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Abstract

A new distribution, namely, the Gamma-Half-Cauchy distribution is
proposed. Various properties of the Gamma-Half-Cauchy distribution
are studied in detail such as limiting behavior, moments, mean devi-
ations and Shannon entropy. The model parameters are estimated by
the method of maximum likelihood and the observed information ma-
trix is obtained. Two data sets are used to illustrate the applications
of Gamma-Half-Cauchy distribution.
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1. Introduction

Half-Cauchy distribution is the folded standard Cauchy distribution around the origin
so that positive values are observed. Modeling with half (or folded) distributions has been
proposed and �ve folded distributions have been reported so far in literature, namely,
the students' t, normal, normal-slash, logistic and Cauchy. These folded distributions
have been used in Bayesian paradigm when a proper prior is necessary. Although some
applications of the half Cauchy distribution exist in the literature, but the fact that
the �nite moments of order greater than or equal to one do not exist, the central limit
theorem does not hold. This fact reduces the applicability of this distribution in modeling
real life scenarios.

A random variable X has the half-Cauchy (HC) distribution with scale parameter
σ > 0, if its cumulative distribution function (cdf) is given by

(1.1) F (x) =
2

π
tan−1(x/σ), x > 0.

The probability density function (pdf) corresponding to (1.1) is

(1.2) f(x) =
2

π σ

[
1 + (x/σ)2]−1

.

Henceforth, we denote by X ∼HC(σ), the random variable having the HC density in
(1.2) with parameters σ. As a heavy tailed distribution, the HC distribution has been
used as an alternative to exponential distribution to model dispersal distances [18] as
the former predicts more frequent long distance dispersed events than the later. Paradis
et al. [16] used the HC distribution to model ringing data on two species of tits (Parus
caeruleus and Parus major) in Britain and Ireland.

Few generalizations of the HC distribution exist in the literature, namely, beta-half-
Cauchy (BHC) by Cordeiro and Lemonte [9], Kumaraswamy-half-Cauchy (KHC) by
Ghosh [11] and Marshall-Olkin half-Cauchy (MOHC) by Jacob and Kayakumar [13]. In
this paper, we propose a new generalization of the HC distribution using the technique
de�ned by Alzaatreh et al. [7].

Let r(t) be the probability density function (pdf) of a random variable T ∈ [a, b] for
−∞ ≤ a < b ≤ ∞ and let F (x) be the cumulative distribution distribution function (cdf)
of a random variable X such that the link function W (·) : [0, 1] −→ [a, b] satis�es the
following conditions:

(1.3)

{
(i) W (·) is di�erentiable and monotonically non-decreasing, and

(ii) W (0)→ a andW (1)→ b.

The T-X family of distributions de�ned by Alzaatreh et al. [7] as

(1.4) G(x) =

∫ W [F (x)]

a

r(t) dt.

If T ∈ (0,∞), X is a continuous random variable and W [F (x)] = − log[1 − F (x)], then
the pdf corresponding to (1.4) is given by

(1.5) g(x) =
f(x)

1− F (x)
r
(
− log

[
1− F (x)

])
= hf (x)r

(
Hf (x)

)
,

where hf (x) and Hf (x) are, respectively, the hazard and cumulative hazard function
corresponding to f(x). For more details about the T-X family, one is refer to Alzaatreh
et al. [3, 6], Alzaatreh and Ghosh [5] and Lee et al. [14].

If a random variable T follows the gamma distribution with parameters α and β,

r(t) =
(
βα Γ(α)

)−1
tα−1 e−t/β , t ≥ 0. Then from (1.5),the pdf of Gamma-X family of
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distributions is given by

(1.6) g(x) =
1

βα Γ(α)
f(x)

(
− log

[
1− F (x)

])α−1 [
1− F (x)

] 1
β
−1
.

The cdf corresponding to (1.6) is

(1.7) G(x) =
1

Γ(α)
γ
(
α,−β−1 log

[
1− F (x)

])
,

where γ(α, t) =
∫ t

0
uα−1 eu du is the incomplete gamma function. Several properties of

gamma-X family have been studied in literature. For more details see Alzaatreh et al.
[3, ?, 6, 4, 8].

The paper is unfolded as follows. In Section 2, we de�ne a new generalization of the
HC distribution, namely, Gamma-half-Cauchy (GHC) distribution. In Section 3, some
properties of the GHC are investigated. The density of the order statistics is obtained in
Section 4. In Section 5, the model parameters are estimated by the method of maximum
likelihood and the observed information matrix is determined. In Section 6, we explore
the usefulness of the proposed distribution by means of two real data sets. Finally,
Section 7 o�ers some concluding remarks.

2. The gamma-half Cauchy (GHC) distribution

From (1.1), (1.2), (1.6) and (1.7), it follows that the pdf and cdf of the GHC are given
by

g(x) =
2

π σ Γ(α)βα
[
1 + (x/σ)2]−1

(
− log

[
1− 2π−1 tan−1(x/σ)

])α−1

×
[
1− 2π−1 tan−1(x/σ)

] 1
β
−1

(2.1)

and

(2.2) G(x) =
1

Γ(α)
γ
(
α,−β−1 log

[
1− 2π−1 tan−1(x/σ)

])
,

respectively. Henceforth, a random variable having pdf in (2.2) is denoted by X ∼
GHC(α, β, σ).

Special cases of GHC distribution:

(i) If α = β = 1 in (2.2), the GHC distribution reduces to the HC distribution with
parameter σ.

(ii) If α = 1 in (2.2), the GHC distribution reduces to the exponentiated HC distribution
with parameters β and σ.

(iii) If α = n + 1 and β = 1 in (2.2), the density of GHC reduces to the density of the
nth upper record of the HC distribution.

Note that the special case in (ii) does not exist in the literature and it is considered
another generalization of the HC distribution.

The survival function (sf), S(x), hazard rate function (hrf), h(x), and cumulative
hazard rate function (chrf), H(x), of X are, respectively, given by

S(x) = 1− 1

Γ(α)
γ
(
α,−β−1 log

[
1− 2π−1 tan−1(x/σ)

])
,

h(x) =
2
(
− log

[
1− 2π−1 tan−1(x/σ)

])α−1[
1− 2π−1 tan−1(x/σ)

] 1
β
−1

π σ βα (1 + (x/σ)2)
{

Γ(α)− γ
(
α,−β−1 log

[
1− 2π−1 tan−1(x/σ)

])}



1146

and

H(x) = − log

[
1− 1

Γ(α)
γ
(
α,−β−1 log

[
1− 2π−1 tan−1(x/σ)

])]
.

2.1. Asymptotic behavior of the pdf. The limit of the pdf of X as x → ∞ is 0.
Further, the limits of the pdf of X as x→ 0+ are given by

lim
x→0+

g(x) =


∞, if α < 1

2
π σ β

, if α = 1,

0, if α > 1.

In Figures 1 and 2, various graphs of the density when σ = 1 and for di�erent values of
α and β are displayed. Figure 1 indicates that the GHC distribution is well-suited for
right-skewed data. For �xed α ≤ 1, the density is always reversed-J shaped. For �xed
α > 1, the peakedness increases as β decreases. Also, Figure 2 shows that the hazard
function of the GHC distribution has DFR (decreasing failure) or UBT (upside down
bathtub) properties.
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Figure 1. Plots of the GHC densities for various values of α and β.

3. Properties of the GHC distribution

In this section, we provide some properties of the GHC distribution. Some proofs are
omitted in case of trivial results.

The following Lemma gives the relation between GHC and gamma distributions.

3.1. Transformation.

3.1. Lemma. If a random variable Y follows the gamma distribution with parameters α

and β, then X = σ cot
(
π
2

e−Y
)
∼ GHC(α, β, σ).
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Figure 2. Plots of GHC hazard rates for various values of α and β.

3.2. Mode.

3.2. Lemma. The mode of GHC distribution is the solution of k(x) = 0, where

k(x) = −x
σ

+ π−1
[
1− 2π−1 tan−1 (x/σ)

]−1

×

{
α− 1

log [1− 2π−1 tan−1 (x/σ)]−1 −
1

β
+ 1

}
.(3.1)

Proof. Setting g′(x) is equivalent to,

g′(x) =
4 [1 + (x/σ)]−2

πσ2Γ(α)βα

(
− log

[
1− 2π−1 tan−1 (x/σ)

])α−1

×
[
1− 2π−1 tan−1 (x/σ)

] 1
β
−1

× k(x),(3.2)

where

k(x) = − (x/σ) + π−1 [1− 2π−1 tan−1 (x/σ)
]−1

×

{
α− 1

log [1− 2π−1 tan−1 (x/σ)]−1 −
1

β
+ 1

}
.(3.3)

Hence the critical values of g(x) is the solution of k(x) = 0. �

Note that equation implies the following; when α = β = 1, the mode of GHC is at x = 0
which is the mode of HC distribution. When α < 1, implies that x < 0 and as x → 0+,
k(x) → ∞. Also, when α = 1, x = 0 is a modal point and as x → 0+, k(x) → 2

π σ β
.

Hence, when α ≤ 1, GHC has a unique mode at x = 0.

3.3. Quantile function. The following Lemma gives the quantile function for the GHC
distribution.

3.3. Lemma. The mode of GHC distribution is given by

(3.4) Q(λ) = σ cot
(

0.5π e−β γ
−1
(
α, λΓ(α)

))
.

Proof. Follows by inverting equation 2.1. �
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3.4. Shannon entropy.

3.4. Theorem. The Shannon entropy for the GHC distribution is given by

(3.5) ηX = 3 log(0.5π) +α(β−1) + log
(
β Γ(α)

)
+ (1−α)ψ(α)−2

∞∑
k=1

wk (1 + 2kβ)−α,

where ψ(·) is the digamma function and wk = (−1)k (π)2k B2k
2k (2k)!

.

Proof. Based on Alzaatreh et al. [8], the Shannon entropy for the gamma-X family is
given by

(3.6) ηX = −E
{

log f
(
F−1

(
1− e−T

))}
+ α(1− β) + log

(
β Γ(α)

)
+ (1− α)ψ(α),

where T ∼ Gamma(α, β).

We �rst need to �nd −E
{

log f
(
F−1

(
1− e−T

))}
, where f(x) and F (x) are the

pdf and cdf of HC distribution. It follows immediately that log f
(
F−1

(
1− e−T

))
=

log(0.5 π) + 2 log
(

sin(0.5π e−T )
)
and hence by using the series expansion for

log
(

sin(0.5π e−T )
)
(see [12]) as

(3.7) log
(

sin(0.5π e−T )
)

= log(0.5π)− T +

∞∑
k=1

(−1)k (π)2k B2k

2k (2k)!
e−2kT

︸ ︷︷ ︸
wk

,

where B2k is the Bernoulli number.
Therefore,

(3.8) −E
{

log f
(
F−1

(
1− e−T

))}
= 3 log(0.5π)− 2E(T ) + 2

∞∑
k=1

wk E
(
e−2kT ).

The results in (3.5) followed by substituting (3.8) in (3.6) and noting that E(T ) = αβ
and E

(
e−2kT

)
= (1 + 2kβ)−α. �

3.5. Moments. By using the Lemma 3.1, the rth moments of GHC distribution can be
written as

(3.9) E(Xr) =
σr

βα Γ(α)

∫ ∞
0

(
cot(0.5π e−u)

)r
uα−1 e−u/β du.

A series expansion for cot(0.5π e−u) can be obtained from [12] as follows

(3.10) cot(0.5π e−u) =

∞∑
k=0

vk e−(2k−1)u,

where vk = 2 (−1)k (π)2k−1 B2k
(2k)!

.

Hence,(
cot(0.5π e−u)

)r
=

∞∑
k1,...,kr=0

vk1,...,kr e−(2sr−1)u,

where vk1,...,kr = vk=1 vk=2 . . . vk=r and sr = k1 + k2 + · · ·+ kr.

Therefore, from (3.9) we get

(3.11) E(Xr) = σr
∞∑

k1,...,kr=0

vk1,...,kr
(
2β sr − β + 1

)−α
.

3.5. Theorem. Let X ∼ GHC(α, β, σ), then E(Xr) exists i� β < r−1.
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Proof. The rth moment of GHC can be obtained from

(3.12) E(Xr) =

∫ 1

0

xr g(x) dx+

∫ ∞
1

xr g(x) dx,

where g(x) is de�ned in (2.2).

Without loss of generality assume σ = 1. From (3.12), the existence of E(Xr) equiv-
alent to the existence of

∫∞
1

xr g(x) dx. Now,

(3.13)

∫ ∞
1

xr g(x) dx =
1

π βα Γ(α)
I,

where

I =

∫ ∞
1

xr

1 + x2

{
− log

[
1− 0.5π−1 tan−1(x)

]}α−1

×
[
1− 0.5π−1 tan−1(x)

] 1
β
−1

dx.(3.14)

Consider the following inequality (Abramowitz and Stegun [1])

(3.15) x < − log(1− x) <
x

1− x , x < 1, x 6= 0.

Now, for α ≥ 1, one can use the right hand-side of the inequality in (3.15) to show that

(3.16) I <

∫ ∞
1

xr

1 + x2

[
0.5π−1 tan−1(x)

]α−1 [
1− 0.5π−1 tan−1(x)

] 1
β
−α

dx︸ ︷︷ ︸
τ1(x)

.

Let τ2(x) = x
− 1
β

+α+r−2
, then limx→∞

τ1(x)
τ2(x)

=
(
0.5π−1

) 1
β
−α

. Therefore,
∫∞

1
τ1(x) exists

i�
∫∞

1
τ2(x) exists i� 1

β
> α+ r − 1. Since α ≥ 1, this implies that 1

β
> r. If α < 1, the

left hand side of the inequality in (3.15) implies that

(3.17) I <

∫ ∞
1

xr

1 + x2

[
0.5π−1 tan−1(x)

]α−1 [
1− 0.5π−1 tan−1(x)

] 1
β
−1

dx.

Similarly, one can show the right hand side of the integrand in exists i� 1
β
> r. This ends

the proof. �

3.6. Mean deviations. The mean deviations about the mean
(
δ1(X) = E(|X − µ′1|)

)
and about the median

(
δ2(X) = E(|X −M |)

)
of X can be expressed as

(3.18) δ1(X) = 2µ′1F (µ′1)− 2m1(µ′1) and δ2(X) = 2µ′1 − 2m1(M),

respectively, where µ′1 = E(x) can be obtained from (3.11) by setting r = 1 and M is the
median of the GHC which can be calculated from Lemma 3.3 as

(3.19) M = σ cot
(

0.5π e−β γ
−1
(
α, 0.5 Γ(α)

))
.

Further, F (µ′1) can easily be computed from the (2.1) and m1(z) =
∫ z

0
x f(x) dx (the

�rst incomplete moment of X) can be computed from

(3.20) m1(z) =

∫ z

0

cot(0.5π e−u)uα−1 e−u/β du.

The result immediately follows from (3.10) as

(3.21) m1(z) =
σ

Γ(α)

∞∑
k=0

vk (1 + 2β k − β)−α γ
(
α,
z

β
(1 + 2β k − β)

)
.
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3.7. Mean residual life function. Let X be a random variable with cdf F such that
E(X) < ∞. The mean residual life (MRL) function ξ(x) of X is de�ned by ξ(x) =
E(X − x|X > x). It plays a major rule in many �elds such as industrial reliability, life
insurance and biomedical science. The following theorem provides an expansion for the
MRL for the GHC distribution.

3.6. Theorem. Let X be a random variable which follows the GHC(α, β, σ) such that
β < 1, then the MRL function is given by

(3.22) ξ(x) =
σ

Γ(α)S(x)

∞∑
k=0

vk
Γ(α, (2k + β−1 − 1)x)

(2β k − β + 1)α
− x

where Γ(x, a) =
∫∞
x

ta−1 e−t dt is the upper incomplete gamma function and vk is de�ned
in (3.10) and S(x) is survival function of GHC de�ned in section 2.

Proof. From Lemma (3.1)

E(X|X > x) =
σ

βα Γ(α)S(x)

∫ ∞
y

cot
(
0.5πe−y

)
yα−1 e−y/β dy.

On using the expansion in (3.10), one can get the result in (3.22). �

3.8. Reliability estimation. The reliability parameter R is de�ned as R = P (X > Y ),
where X and Y are independent random variables. Many applications of the reliability
parameter have appeared in the literature such as the area of classical stress-strength
model and the breakdown of a system having two components. If X and Y are two
continuous random variables with cdfs F1(x) and F2(y) and their pdfs f1(x) and f2(y)
respectively. Then, the reliability parameter R can be written as

(3.23) R = P (X > Y ) =

∫ ∞
−∞

F2(x) f1(x) dx.

3.7. Theorem. Suppose that X and Y are two independent GHC random variables with
parameters α1, β1 and α2, β2, and �xed scale parameter σ. Then

(3.24) R =
1

Γ(α1) Γ(α2)

∞∑
k=0

(
β1

β2

)α1+k
(−1)k Γ(α1 + α2 + k)

k! Γ(α2 + k)
.

Proof. On using the following series expansion from [1]

(3.25) γ(α, x) =

∞∑
k=0

(−1)k xk+α

k! (k + α)
,

and then substituting u = − log
[
1− 2π−1 tan−1(x/σ)

]
, (3.23) reduces to

(3.26) R =
1

βα1
1 Γ(α1) Γ(α2)

∞∑
k=0

(−1)k

k! (α2 + k)βα2+k
2

∫ ∞
0

uα1+α2+k−1 e−u/β1 du.

The result in (3.24) follows immediately from (3.26). �

3.9. Mixture representation of GHC density.

3.8. Theorem. The GHC distribution is the linear combination of in�nite exponentiated-
HC densities

(3.27) g(x) =

∞∑
k=0

wi,j h(α+k+i, σ)(x),
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where h(α+k+i, σ)(x) is the exponentiated-HC density with power parameter α+ k+ i and

wi,j =

k∑
j=0

∞∑
i=0

(
k + 1− α

k

)(
k

j

)(
1
β
− 1

i

)
(−1)j+k+i pj,k

(α− j − 1)(α+ k + i) Γ(α)βα
.

Proof. Based on the formula given at
http:// functions.wolfram.com/ ElementaryFunctions/Log/06/01/04/03/, we can write(

− log
[
1− 2π−1 tan−1(x/σ)

])α−1

=

(α− 1)

∞∑
k=0

(
k + 1− α

k

)
k∑
j=0

(−1)j+k
(
k
j

)
pj,k

(α− j − 1)

[ 2

π
tan−1(x/σ)

]α+k−1

.(3.28)

Here, the constants pj,k (for j ≥ 0 and k ≥ 1) can be determined recursively by

pj,k = k−1
∞∑
m=1

[k −m(j + 1)] cm pj,k−m,

where pj,0 = 1 and ck = (−1)k+1 (k + 1)−1.

Now, using the generalized binomial series expansion[
1− 2π−1 tan−1(x/σ)

] 1
β
−1

=

∞∑
i=0

(−1)i
(

1
β
− 1

i

)[ 2

π
tan−1(x/σ)

]i
,(3.29)

where
(
a
i

)
= a(a− 1) · · · (a− i+ 1)/i!.

The result (3.27) follows immediately by substituting (3.28) and (3.29) in (2.2). �

Note that the second summation in wi,j is �nite whenever β
−1 is a natural number.

4. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, . . . , Xn is a random sample from the GHC distribution. Let Xi:n denote
the ith order statistic. Then, the pdf of Xi:n can be expressed as

fi:n(x) =
n!

(i− 1)!(n− i)! f(x)F (x)i−1 {1− F (x)}n−i

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1.

Inserting (2.1) and (2.2) in the last equation and after some algebra, we obtain

fi:n(x) =

n−i∑
j=0

(−1)j Γ(n+ 1) (i+ j)−1

Γi Γ(j + 1)Γ(n− i− j + 1)

{
2

π σ Γ(α)βα
[
1 + (x/σ)2]−1

×
(
− log

[
1− 2π−1 tan−1(x/σ)

])α−1 [
1− 2π−1 tan−1(x/σ)

] 1
β
−1

×

γ
(
α,−β−1 log

[
1− 2π−1 tan−1(x/σ)

])
Γ(α)

j+i−1 }
.

Hence,

fi:n(x) =

n−i∑
j=0

ηj fα,β,(j+i)(x),(4.1)
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where

ηj =
(−1)j Γ(n+ 1)

(i+ j) Γ(i) Γ(j + 1) Γ(n− i− j + 1)

and fα,β,(j+i)(x) is the exponentiated-GHC density with parameters
(
α, β, (i+ j)

)
.

Equation (4.1) is the main result of this section. It reveals that the pdf of the GHC
order statistics is a linear combination of exponentiated-GHC densities. So, several math-
ematical quantities of these order statistics like ordinary and incomplete moments, fac-
torial moments, mgf, mean deviations and several others can be derived from those
quantities of the GHC distribution.

5. Estimation and information matrix

In this section, the method of maximum likelihood estimation is used to estimate
the GHC distribution parameters. The maximum likelihood estimates (MLEs) enjoy de-
sirable properties that can be used when constructing con�dence intervals and regions
and deliver simple approximations that work well in �nite samples. The resulting ap-
proximation for the MLEs in distribution theory is easily handled either analytically or
numerically. Let x1, . . . , xn be a sample of size n from the GHC distribution given by
(2.2). The log-likelihood function for the vector of parameters Θ = (α, β, σ)> can be
expressed as

` = n log

[
2

π σ Γ(α)βα

]
−

n∑
i=1

log
[
1 + (xi/σ)2]

+(α− 1)

n∑
i=1

log
(
− log

[
1− 2π−1 tan−1(xi/σ)

])
+
(

1
β
− 1
) n∑
i=1

log
[
1− 2π−1 tan−1(xi/σ)

]
The components of the score vector J(Θ) are given by

Jα = −nψ(α)− n log β +

n∑
i=1

log
(
− log

[
1− 2π−1 tan−1(xi/σ)

])
,

Jβ = −nαβ−1 − β−2
n∑
i=1

log
[
1− 2π−1 tan−1(xi/σ)

]
,

Jσ = −nσ−1 + 2σ−3
n∑
i=1

x2
i

[
1 + (xi/σ)2]−1

−2(α− 1)π−1 σ−2
n∑
i=1

{
xi tan−1′(xi/σ)

[
1− 2π−1 tan−1(xi/σ)

]−1

− log
[
1− 2π−1 tan−1(xi/σ)

] }

+2
(

1
β
− 1
)
π−1 σ−2

n∑
i=1

{
xi tan−1′(xi/σ)[

1− 2π−1 tan−1(xi/σ)
]} .

Setting these equations to zero and solving them simultaneously yield the maximum like-
lihood estimates (MLEs) of the model parameters. Numerical methods can be used to

obtain the MLE Θ̂. For example, the Newton-Raphson iterative technique could be ap-

plied to solve the likelihood equations and obtain Θ̂ numerically. For interval estimation
of the parameters, we require the 3 × 3 observed information matrix J(Θ) = {−Jrs}
(for r, s = α, β, σ) given in Appendix A. The observed information matrix can be de-
termined numerically from standard maximization routines, which provide the observed
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information matrix as part of their output; e.g., one can use the R functions optim or
nlm, the Ox function MaxBFGS, the SAS procedure NLMixed, among others, to compute
J(Θ) numerically.

Under standard regularity conditions, the multivariate normal N3(0, J(Θ̂)−1) distri-
bution can be used to construct approximate con�dence intervals for the model param-

eters. Here, J(Θ̂) is the total observed information matrix evaluated at Θ̂. Then, the

100(1 − γ)% con�dence intervals for α, β and σ are given by α̂ ± zγ∗/2 ×
√
var(α̂),

β̂ ± zγ∗/2 ×
√
var(β̂) and σ̂ ± zγ∗/2 ×

√
var(σ̂), respectively, where the var(·)'s denote

the diagonal elements of J(Θ̂)−1 corresponding to the model parameters, and zγ∗/2 is
the quantile (1− γ∗/2) of the standard normal distribution.

The likelihood ratio (LR) statistic can be used to check if the GHC distribution is
strictly �superior� to the HC distribution for a given data set. The test of H0 : α = β = 1
versus H1 : H0 is not true is equivalent to compare the GHC and HC distributions and

the statistic w = −2 log λ = 2{`(α̂, β̂, σ̂) − `(1, 1, σ̃)}, where α̂, β̂ and σ̂ are the MLEs
under H1 and σ̃ is the MLE under H0, is asymptotically follows chi-square distribution
with 2 degrees of freedom. Similarly, the test of H0 : α = 1 versus H1 : α 6= 1 is
equivalent to compare the GHC and exponentiated HC distributions with the statistic

w = 2{`(α̂, β̂, σ̂) − `(1, β̃, σ̃)}, where α̂, β̂ and σ̂ are the MLEs under H1 and β̃ and σ̃
are the MLEs under H0. In this case w is asymptotically follows chi-square distribution
with 1 degrees of freedom.

5.1. Simulation study. We evaluate the performance of the maximum likelihood method
for estimating the GHC parameters using Monte Carlo simulation for a total of twenty
four parameter combinations and the process is repeated 200 times. Two di�erent sam-
ple sizes n = 100 and 300 are considered. The MLEs and the standard deviations of the
parameter estimates are listed in Table 1. The MLEs of α, β and σ are determined by
solving the nonlinear equations U(Θ) = 0. From Table 1, we note that the ML method
performs well for estimating the model parameters. Also, as the sample size increases,
the biases and the standard deviations of the MLEs decrease as expected.
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Table 1: MLEs and standard deviations for various parameter values.

Sample size Actual values Estimated values Standard deviations

n α β σ α̃ β̃ σ̃ α̃ β̃ σ̃

100 0.5 0.5 1 0.5267 0.4094 3.6791 0.0060 0.0272 0.6534

0.5 1.0 2 0.5212 0.9324 2.9044 0.0080 0.0308 0.4838

0.5 1.5 1 0.5315 1.4004 1.1285 0.0085 0.0329 0.0556

0.5 2.0 2 0.5168 1.9218 2.36179 0.0100 0.0426 0.1342

1.0 0.5 1 1.0416 0.4409 2.2191 0.0164 0.0176 0.4728

1.0 1 2 1.0741 0.9578 2.1989 0.0605 0.0186 0.0939

1.0 1.5 1 1.3303 1.4166 1.0224 0.1236 0.0274 0.0513

1.0 2.0 2 1.4304 1.8939 1.9073 0.1399 0.0424 0.1084

1.5 0.5 1 1.7037 0.4683 1.3396 0.0992 0.0111 0.3024

1.5 1.0 2 2.2656 0.9118 2.0189 0.2288 0.0194 0.1082

1.5 1.5 1 2.1739 1.3711 0.9861 0.1726 0.0315 0.0570

1.5 2.0 2 2.1626 1.8253 2.1688 0.1758 0.0455 0.2187

300 0.5 0.5 1 0.5070 0.4529 1.7515 0.0020 0.0100 0.1402

0.5 1 2 0.5040 0.9787 2.1165 0.0022 0.0095 0.0311

0.5 1.5 1 0.5075 1.4764 1.0328 0.0027 0.0124 0.0153

0.5 2.0 2 0.5014 1.9610 2.1106 0.0026 0.0138 0.0291

1.0 0.5 1 1.0140 0.5001 1.0231 0.0052 0.0047 0.0159

1.0 1.0 2 1.0120 0.9854 2.0763 0.0069 0.0061 0.0299

1.0 1.5 1 1.0196 1.4891 1.0263 0.0077 0.0075 0.0148

1.0 2.0 2 1.0281 1.9801 2.0308 0.0084 0.0107 0.0314

1.5 0.5 1 1.5326 0.4970 1.0183 0.0104 0.0036 0.0157

1.5 1.0 2 1.6108 0.9887 1.9955 0.035 0.0059 0.0381

1.5 1.5 1 1.7063 1.4497 0.9605 0.0479 0.0109 0.0193

1.5 2.0 2 1.6754 1.9499 1.9397 0.0335 0.0160 0.0475

6. Applications

In this section, we provide two applications to real data to illustrate the importance of
the GHC distribution. The model parameters are estimated by the method of maximum
likelihood and three well-recognized goodness-of-�t statistics are calculated to compare
the GHC distribution with other competing models.

The �rst data set represents the annual food discharge rates for the 39 years (1935-
1973) at Floyd River located in James, Iowa, USA. The Floyd River data were reported
by Mudholkar and Hutson [15] and Akinsete et al. [2]. The second data set consists of
the waiting times between 65 consecutive eruptions of the Kiama Blowhole (da Silva et
al. [10]; Pinho et al. [17]). The Kiama Blowhole is a tourist attraction located nearly
120km to the south of Sydney. The swelling of the ocean pushes the water through a
hole bellow a cli�. The water then erupts through an exit usually drenching whoever is
nearby. The times between eruptions of a 1340 hours period starting from July 12th of
1998 were recorded using a digital watch. Both data sets are reported in Appendix B.

We �tted the GHC model to the three data sets and compared it with other models:
the BHC, KHC, EHC and HC. The measures of goodness-of-�t statistics including the

log-likelihood function evaluated at the MLEs (− log ˆ̀), Akaike information criterion
(AIC) and Kolmogrov-Smirnov (K-S) are computed to compare the �tted models. In
general, the smaller the values of these statistics, the better the �t to the data. The
required computations are carried out using the R-software.
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Table 2 lists the MLEs and their corresponding standard errors (in parentheses) of
the model parameters for data sets 1 and 2. The numerical values of the model selection

statistics − log ˆ̀, AIC and K-S, and p-values are listed in Table 2. In general, the results
from Table 2 indicate that the GHC distribution provides the best �t among the BHC,
KHC, EHC and HC models. The histogram of the data sets 1 and 2, and the estimated
pdfs and cdfs of the GHC distribution and its competitive models are displayed in Figures
3 and 4. These Figures support the results in Table 2. To compare the GHC distribution
with its sub-models, EHC and HC distributions, the LR test is used for both data sets
1 and 2. When comparing the �ts between GHC and EHC (HC) for data 1, w =
4.2902 (w = 6.5608) with p-value=0.0383 (p-value=0.0376). For data 2, w = 11.0436
(w = 12.6044) with p-value=0.0009 (p-value=0.0018). These values suggest that GHC
performs signi�cantly better for both data sets when comparing it with the sub-models
EHC and HC distributions.

7. Concluding remarks

In this paper, we propose a generalization of half-Cauchy distribution called the
gamma-half-Cauchy distribution. We study some properties of gamma-half Cauchy dis-
tribution including quantile function, moments, mean deviations and Shannon entropy.
The maximum likelihood method is used for estimating the model parameters and the
observed information matrix is analytically derived. We �t the gamma-half-Cauchy to
two real data sets to demonstrate its usefulness. The new model provides consistently
better �t than other competing models.
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Figure 3. Plots of the estimated pdfs and cdfs of the GHC, BHC,
KHC and EHC models for data set 1.

Appendix A

The observed information matrix for the parameter vector Θ = (α, β, σ)> is given by

J(Θ) = − ∂2`(Θ)

∂Θ ∂Θ>
= −

 Jαα Jαβ Jασ
� Jββ Jβσ
� � Jσσ

 ,
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Figure 4. Plots of the estimated pdfs and cdfs of the GHC, BHC,
KHC and EHC models for data set 2.

whose elements are

Jαα = −nψ′(α) ,

Jαβ = −n
β
,

Jασ =
2

π σ2

n∑
i=1

{
xi tan−1′(xi/σ)

[
1− 2π−1 tan−1(xi/σ)

]−1

− log
[
1− 2π−1 tan−1(xi/σ)

] }
,

Jββ =
nα

β
+

2

β3

n∑
i=1

log
[
1− 2π−1 tan−1(xi/σ)

]
,

Jβσ = − 2

π σ2β2

n∑
i=1

{
xi tan−1′(xi/σ)[

1− 2π−1 tan−1(xi/σ)
]}
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Jσσ =
2

σ2
+

n∑
i=1

{
4x4

i

σ6 [1 + (xi/σ)2]2
− 6x2

i

σ4 [1 + (xi/σ)2]

}
−
(

1
β
− 1
) n∑
i=1

{
4xi tan−1′(xi/σ)

π σ3
[
1− 2π−1 tan−1(xi/σ)

]
+

4x2
i tan−1′(xi/σ)2

π2 σ4
{[

1− 2π−1 tan−1(xi/σ)
]}2 +

2x2
i tan−1′′(xi/σ)

π σ4
{[

1− 2π−1 tan−1(xi/σ)
]}}

− (α− 1)
n∑
i=1

{
4xi tan−1′(xi/σ)

π σ3 log
[
1− 2π−1 tan−1(xi/σ)

] (
1− 2π−1 tan−1(xi/σ)

)
+

4x2
i tan−1′(xi/σ)2

π2 σ4 log
{[

1− 2π−1 tan−1(xi/σ)
]}2

{(
1− 2π−1 tan−1(xi/σ)

)}2

+
4x2

i tan−1′(xi/σ)2

π2 σ4 log
[
1− 2π−1 tan−1(xi/σ)

] {(
1− 2π−1 tan−1(xi/σ)

)}2

+
2x2

i tan−1′′(xi/σ)

π σ4 log
[
1− 2π−1 tan−1(xi/σ)

](
1− 2π−1 tan−1(xi/σ)

)},
where ψ(α) = ∂ log Γ(α)

∂α
= Γ(α)′

Γ(α)
is the polygamma function and ψ′(α) = ∂2 log Γ(α)

(∂α)2
=

∂ ψ(α)
∂ α

is the trigamma function.

Appendix B

The �rst data set are: 1460, 4050, 3570, 2060, 1300, 1390, 1720, 6280, 1360, 7440,
5320, 1400, 3240, 2710, 4520, 4840, 8320, 13900, 71500, 6250, 2260, 318, 1330, 970, 1920,
15100, 2870, 20600, 3810, 726, 7500, 7170, 2000, 829, 17300, 4740, 13400, 2940, 5660.

The second data set were reported by professor Jim Irish and can be obtained at
http://www.statsci.org/data/oz/kiama.html. The data are: 83, 51, 87, 60, 28, 95, 8, 27,
15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10, 35,47, 77, 36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28,
56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83,
11, 42, 17, 14, 9, 12.
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