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Abstract

Recently, several attempts have been made to define new models that
extend well-known distributions and at the same time provide great
flexibility in modelling real data. We propose a new four-parameter
model named the Weibull-power function (WPF) distribution which
exhibits bathtub-shaped hazard rate. Some of its statistical properties
are obtained including ordinary and incomplete moments, quantile and
generating functions, Rényi and Shannon entropies, reliability and or-
der statistics. The model parameters are estimated by the method of
maximum likelihood. A bivariate extension is also proposed. The new
distribution can be implemented easily using statistical software pack-
ages. We investigate the potential usefulness of the proposed model
by means of two real data sets. In fact, the new model provides a
better fit to these data than the additive Weibull, modified Weibull,
Sarahan-Zaindin modified Weibull and beta-modified Weibull distribu-
tions, suggesting that it is a reasonable candidate for modeling survival
data.
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1. Introduction
A suitable generalized lifetime model is often of interest in the analysis of survival

data, as it can provide insight into characteristics of failure times and hazard functions
that may not be available with classical models. Four distributions (exponential, Pareto,
power and Weibull) are of interest and very attractive in lifetime literature due to their
simplicity, easiness and flexible features to model various types of data in different fields.
The power function distribution (PFD) is a flexible lifetime model which can be obtained
from the Pareto model by using a simple transformation Y = X−1 [19] and it is also a
special case of the beta distribution. Meniconi and Barry [36] discussed the application
of the PFD along with other lifetime models, and concluded that the PFD is better than
the Weibull, log-normal and exponential models to measure the reliability of electronic
components. The PFD can be used to fit the distribution of certain likelihood ratios in
statistical tests. If the likelihood ratio (LR) is based on n iid random variables, it is often
found that a useful goodness-of-fit can be obtained by letting (likelihood ratio)2/n to
have a PFD (see [6]). For introduction and statistical properties of the PFD, the reader
is referred to Johnson et al. [23, 24], Balakrishnan and Nevzorov [13], Kleiber and Kotz
[29] and Forbes et al. [21]. The estimation of its parameters is discussed in detail by
[55, 56, 9]. The estimation of the sample size for parameter estimation is addressed by
Kapadia [26]. Ali et al. [8] derived the UMVUE of the mean and the right-tail probability
of the PFD. Ali and Woo [6] and Ali et al. [7] provided inference on reliability and the
ratio of variates in the PFD. Sinha et al. [51] proposed a preliminary test estimator for
a scale parameter of the PFD.

From a Bayesian point of view, the PFD can be used as a prior when there is limited
sample information, and especially in cases where the relationship between the variables
is known but the data is scarce (possibly due to high cost of collection). The PFD can also
be used as prior distribution for the binomial proportion. Saleem et al. [45] performed
Bayesian analysis of the mixture of PFDs using complete and censored samples. Rehman
et al. [41] used Bayes estimation and conjugate prior for the PFD. Kifayat et al. [28]
analyzed this distribution in the Bayesian context using informative and non-informative
priors. Zarrin et al. [57] discussed the reliability estimation and Bayesian analysis of the
system reliability of the PFD.

Several authors have reported characterization of the PFD based on order statistics
and records. Rider [44] first derived the distribution of the product and ratio of the or-
der statistics. Govindarajulu [22] gave the characterization of the exponential and PFD.
Exact explicit expression for the single and the product moments of order statistics are
obtained by Malik [31]. Ahsanullah [2] defined necessary and sufficient conditions based
on PFD order statistics. Kabir and Ahsanullah [25] estimated the location and scale of
the PFD using linear function of order statistics. Balakrishnan and Joshi [12] derived
some recurrence relations for the single and the product moments of order statistics.
Moothathu [38, 39] gave characterizations of the PFD through Lorenz curve. The esti-
mation of the PFD parameters based on record values is studied by Ahsanullah [3]. Saran
and Singh [47] developed recurrence relations for the marginal and generating functions
of generalized order statistics. Saran and Pandey [46] estimated the parameters of the
PFD and proposed a characterization based on kth record values. The characterization
based on the lower generalized order statistics is given in Ahsanullah [4], and Mbah and
Ahsanullah [34]. Chang [16] suggested other characterization by independence of records
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values. Athar and Faizan [10] derived some recurrence relations for single and prod-
uct moments of lower generalized order statistics. Tavangar [53] gave a characterization
based on dual generalized order statistics. Bhatt [14] proposed a characterization based
on any arbitrary non-constant function. Recently, Azedine [11] derived single and double
moments of the lower record values, and also established recurrence relations for these
single and double moments.

Different versions of the PFD are reported in the literature. Some of them are sum-
marized in Table 1, where Π(x) denotes its cumulative distribution function (cdf) and
π(x) denotes its probability probability function (pdf).

Table 1: Some versions of the PFD.

S.No./Ref. Π(x) π(x) Range of variable Parameters
1./ [11] xα αxα−1 0 < x < 1 α > 0

2./ [5] (x/λ)α αλ−α xα−1 0 < x < λ α > 0

3./ [18] (xβ)α αβα xα−1 0 < x < β−1 α, β > 0

4./ [10] (x/θ)α+1 (α+ 1) θ−(α+1) xα 0 < x < θ α > −1, θ > 0

5./ [47] 1− (1− x)δ δ (1− x)δ−1 0 < x < 1 δ > 0

6./ [52]
[
x−θ
σ

]ν
ν
σ

[
x−θ
σ

]ν−1

θ < x < σ + θ ν, σ > 0

7./ [46] 1−
[
β−x
β−α

]γ
γ

β−α

[
β−x
β−α

]γ−1

α < x < β γ > 0

8./ [6] x[
σ

1−σ ]
[

σ
1−σ

]
x[

σ
1−σ ]−1 0 < x < 1 0 < σ < 1

A random variable Z has the PFD or the generalized uniform distribution (GUD) [40]
with two positive parameters α and β, if its cdf is given by

(1.1) G(x) =
[x
α

]β
, 0 < x < α,

where α is the scale (threshold) parameter and β is the shape parameter. The pdf
corresponding to (1.1) reduces to

(1.2) g(x) =

[
β

α

] [x
α

]β−1

, 0 < x < α,

The distribution (1.1) has the following special cases:
(i) if α = 1, the PFD reduces to standard power distribution,
(ii) if α = 1 and β = 1, it reduces to standard uniform distribution,
(iii) if β = 1, it gives the rectangular distribution [31, 25],
(iv) if β = 2, it refers to triangular distribution [31, 25],
(v) if β = 3, it refers to J-shaped distribution [31, 25],
(vi) if α = 1 and Y = X−1, then Y ∼Pareto(0, β) [21],
(vii) if α = 1 and Y = − log X, then Y ∼Exponential(β−1) [21],
(viii) if α = 1 and Y = − log(Xβ − 1), then Y ∼Logistic(0, 1) [21],

(ix) if α = 1 and Y = [− log(Xβ)]1/γ , then Y ∼Weibull(0, γ) [21],
(x) if α = 1 and Y = − log[−b logX], then Y ∼Gumbel(0, 1) [21],
(xi) if α = 1 and Y = −b [X1/X2], then Y ∼Laplace(0, 1) [21].
Henceforth, let Z be a random variable having the PFD with parameters α and β,

say Z ∼PFD(α, β). Then, the quantile function (qf) is G−1(u) = αu1/β (for 0 < u < 1).
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The survival function (sf) G(x), hazard rate function (hrf) τ(x), reversed hazard rate
function (rhrf) r(x), cumulative hazard rate function (chrf) V (x) and odd ratio (OR)
G(x)/G(x) of Z are given by G(x) = 1− (x/α)β = αβ−xβ

αβ
, τ(x) = β xβ−1

αβ−xβ , r(x) = (β/x) ,

V (x) = − log
[
1− (x/α)β

]
and OR = xβ

αβ−xβ , respectively.
The nth moment of Z comes from (1.2) as

(1.3) E(Zn) =
αn β

β + n
.

The mean and variance of Z are

E(Z) = [αβ/(β + 1)]

and
V ar(Z) =

{
βα2/[(β + 2)(β + 1)2]

}
,

respectively.
The moment generating function (mgf) of Z becomes

(1.4) MZ(t) =
β
[
Γ(β)− Γ(β,−t α)

]
(−t)β αβ , t < 0,

where Γ(a; bx) = ba
∫∞
x
wa−1 e−bwdw for a > 0 and b > 0 and Γ(·; ·) is the complemen-

tary gamma function.
The nth incomplete moment of Z can be expressed as

(1.5) m(n,Z)(x) =
β

αβ
xβ+n

β + n
.

In this paper, we propose an extension of the PFD called the Weibull power function
(for short “WPF”) distribution based on the Weibull-G class of distributions defined
by Bourguignon et al. [15]. Zagrafos and Balakrishnan [58] pioneered a versatile and
flexible gamma-G class of distributions based on Stacy’s generalized gamma model and
record value theory. More recently, Bourguignon et al. [15] proposed the Weibull-G
class of distributions influenced by the gamma-G class. Let G(x; Θ) and g(x; Θ) denote
the cumulative and density functions of a baseline model with parameter vector Θ and
consider the Weibull cdf πW (x) = 1 − e−a x

b

(for x > 0) with scale parameter a >
0 and shape parameter b > 0. Bourguignon et al. [15] replaced the argument x by
G(x; Θ)/G(x; Θ), where G(x; Θ) = 1 − G(x; Θ), and defined the cdf of their class, say
Weibull-G(a, b,Θ), by

(1.6) F (x) = F (x; a, b,Θ) = a b

∫ [
G(x;Θ)

G(x;Θ)

]
0

xb−1 e−ax
b

dx = 1− e
−a
[
G(x;Θ)

G(x;Θ)

]b
, x ∈ <.

The Weibull-G class density function becomes

(1.7) f(x) = f(x; a, b,Θ) = a b g(x; Θ)

[
G(x; Θ)b−1

G(x; Θ)b+1

]
e
−a
[
G(x;Θ)

G(x;Θ)

]b
.

If b = 1, it corresponds to the exponential-G class. An interpretation of equation (1.6)
can be given as follows. Let Y be the lifetime variable having a parent G distribution.
Then, the odds that an individual will die at time x is G(x; Θ)/G(x; Θ). We are inter-
ested in modeling the randomness of the odds of death using an appropriate parametric
distribution, say F (x). So, we can write

F (x) = Pr(X ≤ x) = F
[G(x; Θ)

G(x; Θ)

]
.
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The paper unfolds as follows. In Section 2, we define a new bathtub shaped model
called theWeibull-power function (WPF) distribution and discuss the shapes of its density
and hrf. In Section 3, some of its statistical properties are investigated. In Section 4,
Rényi and Shannon entropies are derived and the reliability is determined in Section 5.
The density of the order statistics is obtained in Section 6. The model parameters are
estimated by maximum likelihood and a simulation study is performed in Section 7. In
Section 8, a bivariate extension of the new family is introduced. Applications to two
real data sets illustrate the performance of the new model in Section 9. The paper is
concluded in Section 10.

2. Model definition
Inserting (1.1) in equation (1.6) gives the WPF cdf as

(2.1) F (x) = F (x; a, b, α, β) = 1− e
−a
[

xβ

αβ−xβ

]b
, 0 < x < α, a, b, α, β > 0.

The pdf corresponding to (2.1) is given by

(2.2) f(x) = f(x; a, b, α, β) =
a b β αβ xβ b−1

(αβ − xβ)b+1
e
−a
[

xβ

αβ−xβ

]b
.

Henceforth, let X ∼WPF(a, b, α, β) be a random variable having pdf (2.2). The sf, hrf,
rhrf and chrf of X are given by

S(x) = S(x; a, b, α, β) = e
−a
[

xβ

αβ−xβ

]b
,(2.3)

τ(x) = h(x; a, b, α, β) =
a b β αβxβ b−1

(αβ − xβ)b+1
,

r(x) = r(x; a, b, α, β) =
a b β αβxβ b−1

(αβ − xβ)b+1

e
−a
[

xβ

αβ−xβ

]b
[

1− e
−a
[

xβ

αβ−xβ

]b]
and

V (x) = V (x; a, b, α, β) = a
[ xβ

αβ − xβ
]b
,

respectively.
Figures 1 and 2 display some plots of the pdf and hrf of X for some parameter values.
Figure 1 indicates that the WPF pdf has various shapes such as symmetric, right-skewed,
left-skewed, reversed-J, S, M and bathtub. Also, Figure 2 indicates that the WPF hrf
can have bathtub-shaped, J and U shapes.

Lemma 2.1 provides some relations of the WPF distribution with the Weibull and
exponential distributions.

2.1. Lemma. (Transformation): (a) If a random variable Y follows the Weibull dis-
tribution with shape parameter b and scale parameter a, then the random variable X =

α
[

Y
1+Y

]1/β
has the WPF(a, b, α, β) distribution.

(b) If a random variable Y follows the exponential distribution, then the random variable

X = α
[

Y 1/b

1+Y 1/b

]1/β
has the WPF(a, b, α, β) distribution.
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Figure 1. Plots of the WPF pdf for some parameters.
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Figure 2. Plots of the hazard rate for some parameters.

2.1. Shape and asymptotics. The critical points of the density of X are the roots of
the equation

bβ − 1

x
+
β(b+ 1)xβ−1

αβ − xβ − a b β αβxβ b−1

(αβ − xβ)b+1
= 0.(2.4)

The first derivative of the hrf of X is given by

τ ′(x) =
xbβ−2

{
(β + 1)xβ + (b β − 1)αβ

}
(αβ − xβ)b+2

.(2.5)

The limiting behavior of the pdf and hrf of X are given in the following lemma.

2.2. Lemma. The limits of the pdf and hrf of X when x→ α− are 0 and +∞. Further,
the limits of the pdf and hrf of X when x→ 0 are given by

lim
x→0+

f(x) =



+∞ for b β < 1;

a
α

for b β = 1;

0 for b β > 1.
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lim
x→0+

τ(x) =



+∞ for b β < 1;

a
α

for b β = 1;

0 for b β > 1.

The mode of the hrf of X is at x = 0 when β b ≥ 1 and it occurs at x = α
[
1−bβ
1+β

] 1
β

when bβ < 1.

2.3. Theorem. The hrf of X is increasing when b β ≥ 1 and is bathtub when b β < 1.

3. Mathematical properties
Established algebraic expansions to determine some mathematical properties of the

WPF distribution can be more efficient than computing those directly by numerical
integration of (2.2), which can be prone to rounding off errors among others. Despite the
fact that the cdf and pdf of the WPF distribution require mathematical functions that
are widely available in modern statistical packages, frequently analytical and numerical
derivations take advantage of certain expansions for its pdf.

3.1. Quantile function. The quantile function (qf) of X follows by inverting (2.1) as

(3.1) Q(u) = α

 [−1
a

log(1− u)
] 1
b

1 +
[−1
a

log(1− u)
] 1
b

 1
β

.

So, the simulation of the WPF random variable is straightforward. If U is a uniform
variate on the unit interval (0, 1), then the random variable X = Q(U) has pdf (2.2).

The analysis of the variability of the the skewness and kurtosis on the shape parameters
α and b can be investigated based on quantile measures. The shortcomings of the classical
kurtosis measure are well-known. The Bowley skewness [27] based on quartiles is given
by

B =
Q(3/4) +Q(1/4)− 2Q(2/4)

Q(3/4)−Q(1/4)
.

The Moors kurtosis [37] based on octiles is given by

M =
Q(3/8)−Q(1/8) +Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

These measures are less sensitive to outliers and they exist even for distributions without
moments. In Figure 3, we plot the measures B and M for the WPF distribution. The
plots indicate the variability of these measures on the shape parameters β.

3.2. Useful expansion. We use the exponential power series and the expansion[
1−G(x; Θ)

]−b
=

∞∑
k=0

pkG(x; Θ)k,

where pk = Γ(b+ k)/[k! Γ(b)]. After some algebra, we can easily obtain

F (x) = F (x; a, b, α, β) =
∑
j,k≥0
j+k≥1

wj,kH(x;α, βj,k),(3.2)
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Figure 3. Skewness (a) and kurtosis (b) plots for WPF distribution
based on quantiles.

where wj,k = (−a)j pk/j!, βj,k = (jb+ k)β and H(x;α, βj,k) is the cdf of the PFD with
scale parameter α and shape parameter βj,k. Let Zj,k be the random variable with cdf
H(x;α, βj,k). By simple differentiation, we can express the pdf of X as

f(x) = f(x; a, b, α, β) =
∑
j,k≥0
j+k≥1

wj,k h(x;α, βj,k),(3.3)

where h(x;α, βj,k) is the pdf of Zj,k. Equation (3.3) reveals that the WPF distribution
is a mixture of PFDs with the same scale parameter α and different shape parameters.
Thus, some WPF mathematical properties can be obtained from those corresponding
properties of the PFD.

3.3. Ordinary and incomplete moments. The nth moment of X, say µ′n can be
expressed from (1.3) and (3.3) as

µ′n = αn
∑
j,k≥0
j+k≥1

βj,k wj,k
βj,k + n

.(3.4)

Setting n = 1 in (3.4), we obtain the mean µ′1 = E(X). The central moments (µn)
and cumulants (κn) of X are obtained from equation (3.4) as

µn =

n∑
k=0

{
n

k

}
(−1)k µ′k1 µ′n−k and κn = µ′n −

n−1∑
k=1

{
n− 1

k − 1

}
κk µ

′
n−k,

respectively, where κ1 = µ′1 and the notation{
n

k

}
is used to denote the binomial coefficient.

Thus, κ2 = µ′2−µ′21 , κ3 = µ′3−3µ′2µ
′
1 + 2µ′31 , κ4 = µ′4−4µ′3µ

′
1−3µ′22 + 12µ′2µ

′2
1 −6µ′41 ,

etc. The skewness and kurtosis can be calculated from the third and fourth standardized
cumulants as γ1 = κ3/κ

3/2
2 and γ2 = κ4/κ

2
2. They are also important to derive Edgeworth

expansions for the cdf and pdf of the standardized sum and sample mean of iid random
variables having the WPF distribution.
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The nth incomplete moment of X can be determined from (1.5) and (3.3)

m(n,X)(x) =
∑
j,k≥0
j+k≥1

βj,k

αβj,k
xβj,k+n

βj,k + n
.(3.5)

The main application of the first incomplete moment refers to the Bonferroni and Lorenz
curves. These curves are very useful in several fields. For a given probability π, they are
defined by B(π) = m1(q)/(π µ′1) and L(π) = m(1,X)(q)/µ

′
1, respectively, where m(1,X)(q)

comes from (3.5) with r = 1 and q = Q(π) is determined from (3.1).
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Figure 4. Plots of the Bonferroni curve (a) and Lorenz curve (b) for
the WPF model.

The amount of scatter in a population is measured to some extent by the totality of
deviations from the mean and median defined by δ1 =

∫∞
0
|x − µ′1| f(x)dx and δ2(x) =∫∞

0
|x − M | f(x)dx, respectively, where µ′1 = E(X) is the mean and M = Q(0.5) is

the median. These measures can be expressed as δ1 = 2µ′1 F (µ′1) − 2m(1,X)(µ
′
1) and

δ2 = µ′1 − 2m(1,X)(M), where F (µ′1) is given by (2.1) and m(1,X)(x) comes from (3.5)
with n = 1.

Further applications of the first incomplete moment are related to the mean resid-
ual life and mean waiting time given by s(x; a, b, α, β) = [1 − m(1,X)(x)]/S(x) − t and
µ(x; a, b, α, β) = t − [m(1,X)(x)/F (x)], respectively, where S(x) = 1 − F (x) is obtained
from (2.1).

3.4. Moment generating function. We obtain the moment generating function (mgf)
MX(t) of X from (3.3) as

M(t) =
∑
j,k≥0
j+k≥1

wj,k

∫ α

0

etx h(x;α, βj,k) dx.

Based on (1.4), M(t) can be expressed as

M(t) =
∑
j,k≥0
j+k≥1

wj,k βj,k

(−t)βj,k αβj,k
[
Γ(βj,k)− Γ(βj,k;−tα)

]
,

which is the main result of this section.
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4. Entropies
An entropy is a measure of variation or uncertainty of a random variable X. Two

popular entropy measures are the Rényi [43] and Shannon [49].
The Rényi entropy of a random variable X with pdf f(x) is defined as

IR(γ) =
1

1− γ log

[∫ ∞
0

fγ(x) dx

]
,

for γ > 0 and γ 6= 1.
The Shannon entropy of X is defined by E {− log [f(X)]}. It is the special case of the

Rényi entropy when γ ↑ 1. Direct calculation yields

E {− log [f(X)]} = − log(a b β αβ) + (1− β) E {log(X)}

+ (b+ 1) E
[

log(αβ −Xβ)
]

+ aE
[ Xβ

αβ −Xβ

]b
.

First, we define and compute

A(a1, a2, a3;α, β, b) =

∫ α

0

xa1

(αβ − xβ)a2
e
−a3

[
xβ

αβ−xβ

]b
dx.(4.1)

Using the power series and the generalized binomial expansion, and after some algebraic
manipulations, we obtain

A(a1, a2, a3;α, β, b) =

∞∑
i,j=0

(−1)i+j ai3 α
a1−β a2

[a1 + β b i+ β j + 1] i!

{
−a2 − b i

j

}
.

4.1. Proposition. Let X be a random variable with pdf (2.2), then

E {log(X)} = a b β αβ
∂

∂t
A(bβ + t− 1, b+ 1, a;α, β, b) |t=0,

E
[

log(αβ −Xβ)
]

= a b β αβ
∂

∂t
A(bβ − 1, b+ 1− t, a;α, β, b) |t=0,

E
[{ Xβ

αβ −Xβ

}b]
= a b β αβA(2bβ − 1, 2b+ 1, a;α, β, b).

The simplest formula for the entropy of X is given by

E {− log[f(X)]} = − log(a b β αβ)

+ (1− β)a b β αβ
∂

∂t
A(bβ + t− 1, b+ 1, a;α, β, b) |t=0

+ (b+ 1)a b β αβ
∂

∂t
A(bβ − 1, b+ 1− t, a;α, β, b) |t=0

+ a2 b β αβ A(2bβ − 1, 2b+ 1, a;α, β, b).

After some algebraic developments, the Rényi entropy IR(γ) reduces to

(4.2) IR(γ) =
γ

1− γ log
[
a b β αβ

]
+

1

1− γ log
{
A
[
γ(β b− 1), γ(b+ 1), aγ;α, β, b

]}
.

5. Reliability
Let X1 and X2 be two continuous and independent WPF random variables with

cdfs F1(x) and F2(x) and pdfs f1(x) and f2(x), respectively. The reliability parameter
R = P (X1 < X2) is defined by

R = P (X1 < X2) =

∫ α2

0

P (X1 ≤ X2|X2 = x) fX2(x)dx,(5.1)

where X1 ∼WPF(a1, b1, α1, β1) and X2 ∼WPF(a2, b2, α2, θ2).
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After some algebra, we obtain

R =
∑

j,k,r,s≥0
j+k≥1,r+s≥1

w
(1)
j,k w

(2)
r,s

∫ α2

0

H(x;α1, β
(1)
j,k )h(x;α2, β

(2)
r,s )dx

=
∑

j,k,r,s≥0
j+k≥1,r+s≥1

w
(1)
j,k w

(2)
r,s

(b2r + s)

α2β2

[α2

α1

] b1j+k
β1

[ b1j + k

β1
+
b2r + s

β2

]−1

,

where w(1)
j,k = wj,k|a=a1,b=b1,β=β1 and w(2)

r,s = wr,s|a=a2,b=b2,β=β2 .

6. Order statistics
Here, we give the density of the ith order statistic Xi:n, fi:n(x) say, in a random

sample of size n from the WPF distribution. It is well known that (for i = 1, . . . , n)

(6.1) fi:n(x) =
n!

(i− 1)!(n− i!) f(x)F i−1(x) {1− F (x)}n−i .

Using the binomial expansion, we can rewrite fi:n(x) as

(6.2) fi:n(x) =
n!

(i− 1)!(n− i!) f(x)

n−i∑
j=0

(−1)j
{
n− i
j

}
F (x)i+j−1.

Using (2.2) in (6.2) to compute F (x)i+j−1, we obtain

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

j+i−1∑
k=0

(−1)j+k
{
n− i
j

}{
j + i− 1

k

}
︸ ︷︷ ︸

tj,k

× a b β αβ xβ b−1

(αβ − xβ)b+1
e
−a(1+k)

[
xβ

αβ−xβ

]b
.

The rth moment of Xi:n can be obtained as

E (Xr
i:n) =

n−i∑
j=0

j+i−1∑
k=0

tj,k A(β b− 1, b+ 1, a+ k;α, β),(6.3)

where

tj,k =
(−1)j+k n!

(i− 1)!(n− i)!

{
n− i
j

}{
j + i− 1

k

}
.

After some algebra, the Rényi entropy of Xi:n becomes

IR,Xi:n(γ) =
γ

1− γ log

[
n! a b β αβ

(i− 1)!(n− i)!

]
+

1

1− γ log
[ ∞∑
j,k=0

k∑
r=0

t∗j,k,r A(γ(β b− 1), γ(b+ 1), a(γ + r);α, β, b)
]
,

where

t∗j,k,r = (−1)j+k
{
γ(n− 1)

j

}{
γ(i− 1) + j

k

}
.
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7. Estimation
Here, we determine the maximum likelihood estimates (MLEs) of the model parame-

ters of the new family from complete samples only. Let x1, . . . , xn be observed values from
the WPF distribution with parameters in Θ = (a, b, β). Then, the total log-likelihood
function for Θ is given by

`n = `n(Θ) = n log
[
a b β αβ

]
+ (β b− 1)

n∑
i=1

log(xi)

− (b+ 1)

n∑
i=1

log
(
αβ − xβi

)
− a

n∑
i=1

[ xβi
αβ − xβi

]b
.(7.1)

The log-likelihood function can be maximized either directly by using the SAS (PROC
NLMIXED) or the Ox (sub-routine MaxBFGS) program (see [20]), R-language [42] or
by solving the nonlinear likelihood equations obtained by differentiating (7.1).

The α is known and we estimate it from the sample maxima. The components of the
score function Un(Θ) = (∂`n/∂a, ∂`n/∂b, ∂`n/∂β)> are given by

∂`n
∂a

=
n

a
−

n∑
i=1

[ xβi
αβ − xβi

]b
∂`n
∂b

=
n

b
+ β

n∑
i=1

log(xi)−
n∑
i=1

log
[
αβ − xβi

]
− a

n∑
i=1

[ xβi
αβ − xβi

]b
log
[ xβi
αβ − xβi

]
and

∂`n
∂β

=
n

β
+ n log(α) + b

n∑
i=1

log(xi)− (b+ 1)

n∑
i=1

[αβ log(α)− xβi log(xi)

αβ − xβi

]
− a bαβ

n∑
i=1

[ xbβi log(xi
α

)

(αβ − xβi )b+1

]
.

Setting these equations to zero and solving them simultaneously yields the MLEs of
the three parameters. For interval estimation of the model parameters, we require the
3 × 3 observed information matrix J(Θ) = {Urs} (for r, s = a, b, β), whose elements
are listed in Appendix A. Under standard regularity conditions, the multivariate normal
N3(0, J(Θ̂)−1) distribution can be used to construct approximate confidence intervals for
the model parameters. Here, J(Θ̂) is the total observed information matrix evaluated at
Θ̂. Then, the 100(1 − γ)% confidence intervals for a, b and β are given by â ± zα∗/2 ×√
var(â), b̂± zα∗/2×

√
var(b̂) and β̂± zα∗/2×

√
var(β̂), respectively, where the var(·)’s

denote the diagonal elements of J(Θ̂)−1 corresponding to the model parameters, and
zα∗/2 is the quantile (1− α∗/2) of the standard normal distribution.

7.1. Simulation study. To evaluate the performance of the MLEs of the WPF param-
eters, a simulation study is conducted for a total of twelve parameter combinations and
the process in each case is repeated 200 times. Two different sample sizes n = 100 and
300 are considered. The MLEs of the parameters and their standard errors are listed in
Table 2. In this simulation study, we take α = 1. The figures in Table 2 indicate that
the MLEs perform well for estimating the model parameters. Further, as the sample size
increases, the biases and standard errors of the estimates decrease.
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Table 2: MLEs and standard standard errors for some parameter values

Sample size Actual values Estimated values Standard errors

n a b β ã b̃ β̃ ã b̃ β̃

100 0.5 0.5 1.0 0.5124 0.5064 1.5287 0.0138 0.0057 0.0405
0.5 1.0 1.0 0.5928 1.0106 1.1023 0.0361 0.0137 0.0474
0.5 1.5 2.0 0.6161 1.4959 2.1283 0.0399 0.0147 0.0669
1.0 1.5 2.0 1.5224 1.4887 2.3224 0.1386 0.0287 0.1187
1.5 1.5 2.0 1.8829 1.5294 2.1325 0.1543 0.0310 0.0973
2.0 1.0 1.0 2.1982 1.0293 1.0834 0.1271 0.0240 0.0511
2.0 0.5 1.0 1.9921 0.5208 1.0109 0.0525 0.0103 0.0328
2.0 0.5 2.0 1.9807 0.5220 2.0032 0.0509 0.0102 0.0627
2.0 0.5 1.5 1.9977 0.5248 1.5256 0.0539 0.0107 0.0561
2.0 0.5 0.5 1.9794 0.5145 0.5048 0.0475 0.0097 0.0152
2.0 1.5 0.5 2.7821 1.5288 0.5672 0.2529 0.0380 0.0320
2.0 2.0 0.5 2.8568 2.0116 0.5274 0.2984 0.0350 0.0226

300 0.5 0.5 1.0 0.4999 0.5038 1.5155 0.0046 0.0019 0.0139
0.5 1.0 1.0 0.5301 1.0040 1.0341 0.0105 0.0041 0.0134
0.5 1.5 2.0 0.6161 1.4959 2.1283 0.0230 0.0085 0.0386
1.0 1.5 2.0 1.1401 1.5086 2.0540 0.0454 0.0108 0.0404
1.5 1.5 2.0 1.6533 1.5198 2.0340 0.0565 0.0120 0.0363
1.0 1.0 2.0 1.9977 1.0140 1.0006 0.0384 0.0076 0.0138
2.0 0.5 1.0 1.9912 0.5088 1.0122 0.0178 0.0038 0.0118
2.0 0.5 2.0 2.0012 0.5066 2.0139 0.0160 0.0033 0.0191
2.0 0.5 1.5 2.0412 0.4921 1.5583 0.0153 0.0029 0.0137
2.0 0.5 0.5 2.0110 0.5018 0.5062 0.0170 0.0033 0.0052
2.0 1.5 0.5 2.1140 1.5159 0.5039 0.0722 0.0117 0.0086
2.0 2.0 0.5 2.7353 2.0066 0.5251 0.1319 0.0184 0.0113

8. Bivariate extension
Here, we propose an extension of the WPF model using the results of Marshall and

Olkin [33].

8.1. Theorem. Let X1 ∼WPF(a1, b, α, β), X2 ∼WPF(a2, b, α, β)) and X3 ∼WPF(a1, b, α, β)
be independent random variables.

Let X = min {X1, X3} and Y = min {X2, X3}. Then, the cdf of the bivariate random
variable (X,Y ) is given by

FX,Y (x, y) =1− e
−a1

[
xβ

αβ−xβ

]b
−a2

[
yβ

αβ−yβ

]b
−a3

[
zβ

αβ−zβ

]b
,

where z = max {x, y}.
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The marginal cdf’s are given by

FX(x) = 1− e
−(a1+a3)

[
xβ

αβ−xβ

]b
and

FY (y) = 1− e
−(a2+a3)

[
yβ

αβ−yβ

]b
.

The pdf of (X,Y ) is given in the Corollary.

8.2. Corollary. Let X and Y defined as in Theorem 8.1,

fX,Y (x, y) =



fWPF(x ; a1, b, α, β) fWPF(y ; a2 + a3, b, α, β), for x < y;

fWPF(x ; a1 + a3, b, α, β) fWPF(y ; a2, b, α, β), for x > y;

a3
a1 + a2 + a3

fWPF(x ; a1 + a2 + a3, b, α, β), for x = y.

The marginal pdf’s are given by

fX(x) =
(a1 + a3) b β αβxβ b−1

(αβ − xβ)b+1
e
−a
[

xβ

αβ−xβ

]b
and

fY (y) =
(a2 + a3) b β αβyβ b−1

(αβ − yβ)b+1
e
−a
[

yβ

αβ−yβ

]b
.

9. Applications
In this section, we provide two application to real data in order to illustrate the

importance of the WPF distribution. The MLEs of the parameters are determined for
the WPF and four other models, and seven goodness-of-fit statistics are computed for
checking the adequacy of the all five fitted models.

9.1. Data set 1: Aarset data. The first real data set refers to the failure times of 50
items put under a life test. This data set is well-known to exhibit bathtub behavior of the
hrf. Aarset [1] first reported these data set which has been analyzed by many authors.
The data are: 0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0,
18.0, 18.0, 21.0, 32.0, 36.0, 40.0, 45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0,
67.0, 67.0, 72.0, 75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0. 85.0. 85.0.
86.0. 86.0.

9.2. Data set 2: Device failure times data. The second real data set refers to 30
devices failure times given in Table 15.1 by Meeker and Escobar [35]. The data are: 275,
13, 147, 23, 181, 30, 65, 10, 300, 173, 106, 300, 300, 212, 300, 300, 300, 2, 261, 293, 88,
247, 28, 143, 300, 23, 300, 80, 245, 266.

We fit the WPF model and other competitive models to both data sets. The other fit-
ted models are: the additive Weibull (AddW) [54], modified-Weibull (MW) [30], Sarhan-
Zaindin modified Weibull (SZMW) [48] and beta-modified Weibull (BMW) [50]. Their
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associated densities are given by:

AddW : fAddW (x;α, β, θ, γ) =
(
α θ xθ−1 + β γ xγ−1

)
e−αx

θ−β xγ , x > 0,

α, β, θ, γ > 0,

MW : fMW (x;β, γ, λ) = β (γ + λx) xγ−1 eλx e−β x
γ ,eλ x , x > 0, β, γ, λ > 0,

SZMW : fSZMW (x;α, β, γ) =
(
α+ β xγ−1

)
e−αx−β x

γ

, x > 0, α, β, γ > 0,

BMW : fBMW (x; a, b, α, β, λ) = 1
B(a,b)

α (β + λx) xβ−1 eλx e−α b x
β

×
(

1− e−αx
βeλx

)a−1

, x > 0, a, b, α, β, λ > 0.

The required computations are carried out using a script of the R-language [42], the
AdequacyModel, written by Pedro Rafael Diniz Marinho, Cícero Rafael Barros Dias
and Marcelo Bourguignon [32] which is freely available. In AdequacyModel package,
there exists many maximization algorithms like NR (Newton-Raphson), BFGS (Broyden-
Fletcher-Goldfarb-Shanno), BHHH(Berndt-Hall-Hall-Hausman), SANN (Simulated-Annealing),
NM (Nelder-Mead) and Limited-Memory quasi-Newton code for Bound-constrained op-
timization (L-BFGS-B). But here, the MLEs are computed using LBFGS-B method.

The measures of goodness of fit including the log-likelihood function evaluated at the
MLEs (ˆ̀), Akaike information criterion (AIC), consistent Akaike information criterion
(CAIC), Hannan-Quinn information criterion (HQIC), Bayesian information criterion
(BIC), Anderson-Darling (A∗) and Cramér–von Mises (W ∗) to compare the fitted models.
The statistics W ∗ and A∗ are well-defined by Chen and Balakrishnan [17]. In general,
the smaller the values of these statistics, the better the fit to the data.

Tables 3 and 5 list the MLEs and their corresponding standard errors (in parentheses)
of the model parameters. The numerical values of the statistics ˆ̀, AIC, CAIC, BIC,
HQIC, W ∗ and A∗ are listed in Tables 4 and 6.

Table 3: MLEs and their standard errors (in parentheses) for Aarset data.

Distribution a b α β θ γ λ

WPF 0.7347 0.3367 86.0 1.4898 - - -
(0.2096) (0.0567) - (0.4879) - - -

AddW - - 0.0020 0.0892 1.5164 0.3454 -
- - (0.0003) (0.0424) (0.0523) (0.1125) -

MW - - - 0.0624 - 0.3550 0.0233
- - - (0.0266) - (0.1126) (0.0048)

SZMW - - 0.0186 0.0405 - 0.3735 -
- - (0.0038) (0.0311) - (0.1886) -

BMW 0.2589 0.1525 0.0034 1.0819 - - 0.0401
(0.0704) (0.0834) (0.0015) (0.2928) - - (0.0122)
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Table 4: The statistics ˆ̀, AIC, CAIC, BIC, HQIC, A∗ and W ∗ for Aarset data.

Distribution ˆ̀ AIC CAIC BIC HQIC A∗ W ∗

WPF 205.1732 416.3464 416.8681 422.0824 418.5307 0.380 0.046
AddW 234.2362 476.4725 477.3614 484.1206 479.3849 2.174 0.343
MW 227.1552 460.3105 460.8322 466.0465 462.4948 1.604 0.234
SZMW 239.4842 484.9684 485.4901 490.7045 487.1527 2.799 0.454
BMW 222.0914 454.1827 455.5464 463.7429 457.8233 1.276 0.169

Table 5: MLEs and their standard errors (in parentheses) for Aarset data.

Distribution a b α β θ γ λ

WPF 0.7723 0.24487 300.0 2.8736 - - -

(0.2519) (0.0553) - (1.1351) - - -

AddW - - 3.4823E-03 1.0000E-10 1.0936 1.2045E-10 -

- - (1.3515E-03) (1.1991E-06) (7.6001E-02) (9.2675E-11) -

MW - - - 0.0313 - 0.3054 0.0081

- - - (0.0240) - (0.1678) (0.0020)

SZMW - - 5.6560E-03 1.1789E-05 - 7.5972E-03 -

- - (1.0088E-03) (1.1222E-05) - (3.0831E-06) -

BMW 0.3846 0.1832 0.0029 0.8382 - - 0.0110

(0.1443) (0.1305) (0.0012) (0.2770) - - (0.0045)

Table 6: The statistics ˆ̀, AIC, CAIC, BIC, HQIC, A∗ and W ∗ for device failure times
data.

Distribution ˆ̀ AIC CAIC BIC HQIC A∗ W ∗

WPF 152.5768 311.1535 312.0766 315.3571 312.4983 0.750 0.082
AddW 184.7103 377.4206 379.0206 383.0254 379.2136 1.872 0.314
MW 178.3303 362.6606 363.5837 366.8642 364.0054 1.396 0.207
SZMW 185.2905 376.5810 377.5041 380.7846 377.9258 1.906 0.321
BMW 175.7578 361.5157 364.0157 368.5216 363.7569 1.262 0.182

In Tables 4 and 6, we compare the WPF model with the WPF, AddW, MW, SZMW
and BMW models. We note that the WPF model gives the lowest values for the ˆ̀, AIC,
CAIC, BIC, HQIC, A∗ and W ∗ statistics for both data sets among the fitted models.
So, the WPF model could be chosen as the best model. The histogram of the data sets,
and plots the estimated densities and Kaplan-Meier are displayed in Figures 5 and 6. It
is clear from Tables 4 and 6 and Figures 5 and 6 that the WPF model provides the best
fits to the histogram of these two data sets.

10. Concluding remarks
Many new lifetime distributions have been constructed in recent years with a view for

better applications in various fields. They usually arise from an adequate transformation
of a very-known model. In this paper, we propose a new lifetime model, the Weibull-
power function (WPF) distribution, by applying the Weibull-G generator pioneered by
Bourguignon et al. [15] to the classical power function distribution. We study some of its
structural properties including an expansion for the density function and explicit expres-
sions for the ordinary and incomplete moments, generating function, mean deviations,
quantile function, entropies, reliability and order statistics. The maximum likelihood
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method is employed for estimating the model parameters and a simulation study is pre-
sented. The WPF model is fitted to two real data sets to illustrate the usefulness of the
distribution. It provides consistently a better fit than other competing models. Finally,
we hope that the proposed model will attract wider applications in reliability engineer-
ing, survival and lifetime data, mortality study and insurance, hydrology, social sciences,
economics, among others.
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Figure 5. Plots of the estimated pdfs and sfs for the WPF, AddW,
MW, SZMW and BMW models for the data set 1.
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MW, SZMW and BMW models for the data set 2.
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Appendix A
The elements of the 3×3 observed information matrix J(Θ) = {Urs} (for r, s = a, b, β)

are given by

Uaa = − n

a2
,

Uab = −
n∑
i=1

[
xβi

αβ − xβi

]b
log

[
xβi

αβ − xβi

]
,

Uaβ = −b αβ
n∑
i=1

xb βi log (xi/α)(
αβ − xβi

)b+1

 ,
Ubb = − n

b2
− a

n∑
i=1

[
xβi

αβ − xβi

]b {
log

[
xβi

αβ − xβi

]}2

,

Ubβ =

n∑
i=1

log xi −
n∑
i=1

[
αβ logα− xβi log xi

αβ − xβi

]

−aαβ
n∑
i=1

[
xb βi log (xi/α)

(αβ − xβi )b+1

] [
1 + b log(xβi /(α

β − xβi ))
]
,

Uββ = − n

β2
− (b+ 1)

n∑
i=1

[(
αβ − xβi

) {
αβ (log α)2 − xβi (log xi)

2
}

(αβ − xβi )2

−(αβ log α− xβi log xi)
2

]

−a bαβ
n∑
i=1

(αβ − xβi )b
[(

αβ − xβi
)
xbβi {b log xi + log α} log (xi/α)

(αβ − xβi )2(b+1)

−
(b+ 1)αβxbβi log (xi/α)

(
αβ log α− xβi log xi

)
(αβ − xβi )2(b+1)

]
.
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