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Transmuted Dagum distribution: A more flexible
and broad shaped hazard function model
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Abstract

In this article, we introduce an extended Dagum distribution, named as
transmuted Dagum distribution which can be used for income distribu-
tion, actuarial, survival and reliability analysis. The main motivation
for generalizing the standard distribution is to provide more flexible
distribution to model a variety of data. The extended distribution
has been expressed using quadratic rank transmutation map and its
tractable properties like moments, moment generating, quantile, relia-
bility and hazard functions are derived. The transmuted Dagum model
provides the broader range of hazard behavior than the Dagum model.
The densities of its order statistics, generalized TL-moments with its
special cases are also studied. The parameters of the new model are es-
timated by maximum likelihood using Newton-Raphson approach and
the information matrix and confidence intervals are also obtained. To
illustrate utility and potentiality of the proposed model, it has been
applied to rainfall data for the city of Islamabad, Pakistan.
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1. Introduction
Dagum distribution is widely used for modeling a wide range of data in several fields.

It is very worthwhile for analyzing income distribution, actuarial, metrological data and
equally preferable for survival analysis. Moreover, it is considered to be the most suitable
choice as compared to other three parameter distributions in several cases. It belongs
to the generalized Beta distribution and is generated from generalized Beta-II by con-
sidering a shape parameter one and referred as inverse Burr distribution. Dagum [5]
and Fattorini and Lemmi [13] derived the Dagum distribution independently. Dagum [7]
studied the income and income related data by Dagum distributions. Dagum [6] also fit-
ted this distribution on 1978 family incomes data for the United States and proved that
its performance is the best among all the models. Bordley, McDonald, and Mantrala
[4] also studied the United States family income data by probability distributions along
with the Dagum distribution. Bandourian, McDonald, and Turley [2] revealed after the
study of 23 countries’ income data, the Dagum distribution is the best among the two
and three parameter distributions. Quintano and Dagostino [21] studied single-person
income distribution of European countries data and found that the Dagum distribution
performs better to model the each country data separately. Perez and Alaiz [20] analyzed
the personal income data of Spain by Dagum distribution. Alwan, Baharum, and Hassan
[1] tried more than fifty distributions to model the reliability of the electrical distribution
system and finally the Dagum distribution was considered as the best choice. We have
cited very few studies but various other related studies also confirm the better perfor-
mance of the Dagum distribution. Recently Dagum distribution is found to be quite
useful and popular in modeling the skewed data.
Domma, Giordano and Zenga [11] and Domma [8] estimated the parameters of Dagum
distribution with censored samples and the right-truncated Dagum distribution by max-
imum likelihood estimation. McGarvey, et al [17] studied the estimation and skewness
test for the Dagum distribution. Shahzad and Asghar [22] estimated the parameter of
this distribution by TL-moments. Oluyede and Rajasooriya [18] introduced the Mc-
Dagum distribution. Oluyede and Ye [19] presented the class of weighted Dagum and
related distributions and Domma and Condino [9] proposed the five parameter beta-
Dagum distribution. In this study, we present the transmuted Dagum distribution that
is the extension of the Dagum distribution.
Rest of the paper is organized as follows. Section 2 is about the quadratic rank transmu-
tation map, mathematical derivation of the probability density function (pdf) and prob-
ability distribution function (cdf) of transmuted Dagum distribution with their graphical
presentation. In section 3, rth moment and moment generating function are derived and
the expression for the coefficient of variation, skewness and kurtosis are also reported.
Section 4 is about the quantile function, median and random number generating pro-
cess for transmuted Dagum distribution. Reliability function, hazard function and their
mathematical and graphical presentation are given in Section 5. Section 6 is related to
order statistics: the lowest, highest and joint order densities of transmuted Dagum distri-
bution are specified. Section 7 contains the generalized TL-moments and its special cases,
such as L-moments, TL-moments, LL-moments, and LH-moments. Methodology for pa-
rameter estimation, Newton-Raphson algorithm for maximum likelihood is discussed in
Section 8. To compare the suitability of transmuted Dagum distribution with its related
distributions, rainfall data is selected and its goodness of fit on empirical data is tested
by using likelihood function, AIC, AICC, BIC, KS test, LR test and PP-plots in section
9.
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2. Transmuted Dagum Distribution
A random variable follows the transmuted distribution, if it satisfies the following

relationship that is proposed by Shaw et al. [24] named as quadratic rank transmutation
map

(2.1) F (y) = G(y)
[
(1 + λ)− λG(y)

]
Where G(y) is the cdf of the parent distribution and λ is the additional parameter that is
called transmuted parameter. Due to the transmuted parameter the distribution becomes
more flexible distribution to model even the complex data sets.
The pdf of the Dagum (parent) distribution is as

(2.2) g(y;α, β, ρ) =
αρyαρ−1

βαρ
(
1 + (y/β)α

)ρ+1 , 0 ≤ x ≤ ∞; α, β, ρ > 0

and its cdf is as

(2.3) G(y;α, β, ρ) =
(
1 + (y/β)−α

)−ρ
.

Where α and ρ are the shape parameters, β is the scale parameter and all the three
parameters are positive. Now substituting the (2.3) in (2.1), we obtained the cdf of the
transmuted Dagum distribution in the following form

(2.4) F (y;α, β, ρ, λ) =
(
1 + (y/β)−α

)−ρ
[1 + λ− λ

(
1 + (y/β)−α

)−ρ
],

and its respective pdf of transmuted Dagum distribution is given by

(2.5) f(y;α, β, ρ, λ) =
αρy2αρ−1

[
(1 + λ)

(
1 + (y/β)−α

)ρ − 2λ
]

β2αρ
(
1 + (y/β)α

)2ρ+1 .

The parameter λ has the support −1 ≤ y ≤ 1 and simply taking λ = 0 in above pdf and
cdf, transmuted distribution reduces to the parent distribution. Dagum distribution due
to quadratic rank transmutation map becomes more flexible. The shapes of this density
and distribution function assuming various combinations of parameters are illustrated in
the Figure 1 and Figure 2, respectively.

3. Moments and moments ratio
In this section, main statistical properties such as rth moments, mean, variance, and

moment generating function for transmuted Dagum distribution are derived and dis-
cussed.

3.1. Theorem. Let the random variable Y follows the transmuted Dagum distribution,
then its rth moment has the following form

(3.1) E(Y r) = βrΓ
(

1− r

α

)[ (1 + λ)Γ(ρ+ r
α

)

Γ(ρ)
−
λΓ(2ρ+ r

α
)

Γ(2ρ)

]
.

Proof. Let the rth moments is given by

m
′
r = E(Y r) =

∫ ∞
0

αρy2αρ+r−1
[
(1 + λ)

(
1 + (y/β)−α

)ρ − 2λ
]

β2αρ
(
1 + (y/β)α

)2ρ+1 dy

=

∫ ∞
0

αρy2αρ+r−1(1 + λ)
(
1 + (y/β)−α

)ρ
β2αρ

(
1 + (y/β)α

)2ρ+1 dy −
∫ ∞
0

2λαρy2αρ+r−1

β2αρ
(
1 + (y/β)α

)2ρ+1 dy
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For convenience substitute x = (y/β)α, hence

m
′
r = βr(1 + λ)

∫ ∞
0

xρ+r/α−1(1 + x)−(ρ+1)dx− 2αρβr
∫ ∞
0

xρ+r/α−1(1 + x)−(ρ+1)dx

= βr
[
(1 + λ)B

(
ρ+

r

α
, 1− r

α

)
− λB

(
2ρ+

r

α
, 1− r

α

)]
,

where B(., .) is the beta type-II function, defined by

B(θ1, θ2) =

∫ ∞
0

zθ1(1 + z)−(θ1+θ2)dz; θ1, θ2 > 0

after one step simplification, we obtain the result given in (3.1).

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5

2
.0

a

β=1.0 ρ=1.0 and λ=0.3

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

b

α=5.0 ρ=0.4 and λ=0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

c

α=2.0 β=0.5 and λ=0.5

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

d

α=4.0 β=1.0 and ρ=0.25

Figure 1. The pdf’s of various transmuted Dagum distributions for
values of parameters: a) α = 3.0[0.5]5.5; b) β = 2.0[0.25]3.25; c) ρ =
0.5, 0.75, 1.0[1.0]4.0; d) λ = -1.0[0.4]1.0 with solid, dashed, dotted,
dotdash and longdash lines, respectively.

In particular, by setting r = 1 and r = 2 in (3.1), we obtain mean and varianc (σ2)
by taking usual steps

(3.2) E(Y ) = βΓ
(

1− 1

α

)[ (1 + λ)Γ(ρ+ 1
α

)

Γ(ρ)
−
λΓ(2ρ+ 1

α
)

Γ(2ρ)

]
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and

(3.3) σ2 = β2Γ
(

1− 2

α

)[
(1 + λ)P12 − λP22

]
− β2

[
Γ
(

1− 1

α

)]2[
(1 + λ)P11 − λP21

]
,

where Pir = Γ(iρ+ r
α

)/Γ(iρ).
The following expression can be used to obtain the moment ratios for transmuted Dagum
distribution such as Cofficient of vartiation (CV ), Skewness (Sk) and Kurtosis (Kr) using
m
′
r(r = 1, 2, 3, 4).

CV =
σ

m′1
,

Sk =
m′3 − 2m′2m

′
1 + 2 (m′1)

3

σ3
,

Kr =
m′4 − 4m′3m

′
1 + 6m′2 (m′1)

2 − 3 (m′1)
4

σ4
.
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Figure 2. The cdf’s of various transmuted Dagum distributions for
values of parameters: a) α = 3.0[0.5]5.5; b) β = 2.0[0.25]3.25; c) ρ =
0.5, 0.75, 1.0[1.0]4.0; d) λ = -1.0[0.4]1.0 with solid, dashed, dotted,
dotdash and longdash lines, respectively.
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3.2. Theorem. The moment generating function of Y , My(t) when random variable
follows the transmuted Dagum distribution is

(3.4) My(t) =

∞∑
r=0

trβΓ(1− 1/α)

r!

[
(1 + λ)P11 − λP21

]
Proof. Let the moment generating function for Y is given by

MY (t) = E(ety) =

∫ ∞
0

etyf(y)dy

=

∫ ∞
0

(
1 + ty +

t2y2

2!
+ ...+

tnyn

n!
+ ...

)
f(y)dy

=

∞∑
r=0

trE (Y r)

r!

=

∞∑
r=0

trβΓ(1− 1/α)

r!

[
(1 + λ)P11 − λP21

]
.

4. Quantile function and random number generation
Hyndman and Fan [16] defined the quantile function for any distribution is in the form

(4.1) Q(q) = F−1(q) = inf{y : F (y) > q} 0 < q < 1,

where F (y) is the distribution function. Quantile function divides the ordered data into
q equal sized portions. The smallest and largest value of the ordered data corresponds
to probability 0 and 1, respectively. The qth quantile of transmuted Dagum distribution
is obtained using (2.4) and (4.1) is given as

(4.2) Q(q) = β
[(1 + λ+

√
(1 + λ)2 − 4λq

2q

)1/ρ
− 1
]1/α

.

Median is the 50th percentile, hence median of transmuted Dagum distribution is ob-
tained from (4.2) as below

Median = β
[(

1 + λ+
√

1 + λ2
)1/ρ

− 1
]1/α

.

The expression (4.2) can also be used to find the tertiles, quartiles, quintiles, sextiles,
deciles, percentiles and permilles. To generate the random numbers for the transmuted
Dagum distribution, let suppose that the U is the standard uniform variate in (4.2) rather
than q. Then the random variable

(4.3) y = β
[(1 + λ+

√
(1 + λ)2 − 4λu

2u

)1/ρ
− 1
]1/α

follows the transmuted Dagum distribution. Now (4.3) is ready to generate the random
number for the distribution, taking α, β, ρ and λ known.

5. Reliability analysis
The reliability function R(t) gives the probability of surviving of an item at least

reach the age of t time. The cdf F (t) and reliability function are reverse of each other as
R(t) + F (t) = 1. The reliability function for transmuted Dugam distribution is given by

R(t) = P (T > t) =

∫ ∞
t

f(t)dt = 1− F (t)

= 1 +
(
1 + (t/β)−α

)−2ρ
[
λ− (1 + λ)

(
1 + (t/β)−α

)ρ]
.
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With various choices of parametric values the Figure 3 illustrates the reliability function
pattern of transmuted Dagum distribution.
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Figure 3. The various shapes of reliability function of transmuted
Dagum distribution.

An important property of a random variable is the hazard function, it measure the
inclination towards failure rate. The probability approaches to failure increases as the
value of the hazard function increase. Mathematically, the hazard function and the
hazard function of transmuted Dagum distribution is defined as

h(t) =
f(t)

1− F (t)
=
f(t)

R(t)

=
αρt2αρ−1

[
(1 + λ)

(
1 + (t/β)−α

)ρ − 2λ
]

β2αρ
(
1 + (t/β)α

)2ρ+1
[
1 +

(
1 + (t/β)−α

)−2ρ[
λ− (λ+ 1)

(
1 + (t/β)−α

)ρ]] .
The hazard function of the transmuted Dagum distribution is attractively flexible.

Therefore, it is useful and suitable for the real life situations. As in the case of trans-
muted Dagum distribution when λ = 0 is the Dagum distribution. Domma [10] and
Domma, Giordano and Zenga [11] using Glaser’s theorem [14] proved the proposition of
the hazard function of the Dagum distribution. So taking these propositions and Glaser’s
theorem [14], we concentrate on the additional parameter λ and find out the following
four behaviour of the hazard function on the combinations of parameters.

(1) The hazard function of transmuted Dagum distribution is decreasing if
(a) ρ = 2/α− 1, α < 2, β > 0 and -1≤ λ ≤1.
(b) αρ = 1, ρ < 2/α− 1, α < 1, β > 0 and -1≤ λ ≤1
(c) α < 1, ρ(α−1, 2/α− 1), β > 0 and -1≤ λ ≤1

(2) It is upside down bathtub (increasing-decreasing) if
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Figure 4. The behaviour of the hazard rate function of the transmuted
Dagum distributions for various parameters values such as : a) λ =
-1.0[0.5]1.0; b) λ = -1.0[0.5]1.0; c) β = 0.75[0.25]1.75, λ = -0.8[0.1]-
0.4; d) β = 0.75[0.25]1.75, λ = -0.2[0.2]0.8 with solid, dashed, dotted,
dotdash and longdash lines, respectively.

(a) αρ > 1, ρ 6= 2/α− 1, β > 0 and -1≤ λ ≤1
(b) αρ = 1, ρ > 2/α− 1, α > 1, β > 0 and -1≤ λ ≤1

(3) It is bathtub and upside down bathtub if
(a) α ∈ (1, 3), ρ ∈

(
3−α
α+1

, 2
α
− 1
)
, β > 0 and -1≤ λ < -0.4

(b) α ≥ 3, ρ ∈
(

2
α
− 1
)
, β > 0 and -1≤ λ < -0.4

(4) It is upside down bathtub if
(a) α ∈ (1, 3), ρ ∈

(
3−α
α+1

, 2
α
− 1
)
, β > 0 and -0.4≤ λ ≤1

(b) α ≥ 3, ρ ∈
(

2
α
− 1
)
, β > 0 and -0.4≤ λ ≤1

The graphical pesentation of the behaviour of the hazard rate function for transmuted
Dagum distribution is sketched in Figure 4 for various choices of parametric values.
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6. Order statistics of transmuted Dagum distribution
In probability statistics the distribution of extremes (smallest and/or largest), median

and joint order statistics are the most important functions of a random variable. This is
only the order statistics that help us to study the peaks of the data to understand the
pattern of the extremes. Mathematically the order statistics is defined as, let Y1, Y2, ..., Yn
be any real valued random variables and its ordered values denoted as Y(1) ≤ Y(2) ≤ ... ≤
Y(n) then the values Y(1), Y(2), ..., Y(n) are the order statistics of random variable .
The density of the nth ordered statistics, that follows the transmuted Dagum distribution
is derived in the following form

f(n)(y(n)) = n[F (y(n))]
n−1f(y(n))

=
nαρβα

yα+1
(n)

[
(1 + λ)

(
1 +

(y(n)
β

)−α)
− 2λ)

] n−1∑
j=0

(
n− 1
j

)
× (−λ)j(1 + λ)n−j−1

(
1 +

(y(n)
β

)−α)−ρ(n+j+1)−1

.

Let suppose that the smallest values also follows the transmuted Dagum distribution,
then the denity of the smallest order statistic, is obtained as

f(1)(y(1)) = n[1− F (y(1))]
n−1f(y(1))

=
nαρβα

yα+1
(1)

[
(1 + λ)

(
1 +

(y(1)
β

)−α)
− 2λ)

] n−1∑
i=0

i∑
j=0

(
i
j

)(
n− 1
i

)
× (−1)i+j(−λ)j(1 + λ)i−j

(
1 +

(y(1)
β

)−α)−ρ(i+j+1)−1

.

Generally the pdf of the rth order statistics is given by

f(r)(y(r)) =
n!

(r − 1)!(n− r)! [F (y(r))]
r−1[1− F (y(r))]

n−rf(y(r))

=
n!αρβαy

−(α+1)

(r)

(r − 1)!(n− r)!

[
(1 + λ)

(
1 +

(y(r)
β

)−α)
− 2λ)

] n−r∑
i=0

r+i−1∑
j=0

(
r + i− 1

j

)

×
(
n− r
i

)
(−1)i+j(λ)j(1 + λ)r+i−j−1

(
1 +

(y(r)
β

)−α)−ρ(r+i+j+1)−1

.

Sometimes interest is in the joint pdf such as to find the joint breaking strength of
certain equipment, for the transmuted Dagum distribution the pdf of Y(r) and Y(s), when
1 ≤ r < s ≤ n is obtained as

f(r,s)(u, v) =
n!

(r − 1)!(s− r − 1)!(n− s)! [F (u)]r−1[F (v)− F (u)]s−r−1

× [1− F (v)]n−sf(u)f(v)

=
n!

(r − 1)!(s− r − 1)!(n− s)!

(αβρ
uv

)2[
(1 + λ)

(
1 +

(u
β

)−α)
− 2λ)

]
×

S∑
i=0

s−r−1∑
j=0

n−s∑
k=0

r+j−1∑
l=0

(
r + j − 1

l

)(
n− s
k

)(
s− r − 1

j

)(
S
j

)
× (−1)i+j+k+l(λ)i+l(1 + λ)r+i+j−1

(
1 +

(u
β

)−α)−ρ(r+i+j+1)−1

×
(

1 +
( v
β

)−α)−ρ(S+i+2)−1

,
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where S = s+ k − r − j − 1.

7. Generalized TL-moments of transmuted Dagum distribution
Hosking [15] introduced the L-moments and now these moments are frequently used for

extreme value analysis. Elamir and Seheult [12] extended these moments and presented
the TL-moments. These moments based on the order statistics used to describe the shape
of the probability distribution by evaluating all descriptive statistics including parameter
estimation and hypothesis testing. The rth generalized TL-moments with s smallest and
t largest trimming is defined as follows

(7.1) T (s,t)
r = r−1

r−1∑
k=0

(−1)k
(
r − 1
k

)
E (Yr+s−k:r+s+t) ,

where T
(s,t)
r is a linear function of the expectations of the order statistics and r =

1, 2, ...; t, s = 0, 1, 2....
The expression for the expected value of the (r+ s− k)th order statistics of the random
sample of size (r + s+ t) is as

(7.2) E (Yr+s−k:r+s+t) = C

∫ ∞
0

[F (y)]r+s−k−1 [1− F (y)]t+k dF (y).

where C = (r+s+t)!
(r+s−k−1)!(t+k)!

and F is the cdf of the transmuted Dagum distribution, and

by substitute expression (7.1) into expression (7.2), we obtain T (s,t)
r as

T (s,t)
r =

r−1∑
k=0

(
r − 1
k

)
C

r
(−1)k

∫ ∞
0

[F (y)]r+s−k−1 [1− F (y)]t+k dF (y)

Having the cdf and pdf of transmuted Dagum distribution the generalized TL-moments
is given by

T (s,t)
r =

βρ

r

r−1∑
k=0

t+k∑
i=0

s+r−k+i−1∑
j=0

(
s+ r − k + i− 1

j

)(
t+ k
i

)

×
(
r − 1
k

)
C(−1)i+j+kλj(1 + λ)I+s−1Γ(1− 1/α)

×
[
(1 + λ)

Γ[ρ(I + s) + 1/α]

Γ[ρ(I + s) + 1]
− 2λ

Γ[ρ(I + s+ 1) + 1/α]

Γ[ρ(I + s+ 1) + 1]

]
,(7.3)

where I = r − k + i+ j.
This expression of the generalized TL-moments used to obtain its special cases such
as L-moments, TL-moments, LH-moments and LL-moments. First two TL-moments
T

(s,t)
1 and T

(s,t)
2 are used to calculate the location and dispersion of the data, respec-

tively. The ratio of TL-moments T (s,t)
CV = T

(s,t)
2

/
T

(s,t)
1 , T (s,t)

Sk = T
(s,t)
3

/
T

(s,t)
2 and T (s,t)

Kr =

T
(s,t)
4

/
λ
(s,t)
2 are the coefficient of variation, skewness and kurtosis characteristic of the

probability distribution, respectively.



237

7.1. The TL-moments (s = t = 1). Generally it is possible to trim any number of
smallest and largest values from the ordered observation. As a special case, if only one
extreme value from both sides (s = t = 1) are trimmed then expression (7.3) becomes
the rth TL-moments and we get

T (1)
r =

r−1∑
k=0

k+1∑
i=0

r−k+i∑
j=0

(
r − k + i

j

)(
k + 1
i

)(
r − 1
k

)
(r + 2)!Γ(1− 1/α)βρ

r(r − k)!(k + 1)!

× (−1)i+j+kλj(1 + λ)I
[
(1 + λ)

Γ[ρ(I + 1) + 1/α]

Γ[ρ(I + 1) + 1]
− 2λ

Γ[ρ(I + 2) + 1/α]

Γ[ρ(I + 2) + 1]

]
.

7.2. The L-moments (s = t = 0). When none of the observation is trimmed from
the ordered sample, the TL-moments reduced to L-moments and basically L-moments
and related moments are due the Hosking [15] methodology. The rth L-moments of
transmuted Dagum distribution is as

T (0)
r =

r−1∑
k=0

k∑
i=0

r−k+i−1∑
j=0

(
r − k + i− 1

j

)(
k
i

)(
r − 1
k

)
(r)!Γ(1− 1/α)βρ

r(r − k − 1)!(k)!

× (−1)i+j+kλj(1 + λ)I−1
[
(1 + λ)

Γ[ρ(I) + 1/α]

Γ[ρ(I) + 1]
− 2λ

Γ[ρ(I + 1) + 1/α]

Γ[ρ(I + 1) + 1]

]
.

7.3. The LL-moments (s = 0, t = t). LL-moments progressively reflect the character-
istics of the lower part of distribution. Bayazit and Onoz [3] introduced these moments
and later it became the special case of the TL-moments, when s = 0 and t = t. Following
is the LL-moments

T (0,t)
r =

r−1∑
k=0

t+k∑
i=0

r−k+i−1∑
j=0

(
r − k + i− 1

j

)(
t+ k
i

)(
r − 1
k

)
× (r + t)!βρ

r(r − k − 1)!(t+ k)!
(−1)i+j+kλj(1 + λ)I−1Γ(1− 1/α)

×
[
(1 + λ)

Γ[ρ(I) + 1/α]

Γ[ρ(I) + 1]
− 2λ

Γ[ρ(I + 1) + 1/α]

Γ[ρ(I + 1) + 1]

]
.

7.4. The LH-moments (s = s, t = 0). LH moments proposed by Wang [26], these
moments describe the upper part of the data more precisely. These moments give more
weight to the larger values and the theoretical LH-moments for the transmuted Dagum
distribution are defined as

T (s,0)
r =

r−1∑
k=0

k∑
i=0

r+s−k+i−1∑
j=0

(
r + s− k + i− 1

j

)(
k
i

)(
r − 1
k

)
× (r + t)!βρ

r(r − k − 1)!(t+ k)!
(−1)i+j+kλj(1 + λ)I−1Γ(1− 1/α)

×
[
(1 + λ)

Γ[ρ(I + s) + 1/α]

Γ[ρ(I + s) + 1]
− 2λ

Γ[ρ(I + s+ 1) + 1/α]

Γ[ρ(I + s+ 1) + 1]

]
.

8. Parameter estimation
In this section, interest is to estimate the parameters of transmuted Dagum distri-

bution by maximum likelihood estimation. Let Y1, Y2, ..., Yn be i.i.d random variables
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of transmuted Dagum distribution of size n. Then the sample likelihood function and
log-likelihood function for this distribution are obtained as follows

L(x; .) =
αρ

β2αρ

n∏
i=1

y2αρ−1
i

(
1 + (yi/β)α

)2ρ+1[
(1 + λ)

(
1 + (yi/β)−α

)ρ − 2λ
]

(8.1)

and

`(x; .) = n lnα+ n ln ρ− 2nαρ lnβ − (2αρ+ 1)

n∑
i=1

ln
(
1 + (yi/β)α

)
+ (2αρ+ 1)

n∑
i=1

ln yi +

n∑
i=1

ln
[
(1 + λ)

(
1 + (yi/β)−α

)ρ − 2λ
]
,(8.2)

respectively.
To find the parameter estimates, now we take the first order derivatives of (8.2) with
respect to parameter (α, β, ρ and λ) and equating them equal to zero, respectively,

n

α
− 2nρ lnβ + 2ρ

n∑
i=1

ln yi − (2ρ+ 1)

n∑
i=1

(yi/β)α ln(yi/β)(
1 + (yi/β)α

)
− ρ(1 + λ)

n∑
i=1

(yi/β)−α
(
1 + (yi/β)−α

)ρ−1
ln(yi/β)[

(1 + λ)
(
1 + (yi/β)−α

)ρ − 2λ
] = 0,

− 2nαρ

β
+ α(2ρ+ 1)

n∑
i=1

yi(yi/β)α−1

β2
(
1 + (yi/β)α

)
− αλ(1 + λ)

n∑
i=1

(yi/β)−α
(
1 + (yi/β)−α

)ρ−1
ln(yi/β)[

(1 + λ)
(
1 + (yi/β)−α

)ρ − 2λ
] = 0,

n

ρ
− 2nα lnβ − 2

n∑
i=1

ln
(
1 + (yi/β)α

)
+ (1 + λ)

n∑
i=1

(
1 + (yi/β)−α

)ρ
ln
(
1 + (yi/β)−α

)[
(1 + λ)

(
1 + (yi/β)−α

)ρ − 2λ
] = 0,

n∑
i=1

(
1 + (yi/β)−α

)ρ − 2[
(1 + λ)

(
1 + (yi/β)−α

)ρ − 2λ
] = 0.

The exact solution to derive the estimator for unknown parameters is not possible, so
the estimates (α̂, β̂, ρ̂, λ̂)′ are obtained by solving the above four nonlinear equations si-
multaneously. This solution of nonlinear system is easier by Newton-Raphson approach.
The Newton-Raphson approach used the jth element of the gradient and the (j, k)th
elements of the Hessian matrix and these elements are gj = ∂`(θ)/∂θj and Hjk =
∂2`(θ)/∂θj∂θk, respectively, whereas j, k =1,2,3,4, due to the four parameters of trans-
muted Dagum distribution. The information matrix, I(θ) = Ijk(θ) = −E(Hjk) and then
its inverse of matrix I(θ)−1 provides the variances and covariances, diagonal and off di-
agonal entries, respectively. Asymptotically these estimates of parameters approaches to
normality and the z-score are approximately standard normal, which can be used to find
the 100(1− r)% two sided confidence interval for α, β, ρ and λ.
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9. Application
In this section, the performance of the transmuted Dagum distribution is compared

with Dagum distribution and some other related distributions. Monthly maximum pre-
cipitation data of Islamabad city is considered for the comparison. Islamabad is the
capital city of the Pakistan. The geographical location of this city has Latitude 33.71
and Longitude 73.07 with humid subtropical climate and has five seasons. This area re-
ceives heavy rainfall during monsoon season. The data of monthly precipitation retrieved
from the Regional Meteorological Center (RMC) Lahore and from Pakistan Metrological
Department (PMD) Islamabad. The length of data is 640 recorded from January 1954
to December 2013 excluding some unobserved or unreported months and the summary
statistics are given in Table 1 and Table 3.

Table 1. Summary Statistics for monthly maximum precipitation
data of the Islamabad, Pakistan.

Length Average Minimum Maximum Q1 Median Q3 S.D
640 86.25 0.10 641.00 20.35 49.90 101.90 94.98

In order to compare the transmuted Dagum and its related distribution, we consider
criteria like log-likelihood (`), Akaike information criterion (AIC), Akaike information
corrected criterion (AICC), Bayesian information criteria (BIC) and Kolmogoro-Smirnov
(KS) goodness of fit test for the data sets. The better distribution have corresponds to
smaller `, AIC, AICC , BIC and KS values. Where

AIC=2k-2`,
AICC=AIC+2k(k + 1)/(n− k − 1),

BIC=2`+k log(n)

and
KS= max

i≤i≤n
[F (Yi)− (i− 1)/n, i/n− F (Yi)].

Here k is the number of parameters in each distribution, and n is the sample size.
It is better to test the superiority of the transmuted Dagum distribution over the Dagum
distribution before analyzing the data. We employed the likelihood ratio (LR) statistic
for this purpose. To perform this test the maximized restricted and unrestricted log-
likelihoods can be computed under the null and alternative hypothesis
H0 : λ = 0 (restricted, Dagum model is true for the data set)
versus
H1 : λ 6= 0 (unrestricted, transmuted Dagum model is true for the data set).
The LR statistic for testing the hypothesis is computed by ω = 2(`(θ̂0) − `(θ̂1)), where
θ̂0 and θ̂1 are the maximum likelihood estimates under H0 and H1, respectively. The LR
statistic is asymptotically distributed as chi-square (χ2

v,r). The computed value of LR
statistic under the hypothesis is ω =22.74. We may observe that the ω > χ2

1,0.05(3.84),
so we reject the null hypothesis and found that the transmuted Dagum model is best for
the data set.
Variance covariance matrix of the MLEs under the transmuted Dagum distribution is
obtained as

I(θ̂)−1 =


0.0407 2.7555 −0.0097 0.0094
2.7555 1360.2 −0.5489 13.361
−0.0097 −0.5489 0.0028 0.0004
0.0094 13.361 0.0004 0.4924

 .
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Table 2. Estimated parameters of the transmuted Dagum and related
distributions.

Model Estimates `(., y) AIC AICC BIC KS
α̂ = 2.2198

Transmuted β̂ = 132.94 3452.71 6913.42 6913.48 6931.27 0.0280
Dagum ρ̂ = 0.3981

λ̂ = 0.3565

α̂ = 2.1302

Dagum β̂ = 105.49 3464.08 6934.16 6934.20 6947.544 0.1646
ρ̂ = 0.5827

Transmuted â = 0.1000

Pareto b̂ = 0.2374 4002.16 8010.32 8010.36 8023.70 0.3332
λ̂ = −0.962

Pareto â = 0.1000 4177.59 8361.18 8361.19 8368.10 0.4245
b̂ = 0.1657

Fisk â = 1.3577 3476.16 6958.32 6956.32 6965.24 0.9718
b̂ = 46.452

Inverse â = 31.223 3508.12 7020.24 7020.25 7029.16 0.1209
Lomax b̂ = 1.3335

Thus, the variances of the ML estimates are, var(α̂) = 0.2019, var(β̂) = 36.8808,
var(ρ) = 0.0527 and var(λ̂) = 0.3863. Therefore, confidence interval for α, β, ρ and
λ are [1.8240, 2.6156], [60.657, 205.23], [0.2946, 0.5015] and [-0.4007, 1.1136], respec-
tively.
The results in Table 2 indicates that the proposed transmuted Dagum distribution fits
well as it has the smallest `(., y) , AIC, AICC and BIC as compared to the Dagum distri-
bution and the others considered distributions. The KS goodness fit test is employed to
evaluate the best fitted model for the precipitation data. The calculated value of this test
is 0.0280, whereas the tabled critical two-tailed values at 0.05 and 0.01 significance levels
are 0.0538 and 0.0644, respectively. According to Sheskin [25], if the value of KS statistic
is greater or equal to the critical value then the null hypothesis should be rejected. Thus
the null hypothesis cannot be rejected for the transmuted Dagum distribution as the
value of the KS-test is not greater or equal to the critical values.
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Figure 5. Empirical, fitted transmuted Dagum and Dagum cdf of the
data set with maximum distance highlight.
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Figure 6. PP plots for fitted transmuted Dagum distribution.
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Figure 7. PP plots for fitted Dagum distribution

Both empirical cdf and PP-plots also indicate that the transmuted Dagum distribution
is better than its competitor Dagum distribution to model the rainfall data. As trans-
muted Dagum distribution exactly follow the empirical pattern of the data and more
closest view showed in circle in Figure 5 and similarly in PP-plot the transmuted Dagum
distribution lies almost perfectly on the 45o line. So we conclude that the transmuted
Dagum distribution fulfills all the goodness of fit criteria for the data set.
TL-moments evaluate the basic characteristics of data in a better way and show the true
picture of the data. First and second moments show the average value and variation in
data, respectively. Consistency, symmetry and peakness evaluated by the coefficient of
variation CV , Sk and Kr using the 2nd, 3rd and 4th moments. These moments and
coefficients are calculated and reported in the Table 3 using Islamabad precipitation data
set.

Table 3. Moments and moment ratios for monthly maximum precip-
itation data of the Islamabad, Pakistan

Model Moments L-moments TL-moments LL-moments LH-moments
1st 86.2486 86.2486 114.8730 68.2673 104.2290
2nd 45730.1 17.9811 24.3523 34.9539 7.9823
3rd -2.15×106 -28.6242 -15.3700 -4.0121 -34.1535
4th -4.24×108 -22.6061 -16.8617 -16.4118 -11.8458
CV 2.4794 0.2085 0.2120 0.5120 0.0765
Sk -1.1691 -1.5919 -0.6311 -0.4115 -4.2786
Kr 1.4962 -1.2572 -0.6924 -0.4695 -1.4840
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10. Conclusion
The transmuted Dagum distribution proposed in this study, is the generalization of

the Dagum distribution. This distribution is quite flexible and its application diversities
increased due to the fourth transmuted parameter as compared to the standard Dagum
distribution. To show the flexibility of new density the plots of the pdf, cdf, reliabil-
ity function and hazard functions are presented. We derived moments and other basic
properties of the proposed distribution. The densities of the lowest, highest, rth order
statistics, the joint density of the two order statistics and TL-moments are also stud-
ied. The parameter estimation is obtained by the maximum likelihood estimation via
Newton-Raphson approach. To evaluate its worth five goodness of fit criterion are con-
sidered for the selection of most appropriate model among transmuted Dagum, Dagum,
transmuted Pareto, Pareto, Fisk and inverse Lomax. On all of these criteria, the results
of the application show that transmuted Dagum distribution is superior to the Dagum
distribution and other related distribution. Finally, we hope that the proposed model will
serve better in income distribution, actuarial, meteorological and survival data analysis.
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