ ≤ 1.50, the biased estimator class given in equation (3.17) is better than the
unbiased estimators. However the e�ciency of the proposed biased estimator class with
respect to the unbiased estimator decreases as λ values di�er from 1. Further increased p
values cause decrease in e�ciency of the proposed biased estimator class with respect to
the unbiased estimator. When the relative e�ciency values given in Table 1 and Table 2
are considered, it is shown that the both biased estimators classes have almost the same
e�ciency range. Besides, if both biased estimator classes are considered as an e�cient
range, it is observed that the e�ciencies of biased estimators with respect to biased es-
timators decrease when n increases. In addition to the relative e�ciency values in both
tables, the e�ciency range of the estimator class introduced in equation (3.17) is greater
than that of the estimator class given in equation (3.4) as shown in case study 1 and 3.
It is observed that the estimator class given in equation (3.4) is more e�cient than the
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others when p is a negative real number, while the estimator class given equation (3.17)
is more e�cient than others when p is a positive real number.

In conclusion, it is possible to obtain estimators that give a smaller MSE than the
unbiased estimator for the shape parameter of Pareto distribution using the estimator
class given in equation (3.4) if p is a negative number near zero, while it is reasonable to
use the estimator class given in equation (3.17) if p is a positive number near zero, when
λ values are near 1.
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